Linear time delay systems from characteristic roots... ...to stability charts

Dimitri Breda

dbreda@dimi.uniud.it - http://www.dimi.uniud.it/dbreda

Dipartimento di Matematica e Informatica Università degli Studi di Udine

• Introduction to DDEs

- Introduction to DDEs
- Stability of steady states

- Introduction to DDEs
- Stability of steady states
- Numerical stability detection

- Introduction to DDEs
- Stability of steady states
- Numerical stability detection
- Stability charts

- Introduction to DDEs
- Stability of steady states
- Numerical stability detection
- Stability charts
- Examples and applications

- Introduction to DDEs
- Stability of steady states
- Numerical stability detection
- Stability charts
- Examples and applications
- Conclusions

- Introduction to DDEs
- Stability of steady states
- Numerical stability detection
- Stability charts
- Examples and applications
- Conclusions

Research in collaboration with R. Vermiglio - Università di Udine S. Maset - Università di Trieste

 systems with time delay widely appear in control theory, biology, engineering, economics, population dynamics...

- systems with time delay widely appear in control theory, biology, engineering, economics, population dynamics...
- present evolution is influenced by past information
 - on instants: discrete or point delays
 - on intervals: distributed delays

- systems with time delay widely appear in control theory, biology, engineering, economics, population dynamics...
- present evolution is influenced by past information
 - on instants: discrete or point delays
 - on intervals: *distributed* delays
- delays can be constant, time- and/or state-dependent, single or multiple, commensurate or not...

- systems with time delay widely appear in control theory, biology, engineering, economics, population dynamics...
- present evolution is influenced by past information
 - on instants: discrete or point delays
 - on intervals: *distributed* delays
- delays can be constant, time- and/or state-dependent, single or multiple, commensurate or not...
- mathematical formulation by retarded functional differential equations (RFDEs)

DDEs intro: remember ODEs

• let $X = \mathbb{C}^m$

• let $(t, y) \in D \subseteq \mathbb{R} \times X$ and $f : D \to \mathbb{C}^m$ continuous. An ordinary differential equation (ODE) is a relation

 $y'(t) = f(t, y(t)), \quad t \ge t_0$

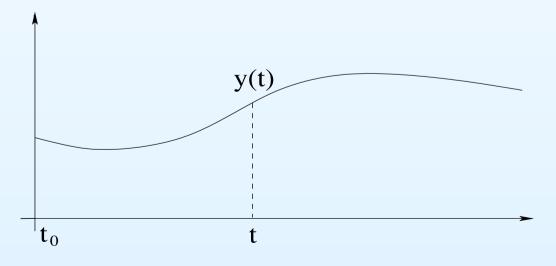
DDEs intro: remember ODEs

• let $X = \mathbb{C}^m$

• let $(t, y) \in D \subseteq \mathbb{R} \times X$ and $f : D \to \mathbb{C}^m$ continuous. An ordinary differential equation (ODE) is a relation

$$y'(t) = f(t, y(t)), \quad t \ge t_0$$

• state at $t \ge t_0$: $y(t) \in X$



DDEs intro: IVP for ODEs

• initial value problem (IVP) for ODEs:

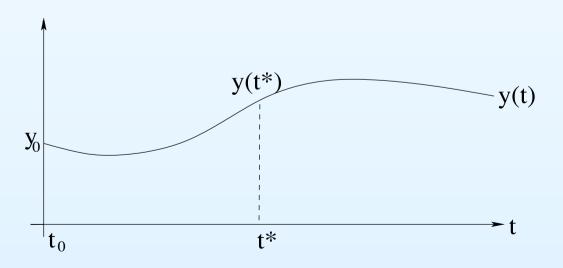
$$\begin{cases} y'(t) = f(t, y(t)), & t \ge t_0 \\ y(t_0) = y_0, & y_0 \in X \end{cases}$$

DDEs intro: IVP for ODEs

• initial value problem (IVP) for ODEs:

$$\begin{cases} y'(t) = f(t, y(t)), & t \ge t_0 \\ y(t_0) = y_0, & y_0 \in X \end{cases}$$

 state y(t*) ∈ X at t* ≥ t₀ is finite dimensional and depends on initial vector y₀ ∈ X:



DDEs intro: and now RFDEs

- let $\tau \ge 0$ and $X = \mathcal{C}([-\tau, 0], \mathbb{C}^m)$
- let $(t, y) \in D \subseteq \mathbb{R} \times X$ and $f : D \to \mathbb{C}^m$ continuous. A retarded functional differential equation (RFDE) is a relation

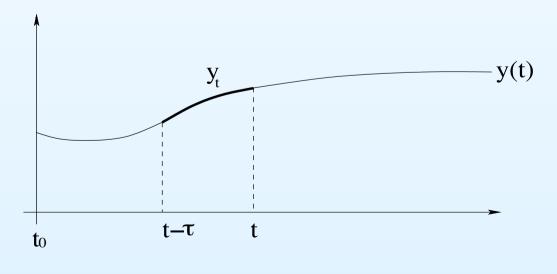
$$y'(t) = f(t, y_t), \quad t \ge t_0$$

DDEs intro: and now RFDEs

- let $\tau \ge 0$ and $X = \mathcal{C}([-\tau, 0], \mathbb{C}^m)$
- let $(t, y) \in D \subseteq \mathbb{R} \times X$ and $f : D \to \mathbb{C}^m$ continuous. A retarded functional differential equation (RFDE) is a relation

$$y'(t) = f(t, y_t), \quad t \ge t_0$$

• state $y_t \in X$ at $t \ge t_0$: $y_t(\theta) = y(t + \theta)$, $\theta \in [-\tau, 0]$



DDEs intro: examples

• discrete delay: $f(t, \psi) = L_0 \psi(0) + L_1 \psi(-\tau)$, then for $\psi(\theta) = y_t(\theta)$ on $[-\tau, 0]$:

$$y'(t) = L_0 y(t) + L_1 y(t - \tau)$$

DDEs intro: examples

• discrete delay: $f(t, \psi) = L_0 \psi(0) + L_1 \psi(-\tau)$, then for $\psi(\theta) = y_t(\theta)$ on $[-\tau, 0]$:

$$y'(t) = L_0 y(t) + L_1 y(t - \tau)$$

• distributed delay: $f(t, \psi) = L_0 \psi(0) + \int_{-\tau}^{0} M_1(\theta) \psi(\theta) d\theta$, then for $\psi(\theta) = y_t(\theta)$ on $[-\tau, 0]$:

$$y'(t) = L_0 y(t) + \int_{-\tau}^{0} M_1(\theta) y(t+\theta) d\theta$$

DDEs intro: IVP for RFDEs

• IVP for RFDEs:

$$\begin{cases} y'(t) = f(t, y_t), & t \ge t_0 \\ y(t) = \phi(t), & t \in [t_0 - \tau, t_0], & \phi \in X \end{cases}$$

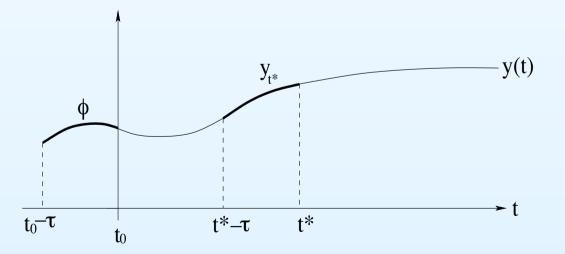
DDEs intro: IVP for RFDEs

• IVP for RFDEs:

$$y'(t) = f(t, y_t), \quad t \ge t_0$$

$$y(t) = \phi(t), \quad t \in [t_0 - \tau, t_0], \quad \phi \in X$$

 state y_{t*} ∈ X at t* ≥ t₀ is infinite dimensional and depends on initial function φ ∈ X:



Stability: linear ODEs

• IVP for linear ODEs:

$$\begin{cases} y'(t) = Ly(t), \quad L \in \mathbb{C}^{m \times m}, \quad t \ge 0\\ y(0) = y_0 \end{cases}$$

Stability: linear ODEs

• IVP for linear ODEs:

$$\begin{cases} y'(t) = Ly(t), & L \in \mathbb{C}^{m \times m}, & t \ge 0\\ y(0) = y_0 \end{cases}$$

• look for exponential solution $y(t) = e^{\lambda t}v$, $\lambda \in \mathbb{C}$, $v \neq 0$, and get the characteristic equation

$$\det\left(\lambda I - L\right) = 0 \Leftrightarrow \lambda \in \sigma(L)$$

Stability: linear ODEs

• IVP for linear ODEs:

$$\begin{cases} y'(t) = Ly(t), \quad L \in \mathbb{C}^{m \times m}, \quad t \ge 0\\ y(0) = y_0 \end{cases}$$

look for exponential solution y(t) = e^{λt}v, λ ∈ C, v ≠ 0,
and get the characteristic equation

$$\det\left(\lambda I - L\right) = 0 \Leftrightarrow \lambda \in \sigma(L)$$

• y asymptotically stable $\Leftrightarrow \Re(\lambda) < 0$ for all $\lambda \in \sigma(L)$

Stability: linear DDEs

• IVP for linear delay differential equations (DDEs):

$$\begin{cases} y'(t) = L_0 y(t) + L_1 y(t - \tau), & L_0, L_1 \in \mathbb{C}^{m \times m}, & t \ge 0\\ y(t) = \phi(t), & t \in [-\tau, 0] \end{cases}$$

Stability: linear DDEs

• IVP for linear delay differential equations (DDEs):

$$y'(t) = L_0 y(t) + L_1 y(t - \tau), \quad L_0, L_1 \in \mathbb{C}^{m \times m}, \quad t \ge 0$$

 $y(t) = \phi(t), \quad t \in [-\tau, 0]$

• look for exponential solution $y(t) = e^{\lambda t}v$, $\lambda \in \mathbb{C}$, $v \neq 0$, and get the characteristic equation

det $(\lambda I - L_0 - L_1 e^{-\lambda \tau}) = 0 \Leftrightarrow \lambda$ characteristic root (CR)

Stability: linear DDEs

• IVP for linear delay differential equations (DDEs):

 $\begin{cases} y'(t) = L_0 y(t) + L_1 y(t - \tau), & L_0, L_1 \in \mathbb{C}^{m \times m}, & t \ge 0\\ y(t) = \phi(t), & t \in [-\tau, 0] \end{cases}$

look for exponential solution y(t) = e^{λt}v, λ ∈ C, v ≠ 0,
and get the characteristic equation

det $(\lambda I - L_0 - L_1 e^{-\lambda \tau}) = 0 \Leftrightarrow \lambda$ characteristic root (CR)

• y asymptotically stable $\Leftrightarrow \Re(\lambda) < 0$ for all CRs λ

Stability: question

 question: there exists an operator, such as matrix L for ODEs, whose eigenvalues are the CRs?

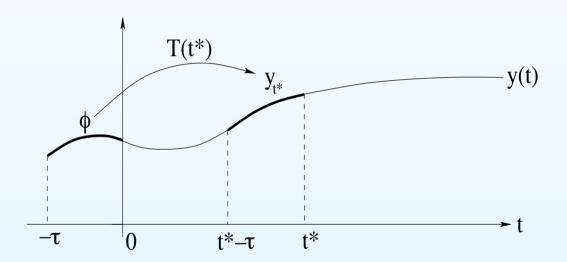
Stability: question

- question: there exists an operator, such as matrix L for ODEs, whose eigenvalues are the CRs?
- answer: YES!

Stability: solution operator semigroup

• define solution operator (SO) $T(t) : X \to X$, $t \ge 0$:

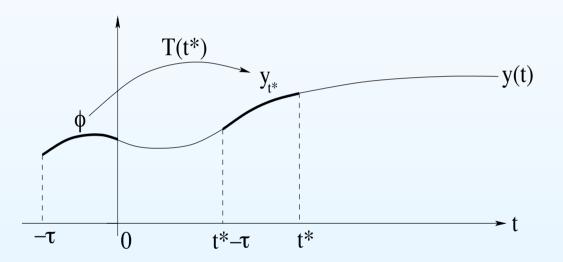
 $T(t)\phi = y_t$



Stability: solution operator semigroup

• define solution operator (SO) $T(t) : X \to X$, $t \ge 0$:

 $T(t)\phi = y_t$



• $\{T(t)\}_{t\geq 0}$ is a \mathcal{C}_0 -semigroup

• $\{T(t)\}_{t\geq 0}$ has infinitesimal generator (IG) $\mathcal{A}: D(\mathcal{A}) \subseteq X \to X$:

$$\begin{cases} \mathcal{A}\psi = \psi', \quad \psi \in D\left(\mathcal{A}\right) \\ D\left(\mathcal{A}\right) = \{\psi \in X \mid \psi' \in X \text{ and } \psi'(0) = L_0\psi(0) + L_1\psi(-\tau)\} \end{cases}$$

• $\{T(t)\}_{t\geq 0}$ has infinitesimal generator (IG) $\mathcal{A}: D(\mathcal{A}) \subseteq X \to X$:

$$\begin{cases} \mathcal{A}\psi = \psi', \quad \psi \in D\left(\mathcal{A}\right) \\ D\left(\mathcal{A}\right) = \{\psi \in X \mid \psi' \in X \text{ and } \psi'(0) = L_0\psi(0) + L_1\psi(-\tau)\} \end{cases}$$

• rewrite DDE as abstract Cauchy problem:

$$\begin{cases} \frac{d}{dt}u(t) = \mathcal{A}u(t), \quad t \ge 0\\ u(0) = \phi, \quad \phi \in X \end{cases}$$

• $\{T(t)\}_{t\geq 0}$ has infinitesimal generator (IG) $\mathcal{A}: D(\mathcal{A}) \subseteq X \to X$:

$$\begin{cases} \mathcal{A}\psi = \psi', \quad \psi \in D\left(\mathcal{A}\right) \\ D\left(\mathcal{A}\right) = \{\psi \in X \mid \psi' \in X \text{ and } \psi'(0) = L_0\psi(0) + L_1\psi(-\tau)\} \end{cases}$$

• rewrite DDE as abstract Cauchy problem:

$$\begin{cases} \frac{d}{dt}u(t) = \mathcal{A}u(t), \quad t \ge 0\\ u(0) = \phi, \quad \phi \in X \end{cases}$$

• if $\phi \in D(\mathcal{A})$ then $u(t) = y_t$

• $\{T(t)\}_{t\geq 0}$ has infinitesimal generator (IG) $\mathcal{A}: D(\mathcal{A}) \subseteq X \to X$:

$$\begin{cases} \mathcal{A}\psi = \psi', \quad \psi \in D\left(\mathcal{A}\right) \\ D\left(\mathcal{A}\right) = \{\psi \in X \mid \psi' \in X \text{ and } \psi'(0) = L_0\psi(0) + L_1\psi(-\tau)\} \end{cases}$$

• rewrite DDE as abstract Cauchy problem:

$$\begin{cases} \frac{d}{dt}u(t) = \mathcal{A}u(t), \quad t \ge 0\\ u(0) = \phi, \quad \phi \in X \end{cases}$$

- if $\phi \in D(\mathcal{A})$ then $u(t) = y_t$
- evolution of y_t depends on eigenvalues of \mathcal{A}

- $\lambda \in \mathbb{C} \operatorname{CR} \Leftrightarrow \det \left(\lambda I L_0 L_1 e^{-\lambda \tau}\right) = 0$
- $\mu \in \mathbb{C}$ characteristic multiplier (CM) $\Leftrightarrow \mu = e^{\lambda t}$, λ CR

- $\lambda \in \mathbb{C} \operatorname{CR} \Leftrightarrow \det \left(\lambda I L_0 L_1 e^{-\lambda \tau}\right) = 0$
- $\mu \in \mathbb{C}$ characteristic multiplier (CM) $\Leftrightarrow \mu = e^{\lambda t}$, λ CR

ASYMPTOTIC STABILITY $\Leftrightarrow \Re(\lambda) < 0 \iff |\mu| < 1$

- $\lambda \in \mathbb{C} \operatorname{CR} \Leftrightarrow \det \left(\lambda I L_0 L_1 e^{-\lambda \tau}\right) = 0$
- $\mu \in \mathbb{C}$ characteristic multiplier (CM) $\Leftrightarrow \mu = e^{\lambda t}$, λ CR

ASYMPTOTIC STABILITY $\Leftrightarrow \ \Re(\lambda) < 0 \ \Leftrightarrow \ |\mu| < 1$

- $\lambda \operatorname{\mathsf{CR}} \Leftrightarrow \lambda \in \sigma(\mathcal{A})$
- $\mu \operatorname{\mathsf{CM}} \Leftrightarrow \mu \in \sigma(T(t))$

- $\lambda \in \mathbb{C} \operatorname{CR} \Leftrightarrow \det \left(\lambda I L_0 L_1 e^{-\lambda \tau}\right) = 0$
- $\mu \in \mathbb{C}$ characteristic multiplier (CM) $\Leftrightarrow \mu = e^{\lambda t}$, λ CR

ASYMPTOTIC STABILITY $\Leftrightarrow \Re(\lambda) < 0 \Leftrightarrow |\mu| < 1$

- $\lambda \operatorname{\mathsf{CR}} \Leftrightarrow \lambda \in \sigma(\mathcal{A})$
- $\mu \operatorname{\mathsf{CM}} \Leftrightarrow \mu \in \sigma(T(t))$

∞ dimension!

Numerics: basics

- discretize \mathcal{A} with matrix \mathcal{A}_N : IG approach
 - $^\circ\,$ numerical differentiation + splicing condition in $D(\mathcal{A})$
 - $^{\circ}\,$ eigenvalues of \mathcal{A}_{N} approximate CRs \rightarrow rightmost

Numerics: basics

- discretize A with matrix A_N : IG approach
 - $^\circ\,$ numerical differentiation + splicing condition in $D(\mathcal{A})$
 - $^{\circ}\,$ eigenvalues of \mathcal{A}_{N} approximate CRs \rightarrow rightmost
- discretize $T(t^*)$ with matrix T_N : SO approach
 - numerical solution of DDEs (step t^*)
 - $\circ\,$ eigenvalues of T_N approximate CMs \rightarrow dominant

Numerics: basics

- discretize A with matrix A_N : IG approach
 - $^\circ\,$ numerical differentiation + splicing condition in $D(\mathcal{A})$
 - $^{\circ}\,$ eigenvalues of \mathcal{A}_{N} approximate CRs \rightarrow rightmost
- discretize $T(t^*)$ with matrix T_N : SO approach
 - numerical solution of DDEs (step t^*)
 - \circ eigenvalues of T_N approximate CMs \rightarrow dominant
- past: linear multistep (LMS) and Runge-Kutta (RK) methods
- present: pseudospectral differentiation (PSD)

• replace $[-\tau, 0]$ with Chebyshev mesh $\Omega_N = \{\theta_i\}_{i=0}^N$

- replace $[-\tau, 0]$ with Chebyshev mesh $\Omega_N = \{\theta_i\}_{i=0}^N$
- replace $\psi \in X$ with $x \in X_N$ st $x_i = \psi(\theta_i)$, $i = 0, \ldots, N$

- replace $[-\tau, 0]$ with Chebyshev mesh $\Omega_N = \{\theta_i\}_{i=0}^N$
- replace $\psi \in X$ with $x \in X_N$ st $x_i = \psi(\theta_i)$, $i = 0, \ldots, N$
- let ψ_N be the unique polynomial interpolating x on Ω_N

- replace $[-\tau, 0]$ with Chebyshev mesh $\Omega_N = \{\theta_i\}_{i=0}^N$
- replace $\psi \in X$ with $x \in X_N$ st $x_i = \psi(\theta_i)$, i = 0, ..., N
- let ψ_N be the unique polynomial interpolating x on Ω_N
- discretize splicing condition:

 $(\mathcal{A}\psi)(0) = \psi'(0) \simeq L_0\psi_N(0) + L_1\psi_N(-\tau) = (\mathcal{A}_N x)_0$

- replace $[-\tau, 0]$ with Chebyshev mesh $\Omega_N = \{\theta_i\}_{i=0}^N$
- replace $\psi \in X$ with $x \in X_N$ st $x_i = \psi(\theta_i)$, i = 0, ..., N
- let ψ_N be the unique polynomial interpolating x on Ω_N
- discretize splicing condition:

 $(\mathcal{A}\psi)(0) = \psi'(0) \simeq L_0\psi_N(0) + L_1\psi_N(-\tau) = (\mathcal{A}_N x)_0$

• approximate derivative:

$$(\mathcal{A}\psi)(\theta_i) = \psi'(\theta_i) \simeq \psi'_N(\theta_i) = (\mathcal{A}_N x)_i, \quad i = 1, \dots, N$$

- replace $[-\tau, 0]$ with Chebyshev mesh $\Omega_N = \{\theta_i\}_{i=0}^N$
- replace $\psi \in X$ with $x \in X_N$ st $x_i = \psi(\theta_i)$, i = 0, ..., N
- let ψ_N be the unique polynomial interpolating x on Ω_N
- discretize splicing condition:

 $(\mathcal{A}\psi)(0) = \psi'(0) \simeq L_0\psi_N(0) + L_1\psi_N(-\tau) = (\mathcal{A}_N x)_0$

approximate derivative:

 $(\mathcal{A}\psi)(\theta_i) = \psi'(\theta_i) \simeq \psi'_N(\theta_i) = (\mathcal{A}_N x)_i, \quad i = 1, \dots, N$

• Lagrange representation of ψ_N leads to...

Numerics: approximated IG

. . .

$$\mathcal{A}_{N} = \begin{pmatrix} L_{0} & 0 & \cdots & 0 & L_{1} \\ d_{10} & d_{11} & \cdots & d_{1N-1} & d_{1N} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ d_{N0} & d_{N1} & \cdots & d_{NN-1} & d_{NN} \end{pmatrix} \in \mathbb{C}^{m(N+1) \times m(N+1)}$$

where $d_{ij} = l'_j(\theta_i) \otimes I$ with l_j 's the Lagrange coefficients

• let $\lambda^* \in \mathbb{C}$ be an exact CR with multiplicity ν

- let $\lambda^* \in \mathbb{C}$ be an exact CR with multiplicity ν
- exist ν approximated CRs $\lambda_i \in \mathbb{C}$, $i = 1, \dots, \nu$

- let $\lambda^* \in \mathbb{C}$ be an exact CR with multiplicity ν
- exist ν approximated CRs $\lambda_i \in \mathbb{C}$, $i = 1, \dots, \nu$
- spectral accuracy

$$\max_{1 \le i \le \nu} |\lambda^* - \lambda_i| \le \left(\frac{C_1}{\sqrt{N}} \left(\frac{C_2}{N}\right)^N\right)^{1/\nu}$$

- let $\lambda^* \in \mathbb{C}$ be an exact CR with multiplicity ν
- exist ν approximated CRs $\lambda_i \in \mathbb{C}$, $i = 1, \dots, \nu$
- spectral accuracy

$$\max_{1 \le i \le \nu} |\lambda^* - \lambda_i| \le \left(\frac{C_1}{\sqrt{N}} \left(\frac{C_2}{N}\right)^N\right)^{1/\nu}$$

• C_2 proportional to $|\lambda^*|$ and τ

- let $\lambda^* \in \mathbb{C}$ be an exact CR with multiplicity ν
- exist ν approximated CRs $\lambda_i \in \mathbb{C}$, $i = 1, \dots, \nu$
- spectral accuracy

$$\max_{1 \le i \le \nu} |\lambda^* - \lambda_i| \le \left(\frac{C_1}{\sqrt{N}} \left(\frac{C_2}{N}\right)^N\right)^{1/\nu}$$

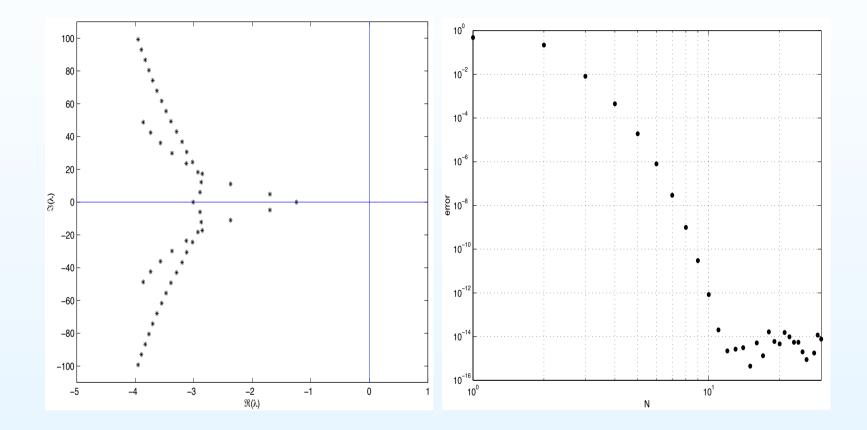
- C_2 proportional to $|\lambda^*|$ and τ
- analogous result for CMs

Numerics: example

$$x'(t) = L_0 x(t) + L_1 x(t-1) + \int_{-0.3}^{-0.1} M_1 x(t+\theta) d\theta + \int_{-1}^{-0.5} M_2 x(t+\theta) d\theta$$
$$L_0 = \begin{pmatrix} -3 & 1 \\ -24.646 & -35.430 \end{pmatrix}, \quad L_1 = \begin{pmatrix} 1 & 0 \\ 2.35553 & 2.00365 \end{pmatrix}$$
$$M_1 = \begin{pmatrix} 2 & 2.5 \\ 0 & -0.5 \end{pmatrix}, \quad M_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

Department of Mathematics and Statistics, McGill University - April 18, 2005 - p. 19/47

Numerics: example



Department of Mathematics and Statistics, McGill University - April 18, 2005 - p. 20/47

Numerics: generalization

• linear multiple discrete/distributed DDEs:

$$y'(t) = L_0 y(t) + \sum_{l=1}^k \left(L_l y(t - \tau_l) + \int_{-\tau_{l-1}}^{-\tau_l} M_l(\theta) y(t + \theta) d\theta \right)$$

Numerics: generalization

• linear multiple discrete/distributed DDEs:

$$y'(t) = L_0 y(t) + \sum_{l=1}^k \left(L_l y(t - \tau_l) + \int_{-\tau_{l-1}}^{-\tau_l} M_l(\theta) y(t + \theta) d\theta \right)$$

- but also extension to more general linear time delay systems (LTDS):
 - neutral DDEs
 - periodic coefficients DDEs
 - age-structured population dynamics
 - mixed-type FDEs
 - PDEs with delay

Stability charts: what?

- consider a LTDS depending on two parameters p_1 and p_2 (e.g. delays, but not only...) varying in given intervals
- determine where the system is stable or not in the (p_1, p_2) -plane
- how?

Stability charts: what?

- consider a LTDS depending on two parameters p_1 and p_2 (e.g. delays, but not only...) varying in given intervals
- determine where the system is stable or not in the (p_1, p_2) -plane
- how?
 - point-by-point investigation of the (p_1, p_2) -plane determining the real part of the rightmost CR $r_{CR}(p_1, p_2)$ (or the absolute value of the dominant CM $d_{CM}(p_1, p_2)$)

also other approaches...

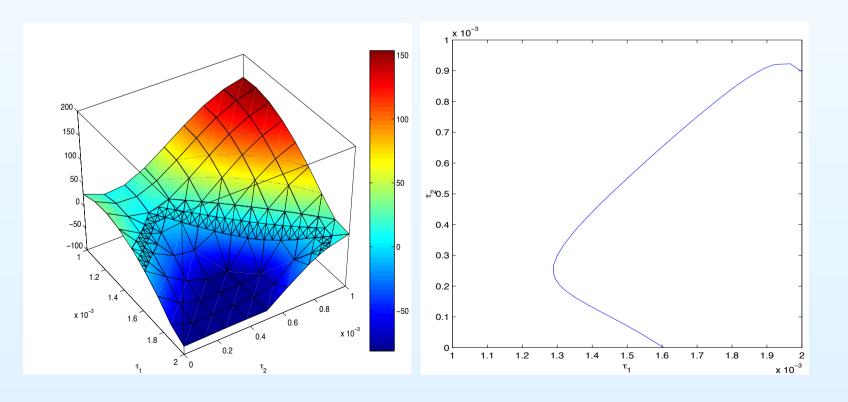
Stability charts: example

A stability boundary (SB) is a curve $r_{CR}(p_1, p_2) = 0$

Stability charts: example

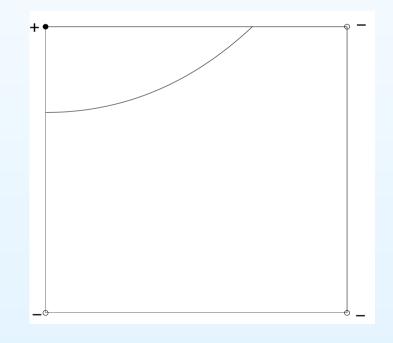
A stability boundary (SB) is a curve $r_{CR}(p_1, p_2) = 0$

$$y'(t) = L_0 y(t) + L_1 y(t - \tau_1) + L_1 y(t - \tau_2) + L_2 y(t - 2\tau_1) + L_2 y(t - 2\tau_2) + L_3 y(t - \tau_1 - \tau_2), \quad L_i \in \mathbb{C}^{8 \times 8}$$



Stability charts: point-by-point investigation

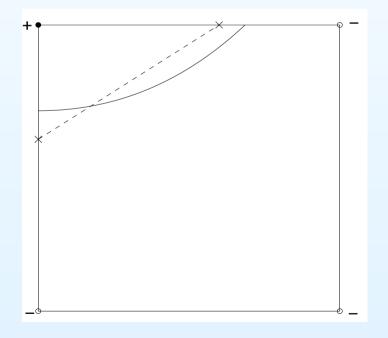
- consider a square cell in the (p_1, p_2) -plane
- evaluate stability of the four vertices by computing r_{CR}
- if a sign change occurs, a SB passes through the cell



• a sort of 2*d*-bisection

Stability charts: location of SB

- consider edges with sign change in r_{CR} at the vertices
- for each edge, determine the point (p_1, p_2) such that $r_{CR}(p_1, p_2) = 0$ by linear interpolation of vertex values
- approximate SB by joining the zeros



Stability charts: uniform square grid

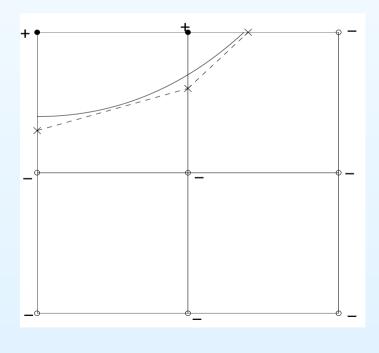
- set a uniform square grid on the (p_1, p_2) -plane
- determine SB on each cell
- accuracy of SB depends on the grid size

Stability charts: uniform square grid

- set a uniform square grid on the (p_1, p_2) -plane
- determine SB on each cell
- accuracy of SB depends on the grid size
- this is behind MATLAB's contour for surface level-curves
- not efficient: each stability evaluation is expensive, hence uniform grid is not a good choice

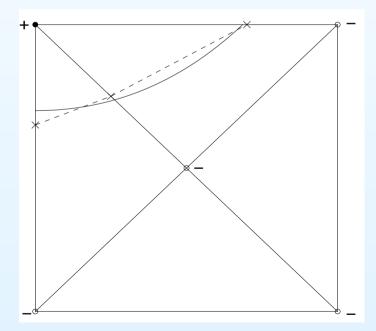
Stability charts: adaptive square refinement

- start from a coarse square grid
- refine only cells with sign change by dividing into four square cells by the center point
- five new stability evaluations required



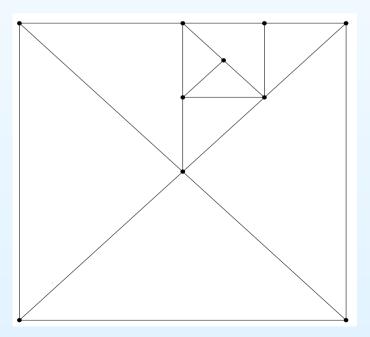
Stability charts: adaptive triangulation 1

- start from a coarse square grid
- refine square cells with sign change by dividing into four triangular cells by the center point
- only one new stability evaluation required



Stability charts: adaptive triangulation 2

- start from a triangular cell with sign change
- refine by dividing into two triangular cells by the mid point of the hypotenuse
- only one new stability evaluation required



Stability charts: squares vs triangles

- start from a square with area A
- consider the number of stability evaluations necessary to reduce the area to a

Stability charts: squares vs triangles

- start from a square with area A
- consider the number of stability evaluations necessary to reduce the area to a
- using square refinement

$$n = \frac{5}{\log 4} \log \frac{A}{a}$$

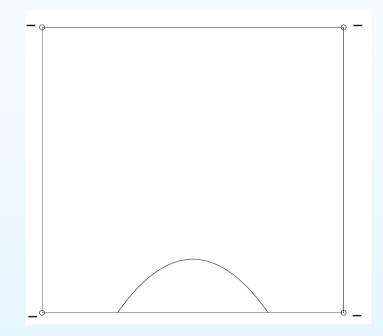
using triangulation

$$n = \frac{2}{\log 4} \log \frac{A}{a} - \log 4$$

less than half!

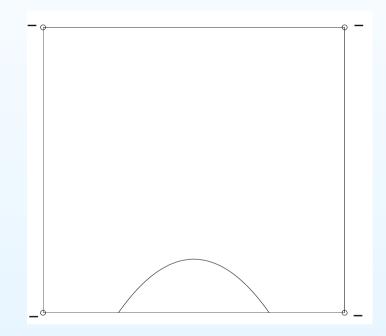
Stability charts: if no sign change?

 if all vertices of a cell have same sign there might be a SB crossing the cell (at only one edge)



Stability charts: if no sign change?

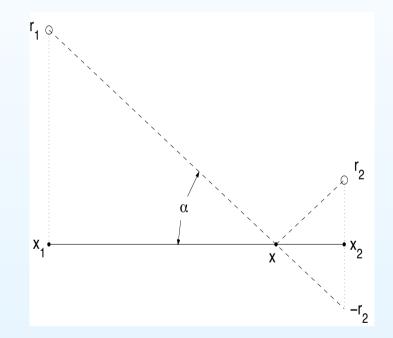
 if all vertices of a cell have same sign there might be a SB crossing the cell (at only one edge)



• how to recognize this possibility?

Stability charts: slope test

• measure the minimum slope $s = \tan \alpha = \frac{|r_1+r_2|}{|x_2-x_1|}$ at which $r_{CR} = 0$ is reached from both edge vertices



- if s is too large exclude refinement, else refine
- not a sufficient condition: heuristic test

Stability charts: multiple evaluations

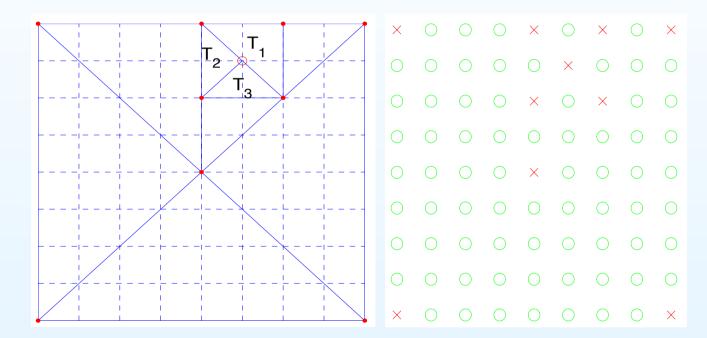
- possible multiple evaluations for neighboring cells
- considerable increase of computational time: not to underestimate

Stability charts: multiple evaluations

- possible multiple evaluations for neighboring cells
- considerable increase of computational time: not to underestimate
- "easy" to avoid for square grid by storing stability information in a rectangular matrix with entries corresponding to grid points
- before evaluating a grid point check the matrix if it already exists

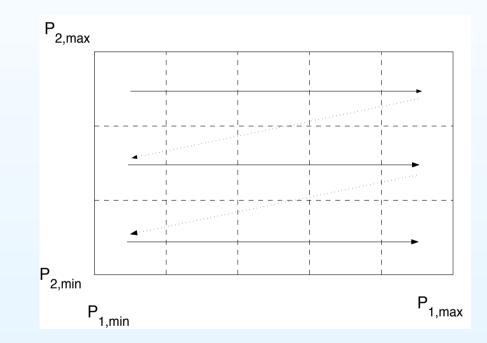
Stability charts: information storage

- more difficult with triangulation
- use a square matrix for each square cell



Stability charts: information passing

 update matrix from square to square scanning the whole grid in the usual reading/writing sense



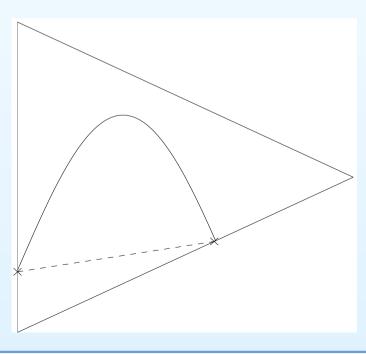
avoid multiple evaluations in each step!

Stability charts: location of SB

- improve using secant method on each edge
- better control of accuracy along the edge

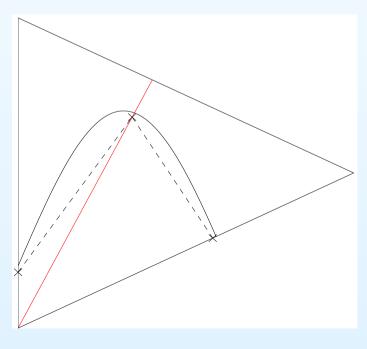
Stability charts: location of SB

- improve using secant method on each edge
- better control of accuracy along the edge
- but...no sense in find zeros with high accuracy and then join them with a line: curvature of SB is determining



Stability charts: adaptive curvature determination

- take an extra mid edge and find its zero
- measure the height of the triangle formed by the zeros of the three edges
- if this height is too large, refine by an extra mid edge and iterate

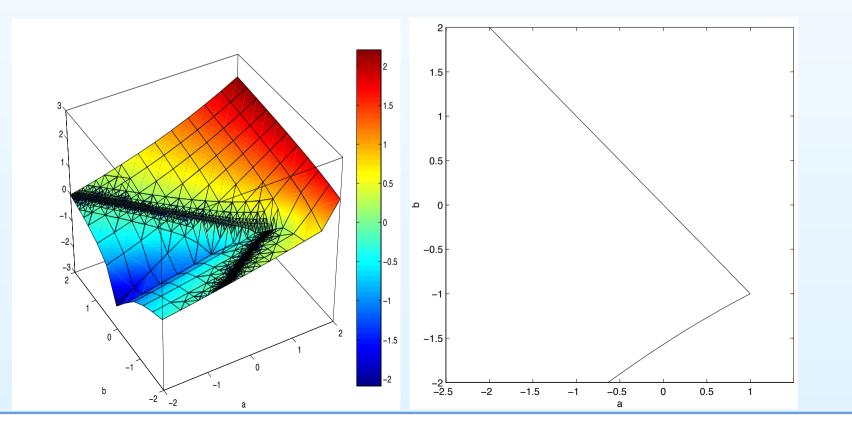


Examples: single delay

• consider the scalar single DDE

$$y'(t) = ay(t) + by(t-1)$$

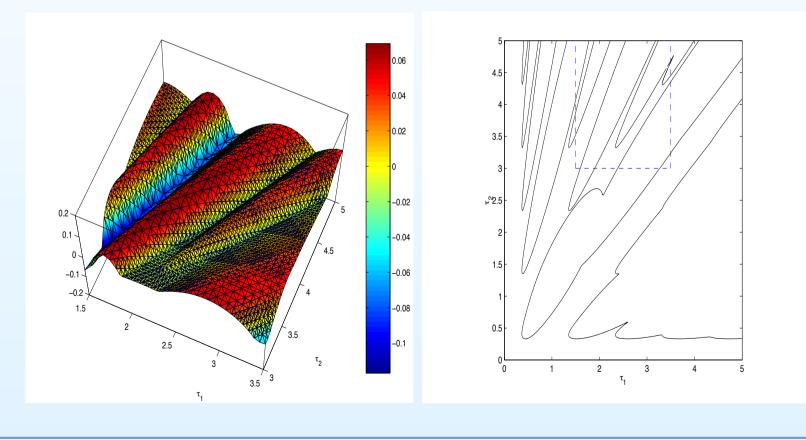
stability chart analytically well-known



Examples: multiple delays

• consider the 2d DDE

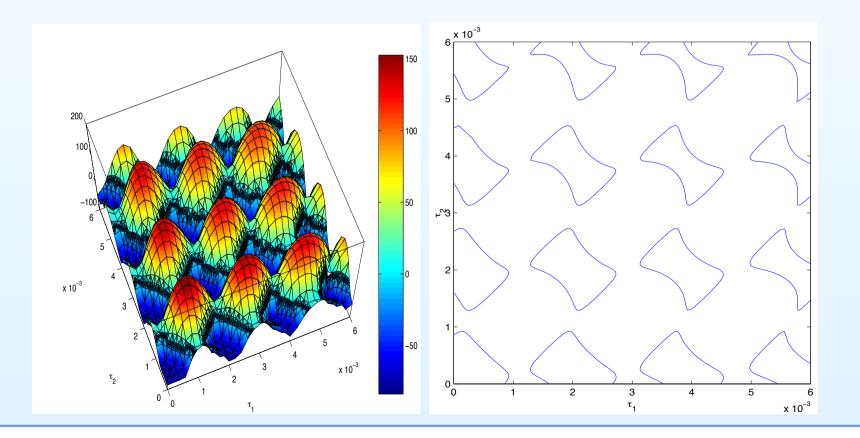
$$y'(t) = \begin{pmatrix} -6.45 & -12.1 \\ 1.5 & -0.45 \end{pmatrix} y(t) + \begin{pmatrix} -6 & 0 \\ 1 & 0 \end{pmatrix} y(t-\tau_1) + \begin{pmatrix} 0 & 4 \\ 0 & -2 \end{pmatrix} y(t-\tau_2)$$



Examples: multiple delays

• consider the 8d DDE

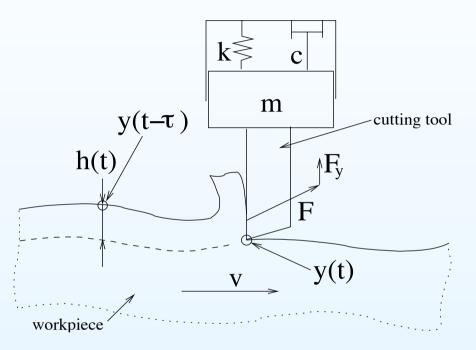
$$y'(t) = L_0 y(t) + L_1 y(t - \tau_1) + L_1 y(t - \tau_2) + L_2 y(t - 2\tau_1) + L_2 y(t - 2\tau_2) + L_3 y(t - \tau_1 - \tau_2), \quad L_i \in \mathbb{C}^{8 \times 8}$$



Department of Mathematics and Statistics, McGill University - April 18, 2005 - p. 40/47

Applications: metal cutting

consider 1dof model of orthogonal metal cutting



$$y''(t) + 2\zeta\omega_n y'(t) + \omega_n^2 y(t) = \frac{F_y}{m}$$

 relative vibrations between tool and workpiece produces wavy surface

- relative vibrations between tool and workpiece produces wavy surface
- after a round of the tool (or workpiece) chip thickness will vary

- relative vibrations between tool and workpiece produces wavy surface
- after a round of the tool (or workpiece) chip thickness will vary
- cutting force depends on actual and delayed values of relative displacement between tool and workpiece

- relative vibrations between tool and workpiece produces wavy surface
- after a round of the tool (or workpiece) chip thickness will vary
- cutting force depends on actual and delayed values of relative displacement between tool and workpiece
- this is called regenerative effect

Applications: delay model

• with regenerative effect the model becomes

$$y''(t) + 2\zeta\omega_n y'(t) + \omega_n^2 y(t) = -\frac{K(t)w}{m}(y(t) - y(t - \tau))$$

• K(t) possibly time periodic (e.g. milling process)

Applications: delay model

• with regenerative effect the model becomes

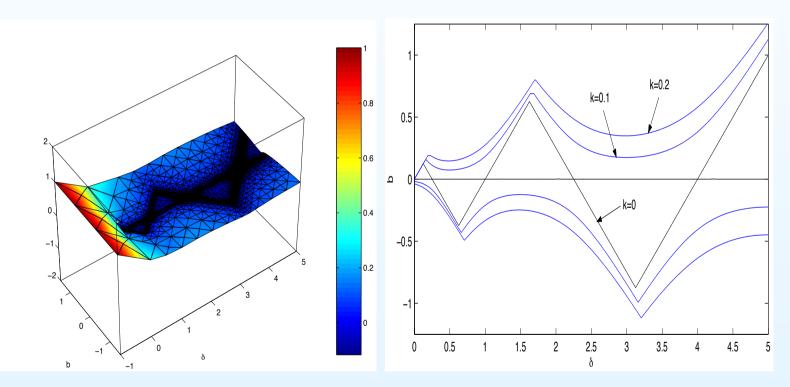
$$y''(t) + 2\zeta\omega_n y'(t) + \omega_n^2 y(t) = -\frac{K(t)w}{m}(y(t) - y(t - \tau))$$

- K(t) possibly time periodic (e.g. milling process)
- reduce to a model similar to the damped delayed Mathieu equation

 $y''(t) + ky'(t) + (\delta + \varepsilon \cos 2\pi t/T)y(t) = by(t - 2\pi)$

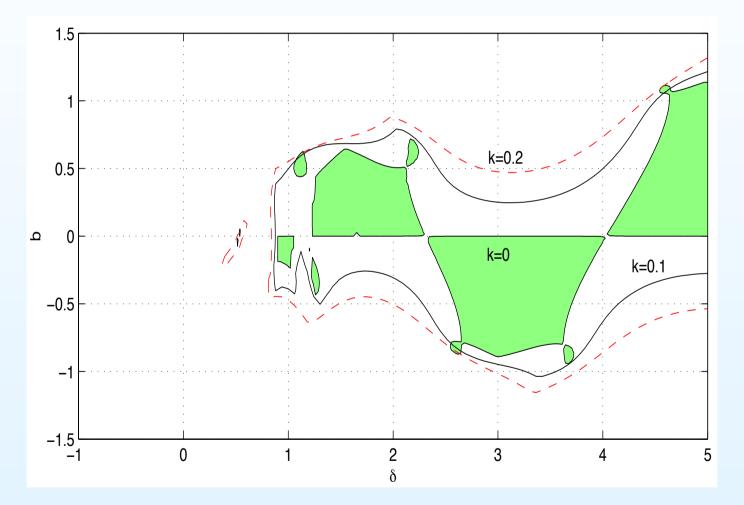
Applications: stability chart

- consider $\varepsilon = 0$, δ and b as varying parameters
- Hsu-Bhatt-Vyshnegradskii stability chart



Applications: periodic case

• consider the periodic case $\varepsilon = 1$



Conclusions

- increasing interest in time delay systems
- stability is an infinite dimensional problem

Conclusions

- increasing interest in time delay systems
- stability is an infinite dimensional problem
- use numerical techniques to solve
- special attention to computational cost

Conclusions

- increasing interest in time delay systems
- stability is an infinite dimensional problem
- use numerical techniques to solve
- special attention to computational cost
- robust study of stability wrt varying parameters
- efficient computation of stability charts
- match best compromise among all tolerances

The end

...and thanks for your attention!

Department of Mathematics and Statistics, McGill University - April 18, 2005 - p. 47/47