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Delay Equations as Biological Models

Motor control with delay: Bélair, Beuter, Campbell.

ẋ = a1f1(x(t − τ1)) + a2f2(x(t − τ2)), x(·) ∈ R, τ1, τ2 > 0.

Pupil light reflex: Longtin and Milton.

ẍ + αẋ + βx = f(x(t − τ)), x(·) ∈ R, τ > 0.

Drug Delivery model:

˙[S] = γΦ([P ](t − τ))([S]∗ − [S]) − κ[S]
˙[P ] = κ[S] − γΨ([P ](t − τ))([P ] − [P ]∗).

Neural networks: D3-symmetric system

ẋj = −uj(t) + αuj(t− τs) + β [uj−1(t − τn) + uj+1(t − τn)] , j = 1, 2, 3
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Linear theory of DDEs

1. Let Cn = C([−τ, 0], Rn), xt : Cn → Rn; xt(θ) = x(t + θ),
L : Cn × Rp → Rn, and f : Cn × Rp → Rn (C∞)

ẋ = L(α)xt + f(xt, α)

2. Linear flow: ẋ = L(α)xt

3. Linear operator L is bounded

L(α)φ =

∫ 0

−τ

dη(θ, α)φ(θ),

where η is a n × n matrix-valued function of bounded variation.

4. L0 = L(0) and A0: infinitesimal operator of the semiflow. We have
λ ∈ σ(A0) if

det ∆(λ) = 0, ∆(λ) = λIn −
∫ 0

−τ

dη(θ)φ(θ).
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Double Hopf Bifurcation

• Critical eigenvalues: Λ = {λ ∈ C | det ∆(λ) = 0 and λ = iω}.
• A nonresonant double Hopf bifurcation occurs if

Λ = {±iω1,±iω2} with ω1/ω2 6∈ Q.

• The normal form of the (nonresonant) double Hopf bifurcation is

ż1 = p1(|z1|2, |z2|2)z1

ż2 = p2(|z1|2, |z2|2)z2

• The dynamics is determined by the third order truncation

ż1 = (iω1 + c11|z1|2 + c12|z2|2)z1

ż2 = (iω2 + c21|z1|2 + c22|z2|2)z2

if Re (cij) 6= 0, Re (c11)Re (c22) − Re (c12)Re (c21) 6= 0.
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Invariant and Centre Manifold Theorem

The spectrum of the infinitesimal operator A0 induces a splitting

Cn = Es ⊕ Ec ⊕ Eu

where Es, Eu are the invariant stable and unstable subspaces and Ec is
the centre subspace of dimension m spanned by the generalized
eigenvectors of Λ.
There exists a m-dimensional local centre manifold Mf near (0, 0) defined
by

Mf = {φ ∈ Cn | φ = Φx + h(x, f), x ∈ Rm in a nbhd of 0}
where Φ(θ) = (φ1(θ), . . . , φm(θ)) is a basis of Ec and h(x, f) ∈ Es ⊕ Eu is
CN .
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Reduced equation on the centre manifold

Let Ψ(s) = col(ψ1(s), . . . , ψm(s)) be a basis of the dual space (Ec)∗ via
the bilinear form

(ψ, φ) = ψ(0)ψ(0) −
∫ 0

−τ

∫ θ

0

α(ξ − θ)[dη(θ)]φ(ξ)dξ.

Then the flow on the centre manifold is given by zt = Φx(t) + h(x(t), f)
where x(t) is solution to the ordinary differential equation

ẋ = B0x + Ψ(0)f(Φx + h(x, f))

with A0Φ = ΦB0, B0 = diag(λ1, . . . , λm) where λi ∈ Λ for all i = 1, . . . , m.
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Realisation Theorems (Faria and Magalhaes)

DDE: set of delay-differential equations.

LDDE: set of linear DDEs.

ODE: set of ordinary differential equations.

LODE: set of linear ODEs.

FJODE: set of finite jets of ODEs.

PCM : Map to center manifold reduced equation.

1. Thm 1: PCM : DDE → ODE is surjective (≡realisation).

2. Thm 2: PCM : DDE → FJODE realisation can be achieved with
m − q + 1 nonlinear delays where m = dimEc and q = rank Φ(0).

3. Thm 3: PCM : LDDE → LODE is surjective iff
n ≥ max{#Jordan blocks of λ | λ ∈ Λ}.
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Linear and nonlinear unfoldings

Different approach: compute linear and nonlinear unfoldings at
bifurcations.

Some simple cases are already known when realisation results do
not apply.

Generically, there are no restrictions on the dynamics, if

1. ż = νz(t − τ0) + L0zt + A(z(t − τ0))
3

with A, ν ∈ R at a Hopf bifurcation point. (Faria and Magalhaes)

2. ż = ν1z(t) + ν2z(t − τ0) + L0zt + A(z(t − τ0))
2 + Bz(t)z(t − τ0)

with ν1, ν2, A, B, C ∈ R at a Bogdano-Takens point. (F-M)

3. ż = ν1z(t) + ν2z(t − τ0) + L0zt + Az(t)3 + Bz(t − τ0)
3

with ν1, ν2, A, B ∈ R at a B-T point with Z2-symmetry. (Redmond,
LeBlanc, Longtin).

Note that the linear and nonlinear unfoldings above are not unique.

McGill University, 25 April-2005 – p.8



Nonlinear restrictions: first case

Motor control task model (Bélair, Beuter et al.)

ẋ = a1f1(x(t − τ1)) + a2f2(x(t − τ2)) (1)

with f1, f2 odd functions (i.e. Z2-symmetric).

• Result: At a double Hopf bifurcation point of equation (1) there are
nonlinear restrictions on the possible dynamics.
• Centre manifold reduction yields

ṙ1 = (Re (c11)r
2
1 + Re (c12)r

2
2)r1

ṙ2 = (Re (c21)r
2
1 + Re (c22)r

2
2)r2

where Re (c12) = 2Re (c11) and Re (c21) = 2Re (c22).
Restrictions: Out of the 12 cases of unfolding, 6 are prohibited.
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Double Hopf bifurcation: scalar case

• Consider the scalar DDEs

ż = L0zt + f(z(t − τ1), z(t − τ2))

and
ż = L0zt + f(z(t − τ)).

Theorem 1 (B. and Bélair) Generically, at a nonresonant double Hopf
bifurcation, there are no restrictions on the dynamics of

ż = ν1z(t − τ1) + ν2z(t − τ2) + L0zt + f(z(t − τ1), z(t − τ2))
for f Z2-symmetric and for general f , however

ż = ν1z(t − τ1) + ν2z(t − τ2) + L0zt + f(z(t − τ))
always has nonlinear restrictions on the possible flows near
bifurcation. But no linear restrictions.

• Therefore, the restrictions on the dynamics in the motor control task
model come from the structure of the model.
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Nonlinear restrictions: second case

Harmonic oscillator with delayed feedback of Longtin and Milton,
Campbell et al.

ẍ + αẋ + βx = f(x(t − τ)).

Theorem 2 (B. and Bélair) Suppose that the nth-order delay-differential
equation (n ≥ 2)

u(n) + βu(n−1) + · · · + βnu = f(u(t − τ))

has a nonresonant double Hopf bifurcation. Then, generically, there are
always nonlinear restrictions on the possible flows near bifurcation. The
linear unfolding yields no restrictions.
proof: This case can be reduced to the first-order scalar case with one
nonlinear delay: ż = L0zt + f(z(t − τ))
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Drug Delivery System: Siegel et al.

reaction
chamber

gel
membrane

[S] + enzyme

[P]

D

S: substrate, P : product, D: drug.

[S∗] and [P ∗]: fixed external concentrations.

[P ] induces swelling and deswelling of the membrane.

Permeability of the membrane to S and P : M([P ]), N([P ]).

Delay induced by the transport time from chamber inside membrane.
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Drug Delivery System: Bélair and B.

Siegel and Pitt equations (Hopf bifurcation):

˙[S] = γK(t)([S]∗ − [S]) − κ[S]
˙[P ] = κ[S] − γq[P ]

where γ =membrane area/volume chamber, q membrane permeability to
[P ] and K(t) membrane permeability to [S]

K̇ = α(K∞ − K)

Modified Siegel and Pitt equations (Hopf and double Hopf):

˙[S] = γM([P ](t − τ))([S]∗ − [S]) − κ[S]
˙[P ] = κ[S] − γN([P ](t − τ))([P ] − [P ]∗).
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Hopf and double Hopf points

Equilibrium solution ([S]0, [P ]0)

u̇ = −αu − βv(t − τ) + f(u(t), v(t − τ))

v̇ = u − N([P ]0)v − bv(t − τ) + g(v(t), v(t − τ)).

Characteristic equation (studied by Cooke and Grossman (1982))

λ2 − aλ + bλe−λτ + c + de−λτ = 0

where b = N([P ]0)([P ]0 − [P ]∗), d = αb + β.

Theorem 3 Suppose that c + d > 0 and b ∈ (−a,−
√

a2 − 2c). There
exists βinf < β− < β+ < βsup such that if

β ∈ (βinf , β−) ∪ (β+, βsup)

then there are multiple changes of stability of the equilibrium as the delay
is increased from τ = 0.
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Hopf and double Hopf points

Stability diagram for

a ≈ 10.59, b ≈ −10.27, c ≈ 26.37, α ≈ 4.00, β ≈ 24.62
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Numerical Simulations

Numerical simulations using realistic permeability functions near the Hopf
bifurcation curve:
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Gibbs’ like behaviour

Periodic solutions with "Gibbs like" behaviour due to special form of the
permeability functions (see also Mallet-Paret and Nussbaum).
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Linear unfolding of the double Hopf point

• Nonresonant double Hopf bifurcation at ([S]0, [P ]0): ±iω1, ±iω2.

• The unfolding restricted to the model is:

u̇ = −(Φ([P ]0) + 1)u + Φ′([P0])([S]∗ − [S]0)v(t − τ)

v̇ = (1 + ǫ1)u + (ǫ2 − Ψ([P0]))v + (ǫ3 − b)v(t − τ),

where generically, eigenvalues near the bifurcation point are given by

ǫ2 + ω1(h(ǫ1, ǫ2, ǫ3)), ǫ3 + ω2(h(ǫ1, ǫ2, ǫ3)), h smooth.
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Symmetrically Coupled DDEs

D   - symmetric system3

1

2 3

u̇1(t) = −u1(t) + αu1(t − τs) + β [u3(t − τn) + u2(t − τn)] ,

u̇2(t) = −u2(t) + αu2(t − τs) + β [u1(t − τn) + u3(t − τn)] ,

u̇3(t) = −u3(t) + αu3(t − τs) + β [u2(t − τn) + u1(t − τn)] .
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Double Hopf bifurcation
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This equation has double Hopf bifurcation points without symmetry and
with D3 symmetry from the standard representation.
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Linear unfolding of the double Hopf point

u̇1(t) = (−1 + ǫ1)u1(t) + (α∗ + ǫ2)u1(t − τ∗

s )

+ (β∗ + ǫ3)(u3(t − τ∗

n) + u2(t − τ∗

n)) + ǫ4(u3(t − τ3) + u2(t − τ3))

u̇2(t) = (−1 + ǫ1)u2(t) + (α∗ + ǫ2)u2(t − τ∗

s )

+ (β∗ + ǫ3)(u1(t − τ∗

n) + u3(t − τ∗

n)) + ǫ4(u1(t − τ3) + u3(t − τ3))

u̇3(t) = (−1 + ǫ1)u3(t) + (α∗ + ǫ2)u3(t − τ∗

s )

+ (β∗ + ǫ3)(u2(t − τ∗

n) + u1(t − τ∗

n)) + ǫ4(u2(t − τ3) + u1(t − τ3)).

Set ǫ4 = 0 to respect the structure of the model. As before, generically the
eigenvalues near the bifurcation point are

ǫ2 + ω1(h(ǫ1, ǫ2, ǫ3)), ǫ3 + ω2(h(ǫ1, ǫ2, ǫ3)), h smooth.

Open question: Is it always the case that the real part of the eigenvalues at
a bifurcation point can be unfolded within the model?
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Linear unfolding theory

Consider the parametrized family of DDEs:

ż = L(α)zt + f(zt, α)

such that L(0) = L0 has Λ 6= ∅.
The parametrized centre manifold reduced equation is

ẋ = B(α)x + G(x)

where B(0) = B0 = diag(λ1, . . . , λm).

Question 1 Given a versal unfolding B(α) of B0, can we construct an
unfolding L(α) of L0 which maps to B(α) via the centre manifold
reduction?

Answer 1 (B. and LeBlanc) Yes and we call such an unfolding L(α) a
Λ-versal unfolding of L0.
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Linear Unfolding Theorem(B. and LeBlanc)

Let m = dimEc, q = rank Φ(0), αk ∈ C and z ∈ C([−τ, 0], Cn). We can
construct n × n matrices Ak

j such that if

Lk(z) =

m−q∑
j=0

Ak
j z(τj)

and

L(α) = L0 +

m∑
k=1

αkLk,

then
L(α) is a Λ-miniversal unfolding of L0.
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Extensions

A straightforward decomplexification procedure yields the real
Λ-versal unfolding of L0.

Let Γ be a compact Lie group and L0 be Γ-equivariant, then L(α) can
be chosen to be Γ-equivariant.

Key idea: Projection to spaces of Γ-equivariant matrices.

πΓ
n(A) =

∫
Γ

γAγ−1dγ, πΓ
m(M) =

∫
Γ

G(γ)MG(γ−1)dγ,

where G is the representation on Ec. (B and LeBlanc)

Note that Λ-versal unfoldings project to Γ-equivariant Λ-versal
unfoldings but miniversality is not necessarily preserved.
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