McGill University
Math 325A: Differential Equations

LECTURE 17: SERIES SOLUTION OF LINEAR DIFFERENTIAL
EQUATIONS (II)

(Text: Chap. 8)

1 Introduction
In this lecture we investigate series solutions for the general linear DE
ao(2)y™ + ar(@)y" TV + - + an(2)y = bla),

where the functions aj,as,...,a,,b are analytic at = xg. If ag(xg) # 0 the point & = z is called
an ordinary point of the DE. In this case, the solutions are analytic at x = x( since the normalized
DE

y™ 4+ pi(@)y " + -+ pu(a)y = q(2),

where p;(z) = a;(x)/ao(x), q(x) = b(x)/ao(x), has coefficient functions which are analytic at © = xo.
If ag(zp) = 0, the point & = xq is said to be a singular point for the DE. If k is the multiplicity
of the zero of ag(z) at * = zp and the multiplicities of the other coeflicient functions at x = z¢ is
as big then, on cancelling the common factor (z — x¢)* for & # 1z, the DE obtained holds even for
x = xg by continuity, has analytic coefficient functions at * = xy and x = xg is an ordinary point.
In this case the singularity is said to be removable. For example, the DE zy” + sin(z)y’ + 2zy =0
has a removable singularity at x = 0.

2 Series Solutions near a Regular Singular Point

In general, the solution of a linear DE in a neighborhood of a singularity is extremely difficult.
However, there is an important special case where this can be done. For simplicity, we treat the
case of the general second order homogeneous DE

ao(z)y" + a1(x)y’ + az(x)y =0, (x> xo),

with a singular point at z = xy. Without loss of generality we can, after possibly a change of variable
T — xg = t, assume that xy = 0. We say that x = 0 is a regular singular point if the normalized
DE

v +p@)y +al@)y =0, (z>0),
is such that zp(z) and z%q(z) are analytic at z = 0. A necessary and sufficient condition for this is
that
lim zp(z) = po, hn%) 2q(x) = qo
T—

x—0

exist and are finite. In this case

zp(x) =po+pra+- +paa” + oo, 2?q(2) = go+ o+ gua” 4



and the given DE has the same solutions as the DE
2y + a(zp(x))y’ + 2*q(z)y = 0.

This DE is an Euler DE if xp(z) = po, 2q(x) = qo. This suggests that we should look for solutions

of the form
oo o0
n=0 n=0

with ag # 0. Substituting this in the DE gives

> (n4r)(ntr—1apz" + (an )(Z(n+r}an ) <an )(Z nw"+r>:0

which, on expansion and simplification, becomes
apF(r)z" + Z { (n+7r)an + [(n+7—Dp1 +q1]an—1+ -+ (rpn + Qn)ao}InM =0,

where F(r) = r(r — 1) 4+ por + go. Equating coeflicients to zero, we get
r(r—1) +por +qo =0, (1)
the indicial equation, and
Fn+r)a,=—((n+r—1)p1+aq)an-1—- — (rpn + qn)ao (2)

for n > 1. The indicial equation (1) has two roots: 71, 7. Three cases should be discussed separately.

2.1 Case (I): The roots (r; — 7y # N)

Two roots do’nt differ by an integer. In this case, the above recursive equation (2) determines a,,
uniquely for r = r; and r = r9. If @, (r;) is the solution for » = r; and ag = 1, we obtain the linearly
independent solutions

yp =a" <Z an(ﬁ)x") s Y =al? (Z an(T2)$n> :
n=0 n=0

It can be shown that the radius of convergence of the infinite series is the distance to the singularity
of the DE nearest to the singularity z = 0. If r; —ro = N > 0, the above recursion equations can
be solved for r = r; as above to give a solution

Yy =a" (Z an(m)x”) .
n=0

A second linearly independent solution can then be found by reduction of order.
However, the series calculations can be quite involved and a simpler method exists which is based
on solving the recursion equation for a,(r) as a ratio of polynomials of r. This can always be done



since F'(n + r) is not the zero polynomial for any n > 0. If a,(r) is the solution with ag(r) = 1 and
we let

y=y(z,7) (Zan ) (3)

Thus, we have the following equality with two variables (z,r):

2y +a?p(x)y’ + 2%q(x)y = aoF(r)a” = (r —r)(r —ra)z". (4)

2.2 Case (II): The roots (r; = rs)
In this case, from the equality (4) we get
2,11 r

2%y’ + 2%p(x)y + 2%q(x)y = (r —r1)%a".

Differentiating this equation with respect to r, we get

2 (gi{)n + 22p(x) (gf)/ + :ﬁ(@% 2(r — 1) + (r — r1)%2" In(z).

Setting r = r1, we find that

a o0 , o0
Y2 = 82; (x,7r1) (Z an(r)x ) In(z) + =™ nz:%an(rl)x" =y In(z) + 2™ ;a%(rl)x”,

where a,(r) is the derivative of a,(r) with respect to r. This is a second linearly independent
solution. Since this solution is unbounded as z — 0, any solution of the given DE which is bounded
as * — 0 must be a scalar multiple of y;.

Case (III): The roots (r; —r, = N > 0)
For this case, we let z(x,r) = (r — ro)y(z,r). Thus, from the equality (4) we get
222"+ 2%p(x) 4+ 22q(x)z = (r —r)(r —r2)%2".

Differentiating this equation with respect to r, we get

22 (gj)// +22p(z) (gi)/—l—ﬁq(a:)gi — (r—ro)[(r— ) +2(r — )] + (1 — 1) (r — r2)%2” In(a).

Setting r = ry, we see that yo = 8 Z(w,2) is a solution of the given DE. Letting b, (1) = (r—r2)an(r),
we have

F(n+r)by(r)=—[(n+7—1p1 + q1]bu-1(r) — -+ = (rpn + qn)bo(r) (5)

and

Yo = TILH}Q <xr In(z) Z by (r)a™ + " Z b/n(r)x"> : (6)

n=0 n=0



Note that a,(r2) # 0, for n =1,2,... N — 1. Hence, we have
bo(r2) = bi(ra) = ba(re) = -+ =by_1(r2) = 0.
However, an(r2) = 00, as F(ry + N) = F(r1) = 0. Hence, we have

bn(re) = lim (r —ro)a,(r) = a < oo,

r—ro
subsequently,
lim 2" In(2)by (r)z" = az"™ In(z).
r—7To
Furthermore,
F(N +1+ Tg)bN+1(T2) = F(l =+ Tl)bNJrl(TQ)
= —(7"1]91 + Q1)bN(T2) — = (rapNy1 + qny1)bo(r2)
= —(rip1 + @1)bn(r2)
Thus,
(rip1 + q1) (rip1 + q1)
b =——b —a——-= = i
N+1(r2) Fa+m) N(r2) =a Fiam) aay(ry)
Similarly, we have
F(N+2+T‘2)b1v+2(7‘2) = F(2+T1)6N+2(T2)

= —[(147r1)p1+ q1]bns1(r2) — (rip2 + g2)bn (r2)
— - = (r2apN42 + an+2)bo(r2)
—a[(1+r1)p1 + q1]ax(r1) — a(ripz + 2),

then we obtain

[+ 71)p1 + q1]ax(r1) + (r1p2 + ¢2)
F(2 + 7"1)

bnya(re) = —a = aaz(r1).

In general, we can write

bnik(re) = aag(ry).

Substituting the above results to (6), we finally derive

Y2 = az" (Z an(ﬁﬂ") In(z) + 2™ (Z 52(7”2)33”>
n=0 n=0
= ayIn(x) + 2™ <Z b%(m)x”) :
n=0

This gives a second linearly independent solution.
The above method is due to Frobenius and is called the Frobenius method.



Example 1. The DE 2zy"” + ¢/ + 22y = 0 has a regular singular point at = 0 since zp(z) = 1/2
and 22q(x) = 2%, The indicial equation is

1 1
r(r71)+§r:r(rf§).

The roots are r, = 1/2, 7o = 0 which do not differ by an integer. We have

(r+ D+ S)ay =0,

2
1
(n+r)(n+7r—5)an = —an—z fornz2,
so that a, = —2a,_2/(r +n)(2r +2n — 1) for n > 2. Hence 0 = a; = az = - - - agn41 for n > 0 and
a *—éa ay = — 2 az = 22 @
S G R (o V[ C T M (o) R} C A O R

It follows by induction that
2’ﬂ

)2n(r+2)(r+4)--~(r+2n)(2r+3)(2r+4)~--(2r+2n—1)

agp.

Setting, r = 1/2, 0, ag = 1, we get

yl:ﬁ;(5-9-~(4n+l))n!’ yQZ;(?"T'“(‘m—l))”!.

The infinite series have an infinite radius of convergence since x = 0 is the only singular point of the
DE.

Example 2. The DE zy” 4+ ¢’ + y = 0 has a regular singular point at x = 0 with zp(z) = 1,
22q(z) = x. The indicial equation is

r(r—1)4+r=1r*=0.
This equation has only one root x = 0. The recursion equation is
(n +T)2an =—an_1, n>1.

The solution with ag =1 is

1
(r+1)2(r+2)2---(r+n)?

setting r = 0 gives the solution
0 n

Y1 = Z(_l)n (§|)2 .

n=0

Taking the derivative of a, (r) with respect to r we get, using a/, (1) = a,(r)-% In [a,(r)] (logarithmic

differentiation),we get
an(r) = 2 + 2 + 2 an(r)
S \r L r 42 r+n) "




so that

1,1 1
= + = + PN + =
! _ _1\n 1 2 n
Therefore a second linearly independent solution is
00 1 1 1
= _|_ = + PN + =
= in(e) + 23 ()T S
n=1 :

The above series converge for all . Any bounded solution of the given DE must be a scalar multiple
of Y-



