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Abstract

For efficiency, variable time-stepping methods are often used to
numerically integrate dynamical systems. The flow on chaotic
attractors is often organised by the unstable manifolds of the
fixed points, and it is thus necessary to obtain good numerical
approximations in the neighbourhood of fixed points to
reproduce the dynamics. However the standard adaptive
algorithm typically fails to do this. Implicit methods designed for
stiff problems are also unsuitable; they typically destroy the
structure of the unstable manifold unless very small step-sizes
are used. We will present examples to illustrate these poor
dynamical behaviours, together with theoretical results on the
approximation of stable/unstable manifolds, and suggest a
phase space/stability based improvement to the standard
algorithm.
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Approximation of a dynamical system with a fixed

step-size Runge-Kutta method

The dynamical system

u̇(t) = f(u(t)), u(0) = U ∈ IRd,

has solution operator S(•) and so u(t) = S(t)U for all t.

c A

bT

The order p Runge-Kutta method has evolution
map Sh.
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The dynamical system

u̇(t) = f(u(t)), u(0) = U ∈ IRd,

has solution operator S(•) and so u(t) = S(t)U for all t.

c A

bT

The order p Runge-Kutta method has evolution
map Sh.

Example Forward Euler is defined by

un+1 = un + hf(un) ≡ Sh(un), ∀n > 0, u0 = U.
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Approximation of a dynamical system with a fixed

step-size Runge-Kutta method

The dynamical system

u̇(t) = f(u(t)), u(0) = U ∈ IRd,

has solution operator S(•) and so u(t) = S(t)U for all t.

c A

bT

The order p Runge-Kutta method has evolution
map Sh.

Sh(u) advances the numerical solution with step-size h

un+1 = Sh(un), ∀n > 0, u0 = U.

Each un is an approximation of S(nh)U = u(nh).
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Organisation of the flow
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So consider approximation
of unstable manifolds by
numerical methods.

Flow in forward time or-
ganised by fixed points and
unstable manifolds.

So consider approximation
of unstable manifolds by
numerical methods.

Lorenz vector field is

f(x, y, z) = (σ(y − x), rx − y − xz, xy − bz) .

Relationship of flow to fixed points obvious from figure.
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Approximation of Local Unstable Manifolds with a

Fixed Step-Size Runge-Kutta Method

δ

Wu,δ (u^)
↑

Ws,δ (u^)→
W u(u^)

Unstable
Manifold

Stable Manifold Ws(u^) The unstable manifold of equilibrium point û is

W u(û) = {u ∈ IRd : ‖S(−t)u−û‖ → 0 as t → ∞}.

Let δ > 0. The local unstable manifold of û is

W u,δ(û) = {u ∈ W u(û) : ‖S(−t)u−û‖ 6 δ ∀t > 0}.

Generate {un}n>0 using a fixed step-size h. The
unstable h-manifold of û is

W u
h (û) = {u ∈ IRd|u0 = u, ‖u−k−û‖ → 0 as k → ∞}.

Let δ > 0. The local unstable h-manifold of û is

W u,δ
h (û) = {u ∈ W u

h (û)|u0 = u, ‖u−k − û‖ 6 δ ∀k}.

δ

Wu,δ
h

 (u^)
↑

Ws,δ
h

 (u^)→
W u

h
(u^)

Unstable
h−Manifold

Stable h−Manifold W s
h

(u^)
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h (û)|u0 = u, ‖u−k − û‖ 6 δ ∀k}.
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Local Unstable Manifold Theorem

Theorem Apply a fixed step-size Runge-Kutta method of order p
to u̇ = f(u). Let û be a hyperbolic equilibrium and
f ∈ Cp+1(IRd). Then there exists C,H,∆ > 0 such that
∀δ ∈ (0,∆), ∀h ∈ (0,H) the following holds:

for each u ∈ W u,δ(û), there exists a uh ∈ W u,δ
h (û) such that

‖u − uh‖ 6 Chp‖u − û‖2;

and for each uh ∈ W u,δ
h (û), there exists u ∈ W u,δ(û) such that

‖u − uh‖ 6 Chp‖uh − û‖2.
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Proof

Let Df(û) be the Jacobian of f evaluated at û.

Shift the coordinates v = u − û.

Linearise the solution operator and the Runge-Kutta
evolution map about 0

S(h)v = exp(hDf(û))v+Gh(v), Ŝh(v) = R(hDf(û))v+Nh(v),

where R is matrix generalisation of linear stability function.

Show that both W u,δ(û) and W u,δ
h (û) are indeed manifolds.

Show that both W u,δ(û) and W u,δ
h (û) are representable as

graphs.

Show that the graphs are close. 2
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Remarks

A parallel result holds for local stable manifolds.

The result is a generalisation of Beyn’s result: there exists
C > 0 such that

‖u − uh‖ 6 Chp.

Theorem 1 implies that W u,δ(û) and W u,δ
h (û) are tangential

at the fixed point, and so is a form of local (un)stable
manifold theorem. This follows from ‖ • −û‖2 on RHS of
equations; so distance between numerical and exact
manifolds depends on the square of the distance from the
fixed point.
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Approximation of a Dynamical System with a

Variable Step-Size Runge-Kutta Embedded Pair

Consider embedded Runge-Kutta pair with |p − p̃| = 1.

c A

un+1 = Shn
(un) bT order p

ũn+1 = S̃hn
(un) b̃T order p̃

Sh(u) advances the numerical solution

un+1 = Shn
(un), ∀n > 0, u0 = U.
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Approximation of a Dynamical System with a

Variable Step-Size Runge-Kutta Embedded Pair

Consider embedded Runge-Kutta pair with |p − p̃| = 1.

c A

un+1 = Shn
(un) bT order p

ũn+1 = S̃hn
(un) b̃T order p̃

Sh(u) advances the numerical solution

un+1 = Shn
(un), ∀n > 0, u0 = U.

Note

Does not define dynamical system on IRd as hn varies with n.

Kansas Dec 2002 – p.10/32



LATEX

Local error approximation

With user-defined tolerance, 0 < τ � 1, step hn chosen by

‖E(un, hn)‖ 6 τ, where E(un, hn) =
1

hρ
n
(un+1 − ũn+1).

with ρ = 0 error per step (EPS) or ρ = 1 error per unit step
(EPUS).

Algorithm attempts to ensure

E(un, hn) ≈ γτ, γ ∈ (0, 1) safety factor

Leads to trouble near fixed points since f(un) = 0 implies

E(un, hn) = 0.
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Step-changing Algorithm

Let hk
n be a candidate for hn.

If error control condition is satisfied, set hn = hk
n, update

solution and set

h0
n+1 = min

[
hmax,

(
γτ

‖E(un, hn)‖

)(1/p)

hn

]
.

If error control condition not satisfied set

hk+1
n =

(
γτ

‖E(un, hk
n)‖

)(1/p)

hk
n.

p = min(p, p̃) + 1 − ρ γ ∈ (0, 1) safety factor.
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Adaptive Time-Stepping Algorithm as Dynamical

System

Let τ > 0 be a (user-defined) error tolerance.
An acceptable step-size h for u ∈ IRd satisfies

‖Sh(u) − S̃h(u)‖ 6 τ.

The maximum step-size (independent of τ ) is hmax.

Construct the sequence {(un, hn)}n>0 using the algorithmic map

Sτ : IRd × (0, hmax] −→ IRd × (0, hmax]

(un+1, hn+1) = Sτ (un, hn).

Sτ finds an acceptable step-size hn and advances the solution.
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Variable Time-Stepping Algorithm as Dynamical

System

Sτ : IRd × (0, hmax] −→ IRd × (0, hmax]

(un+1, hn+1) = Sτ (un, hn).

Sτ is discontinuous.

(A. Stuart & H. Lamba) There exists γ ∈ (0, 1) and C > 0
such that

h 6 C

(
τ

‖f(u)‖

)γ

.

(G. Hall & D.J. Higham) ‖f(u)‖ ≈ 0 ⇒ stability restricts the
step-size.
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Stable Fixed Point Example

Consider the method RK1(2) applied to the linear system

u̇ =

[
−5 0

0 −1

]
, u =

[
u1

u2

]
, u(0) =

[
1, 10−4

]T
.
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RK1(2)  method with Standard

y
n

y(t)

(0, 0) – stable fixed point.

For this method, the numerical solu-
tion gives persistent spurious oscilla-
tions and the y1 component has O(τ)
oscillation about the fixed point.

Kansas Dec 2002 – p.15/32



LATEX

Methods RK2(3) and RK4(5) applied to Saddle

Point Example

u̇ =

(
−1 0

0 1

)
u, u =

(
u1

u2

)
, u(0) =

(
0.99, 10−10

)T
.
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RK2(3) numerical solution does
not pass close to fixed point or the
local unstable manifold.

RK4(5) has spurious oscillations about
the unstable manifold. Numerical solu-
tion can ultimately end up either side of
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Stable Saddle Point Example !

Consider 2-stage RK1(2) method with stability domain

0

1/2 1/2

3 2

0 1

−1 0 1 2

−1

0

1

Re(z)

Im
(z

)

|R(z)| < 1

Apply this method to

u̇ =

(
−1 0

0 1

)
u, u(0) = U ∈ IR2.
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Stable Saddle Point Example !
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In an O(τ)-neighbourhood of the origin, the step-size oscillates
about 1.

Numerical solution near stable manifold becomes trapped near
fixed point.

Spurious stable invariant object in numerical flow.
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Stable Saddle Point Example !

Stability function is R(z) = 1 + z − z2. With z = hλ and here
λ = ±1. Consider fixed step-size.
For h ∈ (0, 1), the numerical manifolds are

W s
h(0) = {(x, y) ∈ IR2 | y = 0} and W u

h (0) = {(x, y) ∈ IR2 | x = 0}.

For h ∈ (1, 2), the numerical manifolds are

W s
h(0) = {(x, y) ∈ IR2 | x = 0} and W u

h (0) = {(x, y) ∈ IR2 | y = 0}.

When h crosses 1, the manifolds are reversed.
In adaptive algorithm this creates a chaotic attractor which
persists for all τ > 0.
Important to keep the step-size below linear (un)stability limits.
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Approximation of Local Unstable Manifolds with a

Variable Step-Size Runge-Kutta Pair

Let σ > 0. The local unstable set of û, W u,σ
τ (û), is the set of

(u, h) such that there exists a backward orbit under Sτ

{(u−n, h−n)}∞n=0 ⊂ IRd × (0, hmax],

such that (u, h) = (u0, h0), ‖u−n − û‖ 6 σ ∀n > 0, and u−n → û
as n → ∞.
Let σ > δ > 0. W u,σ

τ,δ (û) is the set of (u, h) such that there exists
a finite backward orbit under Sτ

{(u−n, h−n)}N
n=0 ⊂ IRd × (0, hmax],

such that (u, h) = (u0, h0), ‖u−n − û‖ 6 σ ∀n = 0, . . . , N, and

u−N ∈ W u,δ
hmax

(û).

σ~σ

u*

Wu(u*)

Wu,σ~

h
max

(u*)

Wu
τ(u*)
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Approximation of Local Unstable Manifolds with a

Variable Step-Size Runge-Kutta Pair

σ~σ

u*

Wu(u*)

Wu,σ~

h
max

(u*)

Wu
τ(u*)
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An adaptive "Stable Manifold" Theorem

Lemma There exists δ = O(τ) and hmax sufficiently small and
independent of τ such that

W u,σ
τ,δ (û) = W u,σ

τ (û).

Theorem Apply an RKp(p̃) method with |p − p̃| = 1 to u̇ = f(u).
Let û be a hyperbolic equilibrium and f ∈ Cmax{p,p̃}(IRd). Then
∃σ+,H+ > 0 such that for hmax ∈ (0,H+) & σ ∈ (0, σ+)

dH (W u,σ(û), PuW u,σ
τ (û)) → 0 as τ → 0

where Pu : (u, h) ∈ IRd+1 → u ∈ IRd is the projection operator.

That is, the local unstable manifolds of the dynamical system
and the unstable set of the RKp(p̃) are close for small τ .
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Phase Space Stability Error Control

Standard algorithm performs well during finite-time integration
with fixed initial condition.

However unless hmax is less than the linear stability limit the
algorithm

admits spurious fixed points;

performs badly around a stable fixed point;

performs badly near saddle points.

Introduce new phase space based error control to automatically
control the step-size relative to the stability limit.
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LATEX

Phase Space (PSθ) Error Control

We demand at each step the phase space (PSθ) error control

‖un+1 − un − hn[(1 − θ)f(un) + θf(un+1)]‖

≤ ϕhn‖(1 − θ)f(un) + θf(un+1)‖, ϕ ∈ (0, 1).

hn‖(1 − θ)f(un) + θf(un+1)‖ is approximation to arc length
evolved over step.
So PSθ error control bounds an approximation to local error by a
fraction ϕ of an approximation to solution arc length in phase
space. So is a phase space error control.
Will show it also acts as a stability control.
Will combine this error control with standard error control; and
demand both are satisfied at every step.
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LATEX

Key Features of this Error Control

Negligible additional computation is needed;

Away from fixed points the standard error control is
sufficient to ensure that the PSθ condition is satisfied.

Prevents spurious fixed points;

Forces convergence to stable fixed points;

Gives stable step-size sequence with suitable step-size
selection mechanism

Good behaviour near saddle points
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LATEX

Step-size selection

R(un, hn) =
‖un+1 − un − hn[(1 − θ)f(un) + θf(un+1)]‖

hn‖(1 − θ)f(un) + θf(un+1)‖
6 ϕ.

Next step: hθ
n+1 =

(
χϕ

R(un,hn)

)1/q̃
hn, where by Taylor series

Order p ≥ 2 and θ 6= 1/2 ⇒ q̃ = 1;

Order p ≥ 3 and θ = 1/2 ⇒ q̃ = 2;

χ ∈ (0, 1) is safety factor.

New step-size selected as

hn+1 = min
[
hs

n+1, hθ
n+1, αhn

]
,

where hs
n+1 given by standard time-stepping strategy.

α > 1 is a maximum step-size ratio , α = 5.
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LATEX

Linear system

Theorem Consider forward Euler method under PSθ error
control in ‖ • ‖∞ with ϕ 6 θ/(1 − θ) applied to

ut = Λu, Λ = Diag[λ1, λ2, · · · , λd], u(0) = u0 ∈ IRd

where λ1 < λ2 < · · · < λd < 0. Then ‖un‖ → 0 as n → ∞ with:

1. un
d → 0 monoty as n → ∞;

2. If λi ≥
θ(1+ϕ)

ϕ λd, then un
i → 0 & un

i

un
d

→ 0 monoty as n → ∞;

3. If θ(1+ϕ)
ϕ λd > λi ≥

[
2θ(1+ϕ)

ϕ − 1
]
λd, then un

i → 0 & |un
i |

|un
d |

→ 0;

4. Otherwise un
i → 0 as n → ∞ with lim supn→∞

|un
i |

|un
d |

< ϕ
θ− ϕ

1+ϕ

;

5. Let θn be angle between un and [0, . . . , 0, 1] ∈ IRd. If u0
d 6= 0

lim inf
n→∞

cos θn > 1 −
1

2
(d − 1)

ϕ2

θ2
+ O(ϕ3).
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LATEX

Remarks

Can extend to arbitrary norms.

Can extend to u̇ = Au (i.e. non-diagonal). and nonlinear
hyperbolic equilibria.

Extends to non-stiff saddle points.

Can extend to arbitrary methods.

Bound in 4 independent of stiffness/eigenvalues and can be
made arbitray small by reducing ϕ.

The exact solution is tangent to [0, 0, . . . , 0, 1] at fixed point,
so 5 gives bound on angle between exact and numerical
solutions at fixed point. Reducing ϕ makes angle arbitrarily
small (independent of the stiffness/eigenvalues).
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LATEX

Proof

Forward Euler method gives

un+1 = R(hnA)un = Diag[1 + hnλ1, · · · , 1 + hnλd]u
n.

With ∞-norm, PSθ error control becomes
∥∥∥∥∥∥∥∥∥∥




θh2
nλ2

1u
n
1

θh2
nλ2

2u
n
2

...
θh2

nλ2
du

n
d




∥∥∥∥∥∥∥∥∥∥
∞

6 ϕhn

∥∥∥∥∥∥∥∥∥∥




λ1(1 + θλ1hn)un
1

λ2(1 + θλ2hn)un
2

...
λd(1 + θλdhn)un

d




∥∥∥∥∥∥∥∥∥∥
∞

.

hence for some i ∈ {1, 2, . . . , d}

hnθλ2
i |u

n
i | 6 −ϕλi|1 + θλihn||u

n
i |.

hnθλ2
i |u

n
i | 6 −ϕλi|1 + θλihn||u

n
i |.

True if and only if

hn 6 −
ϕ

λiθ(1 + ϕ)
6 −

ϕ

λdθ(1 + ϕ)
.

So the dth condition always holds and monotonic convergence in
this component follows.
Prove 2 and 3 by showing that dth condition implies (monotonic)
convergence for these components.
Prove 4 by showing that failure of the i-th condition bounds
|yn

i /yn
d | and hard work. 5 follows on noting that in limit n → ∞ all

components bounded in terms of dth component. 2
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Large Average Step-Sizes

RK1(2) Method applied to

u̇ =
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0 −10 0

0 0 −100


u.

Step-size oscillates.

All steps below λ = −1 stabil-
ity limit; monotonic convergence of
this component.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

 χφ

h 

minimum step−size (−−)

average step−size (−)

maximum step−size (:)

stability limit for λ
1
=−1

RK1(2) method with PSθ  

stability limit for λ
2
=−10  

stability limit for λ
3
=−100

Average step-size below λ = −10 stability limit, but for ϕ > 0.1
some step-sizes above this limit.
Except for ϕ tiny, average and maximum step-sizes above
λ = −100 stability limit. But convergence to fixed point enforced.
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Conclusions

Standard algorithm behaves poorly near saddle points.
Stiff methods do not resolve problem for saddles.

PSθ

proved to give correct behaviour near stable fixed points

gives correct behaviour near non-stiff saddles

Ongoing

PSθ currently being implemented in standard ODE solver
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