McGill University

Math 262: Intermediate Calculus, Fall 2014

WRITTEN ASSIGNMENT 1

Due September 29, 2014

Professor: Dmitry Jakobson

INSTRUCTIONS: Answer any 5 of the following 6 questions. To get the full mark, it is not enough to state the correct answer; there should be a detailed explanation for that answer. You can use any result from the book or from the lectures, but you should explain how it applies to the problem.

Problem 1. (4 points)

Find the limit of the following sequences.

(a)

$$a_n = \left(\frac{n-3}{n}\right)^n$$

(b)

$$a_n = (n^2 + 2n + 3) \cdot \sin\left(\frac{1}{4n^2 + 5n + 3}\right)$$

Problem 2. (4 points)

Determine whether the following series converges or diverges by using any appropriate test.

(a)

$$\sum_{n=1}^{\infty} \frac{n^n}{\pi^n \cdot n!}$$

(b)

$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}.$$

Problem 3. (4 points)

Determine whether the following series converges or diverges.

(a)

$$\sum_{n=1}^{\infty} \frac{2^{2n} (n!)^2}{(2n)!}$$

Hint: compare a_n with 1/(2n).

(b)

$$\sum_{n=27}^{\infty} \frac{1}{n \cdot \ln n (\ln \ln n) (\ln \ln \ln n)^{1.5}}$$

Problem 4. (4 points) Fibonacci numbers f_n are defined as follows: $f_1 = 1, f_2 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 3$. Consider the power series

$$F(x) = \sum_{n=1}^{\infty} f_n x^n.$$

Show that

$$F(x) = \frac{x}{1 - x - x^2}.$$

Hint: Multiply F(x) by $(1 - x - x^2)$ and use the recursion relations. **Problem 5.** (4 points) Let $F(x) = \int_0^x \sin(t^2) dt$.

- Find the Maclaurin series for F(x).
- Approximate F(0.1) with an error smaller than 0.001.

Problem 6. (4 points)

• Find

$$\lim_{x \to 0} \frac{\sin(\sin x) - x}{x(\cos(\sin x) - 1)}.$$

• Find MacLaurin series representation for the function

$$(4+x^4)^{-1/3}$$
.