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LECTURE 11: SOLUTIONS FOR EQUATIONS WITH CONSTANTS
COEFFICIENTS (I)

HIGHER ORDER DIFFERENTIAL EQUATIONS (III)

(Text: pp. 338-367, Chap. 6)

1 Introduction

In what follows, we shall first focus on the linear equations with constant coefficients:

L(y) = a0y
(n) + a1y

(n−1) + · · ·+ any = b(x)

and present two different approaches to solve them.

2 The Method with Undetermined Parameters

To illustrate the idea, as a special case, let us first consider the 2-nd order Linear equation with the
constant coefficients:

L(y) = ay′′ + by′ + cy = f(x). (1)

The associate homogeneous equation is:

L(y) = ay′′ + by′ + cy = 0. (2)

2.1 Basic Equalities (I)

We first give the following basic identities:

D(erx) = rerx; D2(erx) = r2erx; · · · Dn(erx) = rnerx. (3)

To solve this equation, we assume that the solution is in the form y(x) = erx, where r is a
constant to be determined. Due to the properties of the exponential function erx:

y′(x) = ry(x); y′′(x) = r2y(x); · · · y(n) = rny(x),

we can write

L
(
erx

)
= φ(r)erx. (4)

for any given (r, x), where
φ(r) = ar2 + br + c.

is called the characteristic polynomial. From (4) it is seen that the function erx satisfies the equation
(1), namely L

(
erx

)
= 0, as long as the constant r is the root of the characteristic polynomial, i.e.

φ(r) = 0. In general, the polynomial φ(r) has two roots (r1, r2): One can write

φ(r) = ar2 + br + c = a(r − r1)(r − r2).
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Accordingly, the equation (2) has two solutions:
{
y1(x) = er1x; y2(x) = er2x

}
.

Two cases should be discussed separately.

2.2 Cases (I) ( r1 > r2)

When b2 − 4ac > 0, the polynomial φ(r) has two distinct real roots (r1 6= r2). In this case, the two
solutions, y(x); y2(x) are different. The following linear combination is not only solution, but also
the general solution of the equation:

y(x) = Ay1(x) + By2(x), (5)

where A,B are arbitrary constants. To prove that, we make use of the fundamental theorem which
states that if y, z are two solutions such that y(0) = z(0) = y0 and y′(0) = z′(0 = y′0) then y = z.
Let y be any solution and consider the linear equations in A,B

Ay1(0) + By2(0) = y(0),
Ay′1(0) + By′2(0) = y′(0),

or

A + B = y0,

Ar1 + Br2 = y′0.

Due to r1 6= r2, these conditions leads to the unique solution A,B. With this choice of A,B the
solution z = Ay1 + By2 satisfies z(0) = y(0), z′(0) = y′(0) and hence y = z. Thus, (5) contains all
possible solutions of the equation, so, it is indeed the general solution.

2.3 Cases (II) ( r1 = r2 )

When b2 − 4ac = 0, the polynomial φ(r) has double root: r1 = r2 = −b
2a . In this case, the solution

y1(x) = y2(x) = er1x. Thus, for the general solution, one needs to derive another type of the second
solution. For this purpose, one may use the method of reduction of order.

Let us look for a solution of the form C(x)er1x with the undetermined function C(x). By
substituting the equation, we derive that

L
(
C(x)er1x

)
= C(x)φ(r1)er1x + a

[
C ′′(x) + 2r1C

′(x)
]
er1x + bC ′(x)er1x = 0.

Noting that
φ(r1) = 0; 2ar1 + b = 0,

we get
C ′′(x) = 0

or
C(x) = Ax + B,

where A,B are arbitrary constants. Thus, we solution:

y(x) = (Ax + B)er1x, (6)
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is a two parameter family of solutions consisting of the linear combinations of the two solutions
y1 = er1x and y2 = xer1x. It is also the general solution of the equation. The proof is similar to that
given for the case (I) based on the fundamental theorem of existence and uniqueness. Let y be any
solution and consider the linear equations in A,B

Ay1(0) + By2(0) = y(0),
Ay′1(0) + By′2(0) = y′(0),

or

A = y(0),
Ar1 + B = y′(0).

these conditions leads to the unique solution A = y(0), B = y′(0)− r1y(0). With this choice of A,B
the solution z = Ay1 + By2 satisfies z(0) = y(0), z′(0) = y′(0) and hence y = z. Thus, (6) contains
all possible solutions of the equation, so, it is indeed the general solution. The approach presented
in this subsection is applicable to any higher order equations with constant coefficients.

Example 1. Consider the linear DE y′′ + 2y′ + y = x. Here L(y) = y′′ + 2y′ + y. A particular
solution of the DE L(y) = x is yp = x− 2. The associated homogeneous equation is

y′′ + 2y′′ + y = 0.

The characteristic polynomial
φ(r) = r2 + 2r + 1 = (r + 1)2

has double roots r1 = r2 = −1. Thus the general solution of the DE

y′′ + 2y′ + y = x

is y = Axe−x + Be−x + x− 2.
This equation can be solved quite simply without the use of the fundamental theorem if we make

essential use of operators.

2.4 Cases (III) ( r1,2 = λ± iµ)

When b2− 4ac < 0, the polynomial φ(r) has two conjugate complex roots r1,2 = λ± iµ. We have to
define the complex number,

i2 = −1; i3 = −i; i4 = 1; i5 = i, · · ·
and define and complex function with the Taylor series:

eix =
∞∑

n=0

inxn

n!
=

∞∑
n=0

(−1)nx2n

2n!
+ i

∞∑
n=0

(−1)nx2n+1

(2n + 1)!
= cos x + i sin x. (7)

From the definition, it follows that

ex+iy = exeiy = ex (cos y + i sin y) .

and
D(erx) = rex, Dn(erx) = rnex
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where r is a complex number. So that, the basic equalities are now extended to the case with
complex number r. Thus, we have the two complex solutions:

y1(x) = er1x = eλx(cos µx + i sin µx), y2(x) = er2x = eλx(cosµx− i sin µx)

with a proper combination of these two solutions, one may derive two real solutions:

ỹ1(x) = eλx cos µx, ỹ2(x) = eλx sin µx

and the general solution:
y(x) = eλx(A cosµx + B sin µx).
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