McGill University Math 262: Intermediate Calculus, Fall 2014
WRITTEN ASSIGNMENT 1 Solutions

Problem 1.
Find the limit of the following sequences.
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Solution, Part a). We stated in class that lim, ,(1 + a/n)" = e®. Here we have

(n —3)/n =1—3/n, so substituting a = —3 we find that the answer is e™3 = 1/¢3.
Solution, Part b). It is easy to show using Taylor expansion of sin that lim,_,q - sin(z)/x =
0. Let us re-write the expression as
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If we let z(n) = 1/(4n* + 5n + 3), we find that z(n) — 0 as n — oo, and it follows
from our first remark that (4n* 4+ 5n + 3) sin ( — 1 as n — oo. Next, the
fraction
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as n — oco. Accordingly, the limit is equal to 1/4.
Problem 2.
Determine whether the following series converges or diverges by using any appro-

priate test.
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Solution, Part a). We use the ratio test. We find that
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as n — 00. Since |e/7m| < 1, we find that the series converges by the ratio test.
Solution, Part b). We use the root test. We find that
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as n — 00. Since |1/e| < 1, we find that the series converges by the root test.
Problem 3.
Determine whether the following series converges or diverges.
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Hint: compare a,, with 1/(2n).

(b)
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Solution, Part a). Let a, = b,/(2n), so b, = 4"(n!)*/(2n — 1)!. We claim that

bp+1 > by, for all n. Indeed, we find after cancellations that
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It follows that
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by the p-series test. So, Zn a, = 0o by the comparison principle.
Solution, Part b). We use the integral test. We have to compute
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We let v = Inlnlnz. By the chain rule applied repeatedly, we find that du =
dx/(z-Inz-In(Inz)). The integral becomes



by the p-series test. The series thus converges by the integral test.
Problem 4. Fibonacci numbers f, are defined as follows: f; = 1,f, = 1, and
fn= fn1+ fn_o for n > 3. Consider the power series
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Hint: Multiply F(z) by (1 — z — 2?) and use the recursion relations.
Solution. We find that F(z)(1 — x — z?) is equal to
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Using the recursion relation f, = f,,_1 + f._2 we see that the last expression is equal
to x. The result follows after dividing by (1 — z — z?).
Problem 5. Let F(z) = [ sin(t?)dt.

e Find the Maclaurin series for F(x).
e Approximate F'(0.1) with an error smaller than 0.001.

Solution. The Taylor series for sin y is y—y3/3!4+4° /5!4. . .+(—1)"y*" ™ /(2n+1)!+
Substituting y = t
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Integrating term by term gives
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This is an alternating series, and the remainder R,, = (a1 —a,12%...) satisfies
|R,| < |ani1], so it suffices to find n such that (.1)*"3/[(4n + 3) - (2n + 1)!] < .001.
It is easy to show that for n = 1 the inequality is satisfied, so we can choose an
approximation consisting of just the first term in the sum, .13/3. However, even that
leading term is less than .001, so we can leave 0 as an approximation as well.
Problem 6.

a) Find

. sin(sinz) —z
lim -
z—0 z(cos(sinx) — 1)

b) Find MacLaurin series representation for the function

(4 + 5134)_1/3.

Solution, Part a). Let y = sint = z — 2*/3! + 2°/5! &+ .... We first compute the
numerator. We see that siny = y — y3/3! + ¢°/5! + ... Substituting for y, we find
that —z + sin(sin z) is equal to
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The denominator is equal to z(—1 + cosy) = z(—y?/2 + y*/4! +...) Substituting
for y, we see that it is equal to
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The limit is equal to
. =233+ 2
lim ——— = -
e=0 —x3/24+ ... 3

Solution, Part b). Let y = x*/4. We find that (4 + 2%)7'/3 = 471/3(1 4+ y)~'/3. The
binomial power series for (14 y)~'/3 gives
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Multiplying by 47'/3 and substituting y = 2*/4 gives
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