
Math 264: Advanced Calculus Winter 2007

FINAL EXAM Solutions

Problem 1. Compute
∫

C

(

x + y +
−y

x2 + y2

)

dx +

(

y − x +
x

x2 + y2

)

dy,

where C is the ellipse x2/16 + 9y2 = 1.

Solution. We have to compute
∫

C
F ·ds, where F =

(

x + y + −y
x2+y2 , y − x + x

x2+y2

)

.

Write F = F1 + F2, where F1 = (x + y, y − x) and F2 =
(

−y
x2+y2 ,

x
x2+y2

)

. By a

result proved in class,
∫

C
F2 · ds = 2π, since the origin (0, 0) lies inside the region R

enclosed by the ellipse. To compute
∫

C
F1 · ds, we use Green’s theorem. We have

F1 = (P, Q) = (x + y, y − x), so

∂Q

∂x
− ∂P

∂y
= −2.

Accordingly, if we denote by E the ellipse {x2/16 + 9y2 ≤ 1}, we have
∫

C

F1 · ds =

∫∫

E

(−2)dxdy = (−2)Area(E) = −2π · 4/3 = −8π/3.

Here we have used the formula Area(A) = πab, where a = 4 and b = 1/3 are semiaxes
of the ellipse.

The final answer is equal to 2π − 8π/3 = −2π/3.

Problem 2. Compute the outward flux of the vector field F = (y2x−xz, yz+x2y, ex+
cos(y)) across the surface S consisting of the paraboloid z = x2+y2, 0 ≤ z ≤ 4, capped
by the disk D := {(x, y, z) : z = 4, 0 ≤ x2 + y2 ≤ 4}.
Solution. To compute the flux, we use the Divergence theorem. We have

divF =
∂(y2x − xz)

∂x
+

∂(yz + x2y)

∂y
+

∂(ex + cos(y))

∂z
= y2 − z + z + x2 = x2 + y2.

Accordingly, if we denote by R the region bounded by S, we have
∫∫

S

F · dS =

∫∫∫

R

(x2 + y2)dV.

To compute the last integral, we use cylindrical coordinates. Then x2 + y2 = r2,
and the integral becomes

∫ 2

r=0

∫ 2π

θ=0

∫ 4

z=r2

r2rdrdθdz = 2π

∫ 2

r=0

r3(4 − r2)dr = 2π(r4 − r6/6)2
0 =

32π

3
.



Problem 3. Using Stokes’ Theorem, compute the integral
∫

C
(x2−yz)dx+(2x+y2−

xz)dy + (z2 − xy)dz, where C is the curve formed by the intersection of the sphere
x2 + y2 + z2 = 25 and the plane z = 4, oriented counterclockwise (e.g. its projection
into the (x, y)-plane is oriented counterclockwise).
Solution. The plane z = 4 intersects the sphere in a disk D = {z = 4, 0 ≤ x2 + y2 ≤
9}. We have

∫

C

F · ds =

∫∫

D

(curlF) · dS =

∫∫

D

(curlF) · ndA.

We next find that
curlF = (0, 0, 2).

The unit n normal to the surface D is equal to ±(0, 0, 1). The curve C is oriented so
that we choose the + sign. Therefore, F ·n = 2. Accordingly, the integral is equal to

∫

D

(curlF) · ndA = 2 · Area(D) = 2π · 32 = 18π.

Problem 4. Compute the surface integral

∫∫

S

(x2 + y2 + z2)dA,

where S is the surface of the tetrahedron with vertices at

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1).

Solution. Let A = (0, 0, 0), B = (1, 0, 0), C = (0, 1, 0), D = (0, 0, 1). By symme-
try, the integral (call it I) that we need to compute satisfies I = 3

∫∫

ABC
f dS +

∫∫

BCD
f dS, where f(x, y, z) = x2 + y2 + z2.

Now, the triangle ABC lies in the xy-plane, so z = 0 and the integral I1 =
∫

ABC
f dS satisfies

I1 =

∫ 1

x=0

∫ 1−x

y=0

(x2 + y2)dydx =

∫ 1

x=0

(

x2y +
y3

3

)1−x

y=0

dx

=

∫ 1

0

(

1

3
− x + 2x2 − 4x3

3

)

dx =
1

6
.

Next, the triangle BCD lies in the plane x + y + z = 1 or z = 1 − x − y. The
normal N to the plane is a vector 1, 1, 1, and the area form is

√
3dxdy. Accordingly,



the integral I2 =
∫

BCD
f dS is equal to

I2 =
√

3

∫ 1

x=0

∫ 1−x

y=0

(x2 + y2 + (1 − x − y)2)dydx

=
√

3

∫ 1

x=0

(

2x2y +
2y3

3
+ xy2 − 2xy − y2 + y

)1−x

y=0

dx

=
√

3

∫ 1

0

(

2

3
− 2x + 3x2 − 5x3

3

)

dx =

√
3

4
.

The final answer is equal to 3I1 + I2 = 1/2 +
√

3/4.

Problem 5. Use separation of variables method to solve the heat equation

∂u

∂t
= 3

∂2u

∂x2
, 0 < x < π, 0 < t < ∞,

u(0, t) = u(π, t) = 0, 0 < t < ∞,

u(x, 0) = sin(x) − 6 sin(4x), 0 < x < π.

Solution: This is a heat problem with homogeneous Dirichlet boundary conditions.
Using separation of variables method the solution takes the form

u(x, t) =

∞
∑

n=1

cne−β(nπ/L)2t sin
(nπx

L

)

,

where β = 3 and L = π. Then

u(x, t) =

∞
∑

n=1

cne−3n2t sin(nx).

By the initial condition, we find

u(x, 0) =
∞

∑

n=1

cn sin(nx) = sin(x) − 6 sin(4x)

Comparing coefficients, we get

c1 = 1, c4 = −6,

and the remaining c′ns are zero. Therefore, the solution of the heat problem is

u(x, t) = e−3t sin(x) − 6e−48t sin(4x)



Problem 6. Use Fourier series to solve the heat equation

∂u

∂t
= 7

∂2u

∂x2
, 0 < x < π, 0 < t < ∞,

∂u

∂x
(0, t) =

∂u

∂x
(π, t) = 0, 0 < t < ∞,

u(x, 0) = 1 − sin(x), 0 < x < π.

Solution : This is a heat problem with homogeneous Neumann boundary conditions.
Thus the solution has the form

u(x, t) =
a0

2
+

∞
∑

n=1

ane−β(nπ/L)2t cos
(nπx

L

)

with β = 7 and L = π, hence

u(x, t) =
a0

2
+

∞
∑

n=1

ane−7n2t cos(nx)

The coefficients of the Fourier cosine series are given by

an =
2

π

∫ π

0

(1 − sin(x)) cos(nx)dx =
2

π

∫ π

0

cos(nx)dx − 2

π

∫ π

0

sin(x) cos(nx)dx

=
2

π

sin(nx)

n

∣

∣

∣

∣

π

0

− 2

π

[

−1

2

cos((n + 1)x)

n + 1
+

1

2

cos((n − 1)x)

n − 1

]
∣

∣

∣

∣

π

0

, n 6= 0, 1

=
1

π

[

cos((n + 1)x)

n + 1
− cos((n − 1)x)

n − 1

]
∣

∣

∣

∣

π

0

, n 6= 0, 1

=
1

π

[(

(−1)n+1

n + 1
− (−1)n−1

n − 1

)

−
(

1

n + 1
− 1

n − 1

)]

n 6= 0, 1

=
2

π

n((−1)n + 1)

n2 − 1
=











0, n odd

4n

(n2 − 1)π
, n even

If n = 0, we obtain

a0 =
2

π

∫ π

0

(1 − sin(x))dx =
2

π
(x + cos(x))

∣

∣

∣

∣

π

0

=
2(π − 2)

π



If n = 1, we get

a1 =
2

π

∫ π

0

(1 − sin(x)) cos(x)dx =
2

π

∫ π

0

sin(x) cos(x)dx =
1

π

∫ π

0

sin(2x)dx = 0

Therefore, the solution is

u(x, t) =
π − 2

π
+

∑

n=2,4,..

4n

(n2 − 1)π
e−7n2t cos(nx)

=
π − 2

π
+

∞
∑

n=1

8n

(4n2 − 1)π
e−28n2t cos(2nx)


