1. (a) If C is the curve $x=\pi(1+2t^4),\ y=(t+2)\cos\pi t,\ z=1+t^5,$ $(0\leq t\leq 1),$ compute

$$\int_C (y^2 \cos x + z^3) \, dx + (2y \sin x - 4) \, dy + (3xz^2 + 2) \, dz.$$

(b) Show that $\overrightarrow{F} = 2xz\overrightarrow{i} + (x^2 - y)\overrightarrow{j} + (2z - x^2)\overrightarrow{k}$ is not conservative by finding points A, B and curves C_1 , C_2 joining A to B such that

$$\int_{C_1} \overrightarrow{F} \cdot d\overrightarrow{r'} \neq \int_{C_2} \overrightarrow{F} \cdot d\overrightarrow{r'}.$$

2. Compute the line integral

$$\int_{C} \left(\frac{-\sqrt{2}(y-1)}{x^{2} + 2(y-1)^{2}} + y^{2} \right) dx + \left(\frac{\sqrt{2}x}{x^{2} + 2(y-1)^{2}} + 2xy \right) dy$$

over

- (a) the ellipse $x^2 + 2(y-1)^2 = 1$ with counterclockwise orientation;
- (b) the circle $x^2 + (y-1)^2 = 4$ with clockwise orientation. (Hint: Use the result of (a) and Green's Theorem.)
- 3. Using Stokes Theorem, compute the line integral

$$\int_C (y+2z) \, dx + (z+2x) \, dy + (x+2y) \, dz,$$

where C is the intersection of $z=x^2+y^2$ and z=2x+2y+2 with the counterclockwise orientation (viewing the curve from above).

- 4. Use the method of Lagrange multipliers to find the distance from the origin to the hyperbola $x^2 + 8xy + 7y^2 = 225$.
- 5. Compute the area of that portion of the cone $x^2 + y^2 = 3z^2$ which lies inside the cylinder $x^2 + y^2 = 4y$.
- 6. Compute the flux of the vector field

$$\overrightarrow{F} = xy^{2}\overrightarrow{i} + x^{2}y\overrightarrow{j} + y\overrightarrow{k} + \nabla\left(\frac{1}{\sqrt{x^{2} + y^{2} + (z - 1/2)^{2}}}\right)$$

across the closed surface consisting of the cylinder $x^2+y^2=1, -1\leq z\leq 1$ and the two "lids" $x^2+y^2\leq 1, z=\pm 1$, oriented with the outward-pointing normal.