
MATH 264: FINAL EXAM Solutions

Problem 1. Use a line integral to find the plane area enclosed by the curve C:
r = a cos3 t i + b sin3 t j (0 ≤ t ≤ 2π).

Solution: We assume a > b > 0.

A =
1

2

∫ 2π

0

(xy′ − yx′)dt =
3ab

2

∫ 2π

0

(sin4 t cos2 t + sin2 t cos4 t)dt

=
3ab

8

∫ 2π

0

sin2(2t)dt =
3πab

8
.

Problem 2. Compute the outward flux of the vector field

F = (ecos z + 3xy2, 1/(10 + sin x) + 3x2y, sin(ey) + z3)

across the surface S consisting of the cylinder x2 + y2 = 4,−2 ≤ z ≤ 0, capped at
the bottom by the disk D := {(x, y, z) : z = −2, 0 ≤ x2 + y2 ≤ 4}, and capped at the
top by the hemisphere {x2 + y2 + z2 = 4, z ≥ 0}.

Solution: Let R be the region in R3 bounded by the surface S. We use the
Divergence Theorem. We have divF = 3(x2 + y2 + z2), so that∫ ∫

S

F • dS = 3

∫ ∫ ∫

D

(x2 + y2 + z2)dV := I.

To compute the integral, we decompose the domain D into 2 regions: D = D1∪D2,
where

D1 = {(x, y, z) : −2 ≤ z ≤ 0, 0 ≤ x2 + y2 ≤ 4},
and where

D2 = {(x, y, z) : z ≥ 0, 0 ≤ x2 + y2 + z2 ≤ 4}.
Let I1 = 3

∫ ∫ ∫
D1

(x2 + y2 + z2)dV . To compute I1 we switch to cylindrical coor-
dinates. The integral I1 can be computed as follows:

I1 = 3

∫ 0

z=−2

∫ 2

r=0

∫ 2π

θ=0

(r2 + z2)rdrdθdz = 6π

∫ 0

z=−2

dz

(
r4

4
+

r2z2

2

)2

0

= 80π.

Let I2 = 3
∫ ∫ ∫

D2
(x2 + y2 + z2)dV . To compute I2, we switch to spherical coordi-

nates. We then have

I2 = 3

∫ 2

ρ=0

∫ π/2

φ=0

∫ 2π

θ=0

ρ2 · ρ2 sin φdθdφdρ = 6π (− cos φ)π/2
0

(
ρ5

5

)2

0

=
192π

5
.

Finally, I = I1 + I2 = 118.4π.

Problem 3. Using Stokes’s Theorem, compute the integral∫

C

(y2 − z2)dx + (z2 − x2)dy + (x2 − y2)dz,

1



where C is the curve formed by the intersection of the cube [0, 1]× [0, 1]× [0, 1] ∈ R3

with the plane x + z = 1, oriented so that its projection into the (x, y)-plane has
counterclockwise orientation.

Solution: We first remark that curl F = (−2) · (y + z, x + z, x + y). The in-
tersection S of the unit cube with the plane x + z = 1 is a rectangle with ver-
tices at (1, 0, 0), (1, 0, 1), (0, 1, 0), (0, 1, 1). It projects one-to-one onto the unit square
[0, 1]× [0, 1] in the (x, z)-plane, and the boundary curve is oriented counterclockwise.
Accordingly, S can be parametrized by {(x, y, 1− x) : 0 ≤ x, y ≤ 1}. The normal N
is pointing upward and is equal to (1, 0, 1).

Thus, (∇×F) •N = (−2)(x + 2y + z) = (−2)(2y + 1). the flux integral is equal to

(−2)

∫ 1

x=0

∫ 1

y=0

(2y + 1)dydx = −4.

Problem 4. Let

F =

(
x

(x2 + y2 + z2)3/2
+ 18xz2,

y

(x2 + y2 + z2)3/2
+

yx2

2
+

2y3

3
,

z

(x2 + y2 + z2)3/2

)
.

Compute the outward flux of F through the boundary of the ellipsoid

x2/4 + y2 + 9z2 = 1.

Solution: We write F = F1 + F2, where

F1 =

(
x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

)
=

r

r3
,

which has the singularity at r = 0, and

F2 = (18xz2, yx2/2 + 2y3/3, 0).

Note that
divF1 = 0,

and
divF2 = 18z2 + x2/2 + 2y2.

Let S be the surface of the ellipse; then∫ ∫

S

F • dS =

∫ ∫

S

F1 • dS +

∫ ∫

S

F2 • dS := I1 + I2.

Since the origin is contained in the ellipsoid R bounded by S, to compute I1, by
applying the divergence theorem, we may let (S0) be a sphere with radius ε. Then,

I1 =

∫ ∫

S

F1 • dS =

∫ ∫

(S0)

F1 • dS =

∫ ∫

(S0)

r

r3
• r

r
dS =

∫ ∫

(S0)

1

r2
dS

=

∫ ∫

(S0)

1

ε2
dS = 4π.



To compute I2, we again apply the Divergence Theorem. We have divF2 = 18z2 +
x2/2 + 2y2. Then

I2 =

∫ ∫ ∫

x2/4+y2+9z2≤1

(x2/2 + 2y2 + 18z2)dxdydz.

We change coordinates: u = x/2, v = y, w = 3z; the Jacobian is equal to 2/3. The
integral becomes

2

3

∫ ∫ ∫

u2+v2+w2≤1

2(u2 + v2 + w2)dudvdw.

Switching to spherical coordinates, we find that

I2 =
4

3

∫ 1

ρ=0

∫ π

φ=0

∫ 2π

θ=0

ρ2 · ρ2 sin φdρdφdθ =
8π

3
(− cos φ)π

0 (ρ5/5)1
0 =

16π

15
.

The total flux is equal to I1 + I2 = 4π + 16π/15 = 76π/15.

Problem 5. Given he following IBVP of heat conduction equation:

∂u

∂t
=

∂2u

∂x2
− 3 sin x (0 < x < π, t > 0)

u(0, t) = 1, u(π, t) = 0, (t > 0)

u(x, 0) = 2 sin(3x)− sin(5x), (0 ≤ x ≤ π)

(1) Find the equilibrium state solution for the above problem;
(2) Find the unsteady solution for the above IBVP;
(3) Show that the above unsteady solutions approach to the equilibrium state

solution as t →∞.

Solution: (1).We look for steady solution of the inhomogeneous equation in the
form u(x, t) = W (x), where d2W/dx2 = 3 sin x,W (0) = 1,W (π) = 0. By integration,
we find that W (x) = 1− x

π
− 3 sin x.

(2). Let u(x, t) = ũ(x, t) + W (x). Substituting into the equation, we find that ũ
satisfies

ũt = ũxx;
ũ(0, t) = ũ(π, t) = 0;
ũ(x, 0) = −1 + x

π
+ 3 sin x + 2 sin(3x)− sin(5x) = f(x).

To solve ũ, we use the Sine Fourier series:

ũ(x, t) = 3 sin xe−t + 2 sin(3x)e−32t − sin(5x)e−52t +
∞∑

n=1

ãn sin nxe−n2t.

From the IC, we derive
∞∑

n=1

ãn sin nx =
x

π
− 1, (0 ≤ x ≤ π).



Thus, it follows that

ãn =
2

π

∫ π

0

(x

π
− 1

)
sin nxdx = − 2

nπ
cos nx

(x

π
− 1

)π

0
=

2(−1)n

nπ
.

Therefore, we finally obtain:

u(x, t) = 1− x
π
− 3 sin x + 3 sin xe−t + 2 sin(3x)e−32t − sin(5x)e−52t

+
∞∑

n=1

2(−1)n

nπ
sin nxe−n2t.

(3). As t →∞, u(x, t) → W (x) = 1− x
π
− 3 sin x.

Problem 6. Given the following problem of the string vibration with external oscil-
latory force:

∂2u

∂t2
− ∂2u

∂x2
= cos 2πx cos 2πt, (0 < x < 1, t > 0)

ux(0, t) = ux(1, t) = 0, (t > 0)

u(x, 0) = f(x) = cos2 πx, ut(x, 0) = g(x) = 2 cos 2πx, (0 ≤ x ≤ 1).

(1) Use the method of separation of variables and Fourier series to find its solution;
(2) Determine the behavior of the solution, as t →∞: Is the solution bounded or

unbounded as t →∞?

Solution: 1. We first look for a particular solution of the form W (x, t) = cos(2πx)φ(t).
Substituting into the equation we get

cos(2πx)φ′′(t) + 4π2 cos(2πx)φ(t) = cos(2πx) cos(2πt).

It follows that φ′′(t)+ 4π2φ(t) = cos(2πt). From the theory of inhomogeneous second
order ODE (method of undetermined coefficients), we know that solution will have
the form φ(t) = A cos(2πt)+B sin(2πt)+Ct cos(2πt)+Dt sin(2πt). Substituting into
the ODE, we find that Taking the second derivative and equating the coefficients, we
find that

φ(t) = t sin(2πt)/(4π), W (x, t) = t sin(2πt)/(4π) cos(2πx).

We now set u(x, t) = ũ(x, t) + W (x, t). Then by substituting into the equation we
have

∂2ũ

∂t2
− ∂2ũ

∂x2
= 0, (0 < x < 1, t > 0)

ũx(0, t) = ũx(1, t) = 0, (t > 0)

ũ(x, 0) = f(x) = cos2 πx, ũt(x, 0) = g(x) = 2 cos 2πx, (0 ≤ x ≤ 1).



One may make Cosine Fourier series for ũ(x, t),

ũ(x, t) =
∞∑

n=0

[
An cos(nπt) + Bn sin(nπt)

]
cos(nπx).

To satisfy the IC’s, we have

ũ(x, 0) =
∞∑

n=0

An cos(nπx) = f(x) =
1 + cos(2πx)

2
.

and

ũt(x, 0) =
∞∑

n=0

2πBn cos(nπx) = g(x) = 2 cos(2πx).

It follows that

A0 = A2 =
1

2
, B2 =

1

π
, An = Bn = 0, otherwise.

Hence,

ũ(x, t) =
1

2
+

[1

2
cos(2πt) +

1

π
sin(2πt)

]
cos(2πx).

Finally, we get

u(x, t) =
1

2
+

[1

2
cos(2πt) +

1

π
sin(2πt)

]
cos(2πx) +

t

4π
sin(2πt) cos(2πx).


