
MATH 264: Wave equation, Part 4

This is a discussion of some easy special cases of the inhomogeneous wave equation

with Dirichlet and Neumann boundary conditions.

1. Dirichlet BC

Recall from Wave equation handout, Part 2 that we were solving the IBVP

(1) utt = c2uxx + H(x, t), u(x, 0) = f(x), ut(x, 0) = g(x) u(0, t) = 0 = u(L, t).

To find the solution, we expanded the inhomogeneous term H(x, t) into Fourier series

(2) H(x, t) =
∞∑

n=1

hn(t) sin
(πnx

L

)
,

and looked for solutions of the form

u(x, t) =
∞∑

n=1

un(t) sin
(πnx

L

)
.

Below we consider a simple special case, when an infinite expansion (3) consists of

a single term, say

(3) H(x, t) = h(t) sin
(πmx

L

)
,

for some m > 0. We would like to find a particular solution of the form

up(x, t) = u(t) sin
(πmx

L

)
,

where u(t) is an unknown function.

The function u(t) satisfies the differential equation

(4) u′′(t) +
(πmc

L

)2

u(t) = h(t).

The system of fundamental solutions is {sin (
πmct

L

)
, cos

(
πmct

L

)}.
We shall now consider a very special case when the function h(t) has the form

(5) h(t) = eαt(Pn(t) cos(βt) + Qn(t) sin(βt)),

where Pn, Qn are polynomials of degree ≤ n, and max(degP, degQ) = n.

Such equations can be solved by method of undetermined coefficients. We consider

two cases:
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i) α 6= 0, or α = 0 and β 6= πmc/L. In that case there exists a solution of (5) of

the form

eαt(pn(t) cos(βt) + qn(t) sin(βt)),

where pn, qn are also polynomials of degree ≤ n, different from Pn and Qn.

ii) α = 0 and β = πmc/L. In that case there exists a solution of (5) of the form

t(pn(t) cos(mt) + qn(t) sin(mt)),

where pn, qn are also polynomials of degree ≤ n, different from Pn and Qn.

After we find a solution up, a general solution has the form u = up + v, where v

satisfies

utt = c2uxx, u(x, 0) = f(x)−up(x, 0), ut(x, 0) = g(x)−(up)t(x, 0) u(0, t) = 0 = u(L, t).

It can be solved by methods discussed in wave equation handout number 1.

1.1. Example 1. . Solve

utt = 4uxx + sin(4x)et(1 + 2t), u(0, t) = 0 = u(π, t).

Solution: Here L = π, c = 2 and m = 4. We look for solutions in the form

up(x, t) = sin(4x)u(t). We have πmc/L = π · 4 · 2/π = 8.

The function u(t) satisfies

(6) u′′(t) = −64u(t) + et(1 + 2t)

The function h(t) = et(1 + 2t), so α = 1 6= 0, β = 0, and n = 1.

We try to find solutions by method of undetermined coefficients. Since α 6= 0, we

are in case (i), hence we look for solutions of the form

u(t) = et(a + b · t),
where a and b are the undetermined coefficients that we have to find. Substituting

into (6), we find that

[et(a + b · t)]′′ = et[a + 2b + bt] = −64u(t) + et(1 + 2t) = et[−64a + 1 + (−64b + 2)t].

Equating the coefficients in the previous formula, we see that a+2b = −64a+1, b =

−64b + 2. We first solve for b and find that b = 2/65. Finally, from the first equation

we see that 65a = 61/65, and so a = 61/(65)2. So, the solution to (6) that we found

is

up(t) = et

(
61

652
+

2t

65

)



1.2. Example 2. . Solve

utt = uxx + sin(2x) · 2t cos(2t), u(0, t) = 0 = u(π, t).

Solution: Here L = π, c = 1 and m = 2. We look for solutions in the form

up(x, t) = sin(2x)u(t). We have πmc/L = π · 2 · 2/π = 2.

The function u(t) satisfies

(7) u′′(t) = −4u(t) + 2t cos(2t)

The function h(t) = 2t cos(2t), so n = 1, α = 0, and β = 2 = πmc/L, and we are in

case (ii).

We try to find solutions by method of undetermined coefficients. Since we are in

case (ii), we look for solutions of the form

u(t) = t[cos(2t)(a + bt) + sin(2t)(c + dt)],

where a, b, c, d are the undetermined coefficients that we have to find. We first com-

pute the second derivative, and find (after a long calculation!) that

(8) u(t)′′ = cos(2t)[4c + 8dt + 2b− 4at− 4bt2] + sin(2t)[−4a− 8bt + 2d− 4ct− 4dt2].

On the other hand, the right-hand side of (7) is equal to

(9) −4u(t) + 2t cos(2t) = cos(2t)[−4at− 4bt2 + 2t] + sin(2t)[−4ct− 4dt2].

Equating the coefficients of cos(2t) and sin(2t) in (8) and (9), we see that 4c+8dt+

2b − 4at − 4bt2 = −4at − 4bt2 + 2t, and −4a − 8bt + 2d − 4ct − 4dt2 = −4ct − 4dt2.

After cancelations, we get the following system of equations:

(10)





8d = 2;

2b + 4c = 0;

−8b = 0;

2d− 4a = 0.

It follows that b = c = 0, d = 1/4, a = 1/8.

The solution to (7) that we found is

up(t) = t cos(2t)/8 + t2 sin(2t)/4.



2. Neumann BC

Recall from Wave equation handout, Part 3, that we were solving an IBVP

(11) utt = c2uxx +H(x, t), u(x, 0) = f(x), ut(x, 0) = g(x) ux(0, t) = 0 = ux(L, t).

We expanded

(12) H(x, t) =
h0(t)

2
+

∞∑
n=1

hn(t) cos
(πnx

L

)
,

and looked for solutions of the form

u(x, t) = u0(t) +
∞∑

n=1

un(t) cos
(πnx

L

)
.

Here we consider a special case when an infinite expansion (12) consists of a single

term,

H(x, t) = h(t) cos
(πmx

L

)
, m > 0.

Analogously to the Dirichlet case, we look for particular solutions of the form

up(x, t) = u(t) cos
(πmx

L

)
,

where u(t) is an unknown function.

The function u(t) satisfies the differential equation

u′′(t) +
(πmc

L

)2

u(t) = h(t).

This equation is identical to (4), and is solved exactly as in the section 1.


