ON MEASURE THEORETIC PROJECTION BODIES

MICHAEL ROYSDON

Abstract

The inequalities of Petty and Zhang are affine isoperimetric-type inequalities providing sharp bounds for $\operatorname{vol}_n^{n-1}(K)\operatorname{vol}_n(\Pi^\circ K)$, where ΠK is a projection body of a convex body Kis the convex body with support function given by

$$h_{\Pi K}(\theta) = \operatorname{vol}_{n-1}(K|\theta^{\perp}), \quad \theta \in \mathbb{S}^{n-1},$$

where θ^{\perp} denotes the hyperplane orthogonal to the direction θ . The upper bound, due to Petty, and referred to as Petty's projection inequality attains equality only when K is an ellipsoid, and the lower bound is due to Zhang and equality occurs only when K is a simplex.

In this talk, we present a number of generalizations of Zhang's inequality to the setting of measures.

In addition, we introduce extensions of the projection body operator Π to the setting of arbitrary measures, that is, given a measure μ on \mathbb{R}^n with continuous density φ , $\Pi_{\mu}K$ is the convex bodies whose support function is given by

$$h_{\Pi_{\mu}K}(\theta) = \frac{1}{2} \int_{\partial K} |\langle \theta, n_K(y) \rangle |\phi(y) dy,$$

where ∂K denotes the boundary of K and $n_K(y)$ denotes the outer unit normal of ∂K at y. We remark that the support function $h_{\pi_{\mu}K}$ has been deeply studied in the literature, and is an example of a generalized zoniod when φ is taken to be even.

Authors:

Dylan Langharst; Kent State University Michael Roysdon; Tel Aviv University Artem Zvavitch; Kent State University