
McGill University
Math 325A: Differential Equations

LECTURE 10: HIGHER ORDER DIFFERENTIAL EQUATIONS (II)

(Text: pp. 338-367, Chap. 4, 6)

1 Introduction

In this lecture we give an introduction to several methods for solving higher order differential equa-
tions. Most of what we say will apply to the linear case as there are relatively few non-numerical
methods for solving nonlinear equations. There are two important cases however where the DE can
be reduced to one of lower degree.

1.1 Case (I)

DE has the form:
y(n) = f(x, y′, y′′, . . . , y(n−1))

where on the right-hand side the variable y does not appear. In this case, setting z = y′ leads to the
DE

z(n−1) = f(x, z, z′, . . . , z(n−2))

which is of degree n− 1. If this can be solved then one obtains y by integration with respect to x.
For example, consider the DE y′′ = (y′)2. Then, setting z = y′, we get the DE z′ = z2 which

is a separable first order equation for z. Solving it we get z = −1/(x + C) or z = 0 from which
y = − log(x + C) + D or y = C. The reader will easily verify that there is exactly one of these
solutions which satisfies the initial condition y(x0) = y0, y′(x0) = y′0 for any choice of x0, y0, y

′
0

which confirms that it is the general solution since the fundamental theorem guarantees a unique
solution.

1.2 Case (II)

DE has the form:
y(n) = f(y, y′, y′′, . . . , y(n−1))

where the independent variable x does not appear explicitly on the right-hand side of the equation.
Here we again set z = y′ but try for a solution z as a function of y. Then, using the fact that
d
dx = z d

dy , we get the DE

(
z

d

dy

)n−1

(z) = f

(
y, z, z

dz

dy
, . . . , (z

d

dy
)n(z)

)

which is of degree n− 1. For example, the DE y′′ = (y′)2 is of this type and we get the DE

z
dz

dy
= z2

which has the solution z = Cey. Hence y′ = Cey from which −e−y = Cx + D. This gives
y = − log(−Cx−D) as the general solution which is in agreement with what we did previously.
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2 Linear Equations

2.1 Basic Concepts and General Properties

Let us now go to linear equations. The general form is

L(y) = a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y = b(x).

The function L is called a differential operator. The characteristic feature of L is that

L(a1y1 + a2y2) = a1L(y1) + a2L(y2).

Such a function L is what we call a linear operator. Moreover, if

L1(y) = a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y

L2(y) = b0(x)y(n) + b1(x)y(n−1) + · · ·+ bn(x)y

and p1(x), p2(x) are functions of x the function p1L1 + p2L2 defined by

(p1L1 + p2L2)(y) = p1(x)L1(y) + p2(x)L2(y)

= [a0(x) + p2(x)b0(x)] y(n) + · · · [p1(x)an(x) + p2(x)bn(x)] y

is again a linear differential operator. An important property of linear operators in general is the
distributive law:

L(L1 + L2) = LL1 + LL2, (L1 + L2)L = L1L + L2L.

The linearity of equation implies that for any two solutions y1, y2 the difference y1 − y2 is a
solution of the associated homogeneous equation L(y) = 0. Moreover, it implies that any linear
combination a1y1 + a2y2 of solutions y1, y2 of L(y) = 0 is again a solution of L(y) = 0. The solution
space of L(y) = 0 is also called the kernel of L and is denoted by ker(L). It is a subspace of the
vector space of real valued functions on some interval I. If yp is a particular solution of L(y) = b(x),
the general solution of L(y) = b(x) is

ker(L) + yp = {y + yp | L(y) = 0}.

The differential operator L(y) = y′ may be denoted by D. The operator L(y) = y′′ is nothing
but D2 = D ◦D where ◦ denotes composition of functions. More generally, the operator L(y) = y(n)

is Dn. The identity operator I is defined by I(y) = y. By definition D0 = I. The general linear
n-th order ODE can therefore be written

[
a0(x)Dn + a1(x)Dn−1 + · · ·+ an(x)I

]
(y) = b(x).

3 Basic Theory of Linear Differential Equations

In this lecture we will develop the theory of linear differential equations. The starting point is the
fundamental existence theorem for the general n-th order ODE L(y) = b(x), where

L(y) = Dn + a1(x)Dn−1 + · · ·+ an(x).

We will also assume that a0(x), a1(x), . . . , an(x), b(x) are continuous functions on the interval I.
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3.1 Basics of Linear Vector Space

3.1.1 Isomorphic Linear Transformation

From the fundamental theorem, it is known that for any x0 ∈ I, the initial value problem

L(y) = b(x) y(x0) = d1, y
′(x0) = d2, . . . , y

(n−1)(x0) = dn

has a unique solution for any d1, d2, . . . , dn ∈ R.

Thus, if V is the solution space of the associated homogeneous DE L(y) = 0, the transformation

T : V → Rn,

defined by T (y) = (y(x0), y′(x0), . . . , y(n−1)(x0)), is linear transformation of the vector space V into
Rn since

T (ay + bz) = aT (y) + bT (z).

Moreover, the fundamental theorem says that T is one-to-one (T (y) = T (z) =⇒ y = z) and onto
(every d ∈ Rn is of the form T (y) for some y ∈ V ). A linear transformation which is one-to-one and
onto is called an isomorphism. Isomorphic vector spaces have the same properties.

3.1.2 Dimension and Basis of Vector Space

We call the vector space being n-dimensional with the notation by dim(V ) = n. This means that
there exists a sequence of elements: y1, y2, . . . , yn ∈ V such that every y ∈ V can be uniquely written
in the form

y = c1y1 + c2y2 + . . . cnyn

with c1, c2, . . . , cn ∈ R. Such a sequence of elements of a vector space V is called a basis for V . In
the context of DE’s it is also known as a fundamental set. The number of elements in a basis for
V is called the dimension of V and is denoted by dim(V ). If

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1)

is the standard basis of Rn and yi is the unique yi ∈ V with T (yi) = ei then y1, y2, . . . , yn is a basis
for V . This follows from the fact that

T (c1y1 + c2y2 + · · ·+ cnyn) = c1T (y1) + c2T (y2) + · · ·+ cnT (yn).

3.1.3 (*) Span and Subspace

A set of vectors v1, v2, · · · , vn in a vector space V is said to span or generate V if every v ∈ V can
be written in the form

v = c1v1 + c2v2 + · · ·+ cnvn

with c1, c2, . . . , cn ∈ R. Obviously, not any set of n vectors can span the vector space V . It will be
seen that {v1, v2, · · · , vn} span the vector space V , if and only if they are linear independent. The
set

S = span(v1, v2, . . . , vn) = {c1v1 + c2v2 + · · ·+ cnvn | c1, c2, . . . , cn ∈ R}
consisting of all possible linear combinations of the vectors v1, v2, . . . , vn form a subspace of V ,
which may be also called the span of {v1, v2, . . . , vn}. Then V = span(v1, v2, . . . , vn) if and only if
v1, v2, . . . , vn spans V .

3



3.1.4 Linear Independency

The vectors v1, v2, . . . , vn are said to be linearly independent if

c1v1 + c2v2 + . . . cnvn = 0

implies that the scalars c1, c2, . . . , cn are all zero. A basis can also be characterized as a linearly in-
dependent generating set since the uniqueness of representation is equivalent to linear independence.
More precisely,

c1v1 + c2v2 + · · ·+ cnvn = c′1v1 + c′2v2 + · · ·+ c′nvn

implies
ci = c′i for all i,

if and only if v1, v2, . . . , vn are linearly independent.
As an example of a linearly independent set of functions consider

cos(x), cos(2x), cos(3x).

To prove their linear independence, suppose that c1, c2, c3 are scalars such that

c1 cos(x) + c2 cos(2x) + c3 sin(3x) = 0

for all x. Then setting x = 0, π/2, π, we get

c1 + c2 = 0,

−c2 − c3 = 0,

−c1 + c2 = 0

from which c1 = c2 = c3 = 0.
An example of a linearly dependent set would be sin2(x), cos2(x), cos(2x) since

cos(2x) = cos2(x)− sin2(x)

implies that cos(2x) + sin2(x) + (−1) cos2(x) = 0.

3.2 Wronskian of n-functions

Another criterion for linear independence of functions involves the Wronskian.

3.2.1 Definition

If y1, y2, . . . , yn are n functions which have derivatives up to order n−1 then the Wronskian of these
functions is the determinant

W = W (y1, y2, . . . , yn) =

∣∣∣∣∣∣∣∣∣

y1 y2 . . . yn

y′1 y′2 . . . y′n
...

...
...

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣∣
.
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If W (x0) 6= 0 for some point x0, then y1, y2, . . . , yn are linearly independent. This follows from
the fact that W (x0) is the determinant of the coefficient matrix of the linear homogeneous system
of equations in c1, c2, . . . , cn obtained from the dependence relation

c1y1 + c2y2 + · · ·+ cnyn = 0

and its first n− 1 derivatives by setting x = x0.
For example, if y1 = cos(x), cos(2x), cos(3x) we have

W =

∣∣∣∣∣∣

cos(x) cos(2x) cos(3x)
− sin(x) −2 sin(2x) −3 sin(3x)
− cos(x) −4 cos(2x) −9 cos(3x)

∣∣∣∣∣∣
and W (π/4)) = −8 which implies that y1, y2, y3 are linearly independent. Note that W (0) = 0 so
that you cannot conclude linear dependence from the vanishing of the Wronskian at a point. This
is not the case if y1, y2, . . . , yn are solutions of an n-th order linear homogeneous ODE.

3.2.2 Theorem 1

The the Wronskian of n solutions of the n-th order linear ODE L(y) = 0 is subject to the following
first order ODE:

dW

dx
= −a1(x)W,

with solution
W (x) = W (x0)e

− R x
x0

a1(t)dt
.

From the above it follows that the Wronskian of n solutions of the n-th order linear ODE L(y) = 0
is either identically zero or vanishes nowhere.

3.2.3 Theorem 2

If y1, y2, . . . , yn are solutions of the linear ODE L(y) = 0, the following are equivalent:

1. y1, y2, . . . , yn is a basis for the vector space V = ker(L);

2. y1, y2, . . . , yn are linearly independent;

3. (∗) y1, y2, . . . , yn span V ;

4. y1, y2, . . . , yn generate ker(L);

5. W (y1, y2, . . . , yn) 6= 0 at some point x0;

6. W (y1, y2, . . . , yn) is never zero.

Proof. The equivalence of 1, 2, 3 follows from the fact that ker(L) is isomorphic to Rn. The rest of
the proof follows from the fact that if the Wronskian were zero at some point x0 the homogeneous
system of equations

c1y1(x0) + c1y2(x0) + · · ·+ cnyn(x0) = 0
c1y

′
1(x0) + c1y

′
2(x0) + · · ·+ cny′n(x0) = 0

...

c1y
(n−1)
1 (x0) + c1y

(n−1)
2 (x0) + · · ·+ cny(n−1)

n (x0) = 0
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would have a non-zero solution for c1, c2, . . . , cn which would imply that

c1y1 + c2y2 + · · ·+ cnyn = 0

and hence that y1, y2, . . . , yn are not linearly independent. QED

From the above, we see that to solve the n-th order linear DE L(y) = b(x) we first find linear n
independent solutions y1, y2, . . . , yn of L(y) = 0. Then, if yP is a particular solution of L(y) = b(x),
the general solution of L(y) = b(x) is

y = c1y1 + c2y2 + · · ·+ cnyn + yP .

The initial conditions y(x0) = d1, y
′(x0) = d2, . . . , y

(n−1)
n (x0) = dn then determine the constants

c1, c2, . . . , cn uniquely.
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