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Abstract. We study the electromagnetic two-body problem of classical electrody-

namics as a prototype dynamical system with state-dependent delays. The equations

of motion are analysed with reference to motion along a straight line in the presence

of an electrostatic field. We consider the general electromagnetic equations of mo-

tion for point charges with advanced and retarded interactions and study two limits

(a) retarded-only interactions (Dirac electrodynamics) and (b) half-retarded plus half-

advanced interactions (Wheeler-Feynman electrodynamics). A fixed point is created

where the electrostatic field balances the Coulombian attraction, and we use local anal-

ysis near this fixed point to derive necessary conditions for a Hopf bifurcation. In case

(a), we study a Hopf bifurcation about an unphysical fixed point and find that it is

subcritical. In case (b) there is a Hopf bifurcation about a physical fixed point and

we study several families of periodic orbits near this point. The bifurcating periodic

orbits are illustrated and simulated numerically, by introducing a surrogate dynamical

system into the numerical analysis which transforms future data into past data by

exploiting the periodicity, thus obtaining systems with only delays.

PACS numbers: 05.45.-a, 02.30.Ks, 03.50.De,41.60.-m
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1. Introduction

In recent years, interest in dynamical systems with state-dependent delays has grown

considerably despite the difficulties due to the infinite dimensionality of the phase space,

and a lack of a systematic theory for such problems. Examples of such systems can be

found in contexts as different as population dynamics [1], neural networks [2], and secure

communication [3]. In this paper, we investigate the dynamics of two point-charges as

described by classical electrodynamics [4, 5], a fundamental Physics model that belongs

to this class of systems. So far, because of its mathematical complexity, this problem has

mostly been tackled by invoking approximations whose reliability is difficult to control.

We will consider the full problem in a one-dimensional setup, with the two particles

moving along a straight-line in the presence of an external electrostatic field.

Besides delayed and advanced interactions, the electromagnetic equations of motion

of charged particles have a further peculiarity, namely the presence of a third-order

time-derivative which is responsible for seemingly paradoxical results. An example was

discovered by Eliezer [6] for the motion of a single electron in the Coulombian field of

an infinitely massive proton: The electron is only attracted until the third-derivative

term causes the acceleration to change sign, and the electron is always repelled [6].

This avoided collision is called Eliezer’s theorem and the fact that the electron always

escapes collision suggests that the underlying physical model is somehow over-simplified.

In fact, in Ref. [7], it was suggested that some potentially complex dynamics is lost in

the infinite-mass limit, which removes the delay from the equations of motion. One

of the motivations of this paper is to study the effect of finite masses in the case of

two particles moving along the same straight-line. Since in 1D there are no centrifugal

forces that can sustain a bounded motion, we introduce an external electrostatic field

to provide such a force.

We start from the general equations of motion [4] for charged particles with retarded

and advanced interactions, and consider the particular cases of (a) Dirac electrodynamics

with retarded-only interactions [5] and (b) Wheeler-Feynman electrodynamics [8] with

half-retarded plus half-advanced interactions, a case of physical interest where the

self-interaction vanishes. The external field produces a fixed point by balancing the

Coulombian attraction and we study the conditions for a Hopf bifurcation in both cases.

One of the differences with respect to a Coulombian two-body problem is an

exponential correction to the force field (see (2)). In case (a), we show that for the correct

sign of the exponent (which is absent in the Newtonian formulation) no Hopf bifurcation

occurs, but upon changing the sign of the exponent, a family of periodic orbits may

appear/disappear in a subcritical Hopf bifurcation. As a result, it turns out that a family

of periodic orbits exists, although this happens only for the wrong sign of the exponent.

In spite of the unphysical character of this solution, we have nevertheless explored the

corresponding periodic orbits, as an example of state-dependent delay dynamics with

electromagnetic-like difficulties and correct Newtonian limit. Moreover, the delicate

dependence on the precise force law is a warning for future studies of a realistic version
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of Eliezer’s theorem with a finite protonic mass, i.e.;— velocity-dependent forces should

be carefully taken into account, if the electron changes direction to avoid a collision.

In case (b), families of periodic orbits for the full nonlinear equations are found

in the vicinity of the fixed point for the correct sign of the exponent, near to the

critical parameter values found from the linear analysis, and so we can conclude that

the Wheeler-Feynman electrodynamics undergoes a physical Hopf bifurcation.

In both cases we numerically study the full nonlinear equations to determine the

bifurcating periodic orbits. Despite the simplicity of the physical setup, it is necessary

to take some care in the numerical analysis, starting with the choice of an appropriate

numerical scheme. In particular, to avoid the known explosive instabilities of the

Dirac equation [9], case (a) must be integrated backwards in times. As a result, the

delay, becomes an advance. Case (b), the Wheeler-Feynman electrodynamics, does not

suffer from runaway instabilities and can be integrated either forwards or backwards in

time, but the problem contains both advanced and retarded arguments in either time

direction. We can study the existence of periodic orbits of advanced and advanced-

retarded equations by subtracting multiples of the period from the advanced arguments

to transform them into retarded ones. We do this by introducing a surrogate dynamical

system with an adjustable parameter that is equivalent to the original dynamics along

a periodic orbit, when the parameter is equal to a multiple of the period. The equations

of motion are then integrated with RADAR5, an integrator for differential-algebraic

equations with state-dependent delay [10].

In case (a) we find that the time-reversed surrogate dynamical system has a stable

invariant set in the form of a paraboloid with the fixed point as its base. The system

undergoes a subcritical Hopf bifurcation from the fixed point on this paraboloid, and

on the correct side of the critical parameter value there is a unique unstable orbit. This

periodic orbit of the Dirac equations is determined by following orbits on the paraboloid

with smaller and larger amplitudes that spiral away from the periodic orbit and using

a bisection technique. Case (b) is harder to treat numerically because the Wheeler-

Feynman equations are reversible and do not possess asymptotically stable limit sets

near the fixed points. Nevertheless we find two families of periodic orbits for the full

nonlinear equations including one where the delay and advance time for small amplitude

orbits is exactly half a period, and another where the heavier particle is at rest, while

the lighter particle oscillates, which we call frozen proton orbits.

In summary, in the next section, we introduce the model and the corresponding

notations, and show the existence of two fixed point solutions, one physical and one

unphysical, while Section 3 is devoted to the linear stability analysis of the general model.

In Section 4, the linear stability analysis is applied to the case of the Dirac equations to

show that there is no Hopf bifurcation form the physical point, but that there is a Hopf

bifurcation from the unphysical point for arbitrary mass ratios. Section 5 is devoted to

a numerical study of this Hopf bifurcation, which is revealed to be subcritical, and the

resulting branch of periodic orbits is studied. In Section 6 the linear stability analysis

is applied to the Wheeler-Feynman equations of motion, revealing the possibility of
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Hopf bifurcations for both the physical and unphysical point. In Section 7 the Hopf

bifurcation from the physical point for the Wheeler-Feynman equations is studied using

numerical simulations. In the last section we summarize our results and comment on

future perspectives.

2. The model

We introduce the equations for straight-line motion, by referring to a unit system where

the speed of light is c = 1, the electronic mass is m2 = 1 and the electronic charge is

e2 = −1. The two point particles have charges e1 = 1 and e2 = −1 and masses m1 and

m2, respectively. Assuming particle 2 to be on the left-hand side along the line of motion,

we introduce world-lines parametrized by proper time τk in a reduced Minkowski space

xk(τk) = (tk(τk), xk(τ k)) where k ∈ (1, 2) and xk is the position along the line (with a

negative sign for particle 1, in order to obtain more symmetric equations). Once the

Minkowski velocity is a time-like unit vector, it is convenient to parametrize it by the

velocity-angle φk,
(

dtk
dτk

,
dxk

dτk

)

= (cosh(φk), sinh(φk)). (1)

The electrodynamics of point-charges was derived by Eliezer [4] generalizing Dirac’s

theory [5]. In Eliezer’s theory the particle fields are defined by the most general

solution of Maxwell’s equations, a solution containing retarded and advanced fields

with a constant composition parameter χ. For the special case of collinear motion, the

magnetic field of each particle vanishes along the line of motion and the electric-field

has a simple form with the familiar Coulombian limit (see Ref. [11]). By expressing the

equations of motion [4] using the velocity-angle (1), we find (see Ref. [11]) that

mk
dφk

dτk
− 2

3
χ
d2φk

dτ 2
k

= (1 + χ)
exp(2φ−j )

2r2
kj(−)

+ (1 − χ)
exp(−2φ+

j )

2r2
kj(+)

− εk (2)

where k = 1, 2 and j = 3− k, and εk is the external electric field at position xk. Unlike

the case of 3-dimensional motion, the electric field evaluated along the line of motion

depends only on the retarded and advanced velocities and not on the retarded and

advanced accelerations. This simplification yields delay equations rather than neutral-

delay equations. The presence of the exponential terms exp(2φ−j ) and exp(−2φ+

j ) is

one of the key differences mentioned in the introduction with respect to a Newtonian

model. The electric field εk is assumed to depend linearly on the position (see (5), and

(7) for a more precise definition). This is the minimal assumption which breaks the

translational invariance and thus avoids the onset of secular terms. Finally, Eq. (2) uses

the position of the other particle at an advanced and a retarded position, each defined

by a state-dependent condition rkj(±), as follows. The state-dependent advanced-light-

cone distance between the two particles, rkj(+) is defined by

rkj(+) ≡ t+j − tk = |xk(tk) + xj(t
+

j )|, (3)
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where t+j is the advanced time of particle j and, because of the introduction of a reversed

coordinate for particle 1, the distance is expressed as the sum of the coordinates. The

state-dependent retarded-light-cone distance between the particles, rkj(−) is defined by

rkj(−) ≡ tk − t−j = |xk(tk) + xj(t
−

j )|, (4)

where t−j is the retarded time of particle j and again because of the reversed coordinate

for particle 1, the distance is expressed as the sum of the coordinates. The equations

are referred to as implicitly state-dependent, since the advanced and retarded times t±j
depend on the state of the system xj(t

±

j ) at the advanced/retarded time t±j , and (3)

and (4) must be solved implicitly for each tk to find the corresponding t±j . Implicitly

state-dependent problems are much more difficult to tackle than the more commonly

considered explicitly state dependent problems, where the delayed time t−j would be a

function of the current time tk and current state xj(tk) only.

In the small φk limit, the force in Eq. (2) reduces to the standard Coulombian

attraction (after undoing the reversed-coordinate transformation). More generally, the

term exp(2φ−j ) corresponds to the usual denominator of the Lienard-Wiechert fields [7]

expressed in velocity-angle variables. Because of this exponential, at large velocities

the equation is very different from the Galilei-invariant Coulomb problem with self-

interaction. Because of the complexity of the problem, we shall not study solutions with

very large velocity, even though these would be interesting candidates for identifying

stable time-dependent orbits.

The equations of motion (1-4) formally have two families of fixed points, both with

φ1 = φ2 = 0, and the electric fields having the same value εo ≡ 1/(4r2
o) where ro > 0

and (i) x1 + x2 = 2ro and (ii) x1 + x2 = −2ro. Point (i) violates the assumption that

particle 2 is on the left-hand side and is artificial, since it corresponds to the wrong

sign of both the past and the future velocites in the Lienard-Wiechert field of the other

particle (right-hand side of Eq. (2)). This term is responsible for the only difference

between the dynamics about the two fixed points. In a simplified model containing only

the Coulombian interparticle interaction, these points would be equivalent, so that (i)

and (ii) are called the unphysical and the physical point, respectively.

3. Linear stability analysis

We will study period solutions of the equations of motion (1-4), by finding Hopf

bifurcations from the fixed points. To do this we linearize the equations of motion

about the equilibrium states, and identify parameter values for which the fixed points

are linear centres. Using the evolution parameter t = t1 = t2, and expanding the

cosh(φk) on the right-hand side of Eq. (1) shows that up to O(φ2

k) we have t = τ 1 = τ 2.

We further shift the origin of each particle’s coordinates to that of the fixed point of

interest and define the new coordinates as

xk = ±ro + royk (5)
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where ro > 0, so that the linearization of Eq. (1) yields

φk = roẏk. (6)

For the electrostatic field we assume the linear spatial dependence,

εk = εo(1 + αkyk), (7)

where εo ≡ 1/(4r2
o), which removes the translational invariance from the system, and

the two families of fixed points of the system reduce to two isolated fixed points, (i) the

unphysical point, xk = ro and φk = yk = 0, and (ii) the physical point, xk = −ro and

φk = yk = 0, for both of which the electrostatic force and the interparticle attraction

are in balance.

The linearly varying electric field also removes the exact symmetry of the equations

of motion Eqs (1-4), defined in the case of constant electric fields by a one-parameter

continuous boost symmetry γB ≡ cosh(Γ)

xj → cosh(Γ)xj − sinh(Γ)tj,

tj → cosh(Γ)tj − sinh(Γ)xj, (8)

φj → φj + Γ,

where Γ is a real parameter (which must be the same for both particle transformations).

Symmetry (8) is the Lorentz-invariance of the equations of motion. Since the electric

field is unchanged by this symmetry transformation, changing the electric field is an

action above the symmetry transformation. This symmetry that the equations of motion

are the same in two inertial frame moving at constant speed about each other causes

secular behaviour in numerical simulations with constant electric fields, as the orbit

travels with a small constant velocity representing the symmetry drift, thus we consider

the case where at least one αk 6= 0.

Linearizing the equations of motion (1-4) together with (5-7), the linear correction

to the delay gives only second-order contributions to the tangent dynamics, so that we

can approximate the delay with 2ro, i.e. the delay is constant. Substitution of Eq. (6)

into Eq. (2) yields the linearized equations of motion

−2

3
roχ

...
y k +mkroÿk = (9)

(1 + χ)

8r2
o

[∓yk ∓ yj(t− 2ro) + 2roẏj(t− 2ro)]

+
(1 − χ)

8r2
o

[∓yk ∓ yj(t+ 2ro) − 2roẏj(t+ 2ro)] −
αk

4r2
o

yk,

where k = 1, 2 and j = 3−k. In order to obtain a unified treatment of the general case,

we replace αk with ψk according to the following relation,

(αk ± 1) ≡ −(1 − ψk), k = 1, 2 (10)

Now, we search for harmonic linear modes of Eq. (9) by making the ansatz yk = Re(zk)

where zk = Ak exp(iωt). Here, and throughout, i ≡
√
−1. It is convenient to also
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introduce the parameter σ ≡ 2roω measuring the phase shift during the light-cone

time-lag 2ro. From Eq. (9), we obtain equations for the complex numbers Ak
(

B1 B±

B± B2

)(

A1

A2

)

=

(

0

0

)

(11)

where,

B± ≡ σ sin(σ) ∓ cos(σ) + iχ(σ cos(σ) ± sin(σ)), (12)

Bk ≡
(

1 − ψk +mkroσ
2 − iχσ3

3

)

, k = 1, 2.

Here we consider two cases of Eq. (2): (a) χ 6= 0, including the case χ = 1 which

represents the Dirac theory [5] with retarded fields. For low-velocity initial conditions,

Eq. (2) with χ = 1 presents an exponential runaway instability that forces us to integrate

it backwards [11]. Along a backward integration the delay becomes an advance, which

makes integration impossible. Assuming the orbit to be periodic, we introduce a method

to re-access this retarded information from future data using the periodic property

(we recall that future data is known along the backward integration). (b) χ = 0

which represents the Wheeler-Feynman electrodynamics [8]. In this case the forward

integration needs future data, and we again use the periodic property to read future

data from the interpolated past using a period-T shift. In all cases treated here the

method only works for periodic orbits by reading the future data from the interpolated

past via the period shift. In the following we discuss the two cases separately.

4. The mixed case(a)

We first consider the non time-symmetric case χ 6= 0. Equating the determinant of

Eq. (11) to zero, we obtain one equation for the real part and one for the imaginary

part, respectively. The imaginary part yields

(m1 +m2)roσ
2 = ψ1 + ψ2 + a(σ)σ2, (13)

where a(σ) is defined as

a(σ) =
6(± cos(σ)−σ sin(σ))(± sin(σ)+σ cos(σ)) − 2σ3

σ5
. (14)

Using (13), the real part of the determinant can be rearranged into a quadratic equation

for the ψk variables

θ2 + (m2 −m1)aσ
2θ + C = 0, (15)

where

θ ≡ m2ψ1 −m1ψ2 (16)

and C is defined by

C = (m1+m2)
2

[

−1 − aσ2 + (± cos(σ) − σ sin(σ))2

− χ2(± sin(σ) + σ cos(σ))2 +
χ2σ6

9

]

−m1m2a
2σ4. (17)
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Since equations (13) and (15) are both even in σ, it is sufficient to consider σ = 2roω > 0

in what follows. The corresponding solutions with σ < 0 will simply have reversed

direction of rotation.

The discriminant D of the quadratic Eq. (15) is

D(σ) = 4(m1+m2)
2

[

(± cos(σ) − σ sin(σ))2 +
χ2σ6

9

]

×
[ 9

σ6
(± sin(σ) + σ cos(σ))2 − 1

]

(18)

For the physical fixed point (ii), D(σ) < 0 for all σ > 0 and so there are no real

solutions of Eq. (15), and so no periodic orbits bifurcating from this fixed point. On the

other hand, in the case of the unphysical point (i), D(σ) > 0 for all σ ∈ (0, σ∗) where

σ∗ ≈ 1.494033 solves

9(sin(σ) + σ cos(σ))2 − σ6 = 0 (19)

so there always exists a Hopf bifurcation for any mass ratio in the case of the unphysical

point (i). In principle one can choose an arbitrary χ 6= 0, σ ∈ (0, σ∗) and M ≡ m1 +m2

and find solutions for α from Eq. (15).

In the Dirac case, χ = 1, for fixed-point (i) with α = 0 in the large-M limit, there

exists an asymptotic root of Eqs. (9) that is given by

σ ≃
√

12µ/M, (20)

ro ≃M/(12µ2),

where µ = m1m2/M , and the critical period Tc = 2π/ωc defined by σ = 2ωcro is

Tc =
π√
108

M3/2

µ5/2
. (21)

In the infinite-M limit Eq. (20) predicts an infinite separation and a vanishing oscillation

frequency.

5. Numerical Integration of the Dirac case(a)

We consider the unphysical point (i) in the Dirac case χ = 1, Now choose masses

m1 6= m2 and σ ∈ (0, σ∗), and solve Eq. (15) to find θ. In the case α1 = α2 = α,

Eq. (16) implies that α = −2 + θ/(m2 −m1). Equation (13) can be solved to find ro;

while εo, ωc and Tc follow from εo = 1/(4r2
o), σ = 2roωc and Tc = 2π/ωc. Hence we

determine the bifurcation point from the linearized equations of motion Eq. (7,9,10).

To solve the nonlinear equations of motion Eqs. (1-4), we parametrize the solution

of Eqs. (1-4) by t = t1(τ 1) = t2(τ 2), whereby each proper time is a function of the

common particle time and τ k is a monotonic function of t with derivative defined by

Eq. (1), i.e.,

dτk

dt
=

1

cosh(φk)
. (22)
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Eq. (22), complemented by Eqs. (1–4) and by a suitable portion of the history, defines

a Cauchy problem for a state-dependent delay equation. For low-velocity initial

conditions, Eq. (2) presents an exponential runaway instability that forces us to integrate

it backwards [11]. When integrating backwards, it is necessary to use the future to

construct the past, which is problematic because the algebraic conditions (1) need past

data. However, this difficulty can be overcome along a periodic orbit, by shifting a past

state forward by one period so that it becomes a future state so that along the periodic

motion, Eq. (4) is equivalent to

t−j = t− rkj + T = |xk(t) + xj(t
−

j )|. (23)

Noting that Tc = 4πro/σ > 8ro, and that in the limit of small amplitude periodic orbits

(close to the bifurcation point) rkj is equal to 2ro, Eq. (23) is guaranteed to produce

an advanced argument for such orbits. Should the period and amplitude vary as we

vary other parameters until T < rkj, then (23) would no longer produce an advanced

argument, but this could be remedied by replacing T by nT in (23) for a suitable integer

n, although in practice we did not need to do this for the Dirac problem.

By replacing Eq. (4) with Eq. (23), we obtain a surrogate dynamical system with

an adjustable parameter T . In this way we have a well-posed Cauchy problem with

suitable initial data. In the following we study this surrogate dynamical system defined

by Eqs. (1,2,23) near the critical point. It is easy to verify that if the surrogate system

has a periodic orbit of period T , this is also an orbit of the original physical problem.

The nonlinear equations of motion Eqs. (1-4,22-23) are then integrated numerically

with RADAR5, an integrator for differential-algebraic equations with state-dependent

delay [10], using the just determined parameters Tc and εo while α is taken to be close

to its value at the Hopf bifurcation. We use initial conditions yk = Ak cos(ωt+βk), with

β1 = 0, A1 set equal to some preassigned small value, and A2/A1 and β2 in agreement

with the critical behavior defined by Eq. (11), and ω equal to or slightly shifted with

respect to criticality to correspond to the same period T ≈ Tc set in the surrogate system.

The parameter T in (23) is then the only parameter which is varied during the actual

numerical integration. Every n time units T is adjusted to agree with the numerically

measured period of the oscillation. If the amplitude of the oscillation remains constant,

these adjustments ensure that the period of the resulting solution equals T itself.

Performing these computations we find that solutions for the time reversed

surrogate system rapidly converge to an invariant paraboloid which has the fixed point

as its base. On this surface there is a unique unstable periodic orbit for each α < α∗

(where α∗ is the value of α at the bifurcation), and no other periodic orbits were found.

On the paraboloid, solutions inside the periodic orbit spiral very slowly into the fixed

point, while solutions outside the periodic orbit spiral away. For α > α∗ the invariant

paraboloid persists and is still stable for the time reversed surrogate system, but in this

case there are no periodic orbits on or off the paraboloid, and orbits on the paraboloid

spiral away from the fixed point.

Despite the infinite dimensionality of the phase space, the unstable periodic orbits
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lie on a stable invariant paraboloid of the backward dynamics, and so can be found by

identifying an initial condition leading to a solution of the surrogate system that spirals

in to the fixed point, and another initial condition leading to a solution that spirals out.

Varying the initial condition between these values, using the bisection algorithm, the

periodic orbit is found, and the entire numerical procedure works well.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(x
1
−r

o
)/r

o

(x
2−

r o)/
r o

Figure 1. Orbits with m1 = 1, m2 = 250, ro = 27.946237, α = 0.113 showing the

periodic orbit (thin line) and 10 other spiralling orbits of the time reversed surrogate

system.

As an example, in Fig. 1 we plot a phase portrait with 11 orbits of the time reversed

surrogate system for m1 = 1, m2 = 250, ro = 27.946237. For these parameter values

the linearization with σ = 0.2 indicates a Hopf bifurcation at α∗ = 0.115232 with

the zero amplitude periodic orbit thus created having period Tc = 1755.913842. The

numerically computed trajectories shown in Fig. 1 were computed with α = 0.113 < α∗,

and show a periodic orbit (thin line) whose period is T = 1761.874955. The 10 other

orbits (thick lines) are not periodic, but clearly lie on an invariant surface in the infinite

dimensional flow, which has the form of a paraboloid. This invariant surface is attractive

in the time-reversed surrogate system, and so can be found by taking arbitrary nearby

initial conditions and integrating until the end of the initial transient dynamics as the

solution converges to the paraboloid. Although difficult to see from the figure, the orbits

below the period solution are spiralling towards the fixed point, while the orbit above

is spiralling away. Of course, for non-periodic orbits, Eq. (23) means that the dynamics

of the surrogate system is not equivalent to that of the original state-dependent delay

equations, but nevertheless we expect such an invariant manifold to also exist for the

original system.

Next we consider the evolution of the periodic orbit as the electric field parameter

α is varied. We again consider m1 = 1, m2 = 250 and ro = 27.946237, and then vary

α between the critical value α∗ = 0.1152323 and α∗ − 0.005. In Fig. 2 we see that the

amplitude of the periodic orbit varies proportional to (α∗ −α)1/2 with the amplitude of

the x1 oscillation already growing to approximately 0.36ro (that is 0.18 times the rest
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Figure 2. Bifurcation diagram showing amplitude of periodic orbits with m1 =

1, m2 = 250, ro = 27.946237, α∗ = 0.115232 and Tc = 1755.913842.

Amplitude is measured using the light particle x1 and scaling by ro so Amplitude

= 1

ro

(

maxτ1
{x1(τ1)} − minτ1

{x1(τ1)}
)

. A log-scale is used to show amplitude of the

periodic orbit varies Amplitude ∝ (α∗ − α)1/2.

0.11 0.111 0.112 0.113 0.114 0.115 0.116
1755

1760

1765

1770

α

T

Figure 3. Bifurcation diagram showing period of periodic orbits with m1 = 1,

m2 = 250, ro = 27.946237, α∗ = 0.115232 and critical period Tc = 1755.913842.

separation between the particles) when α = α∗−0.005. In Fig. 3 we see that the period of

the periodic orbit varies linearly but slowly with α, varying by less than one percent over

the same range of values of α. The square-root variation of the amplitude, and linear

variation of the period are characteristic of Hopf bifurcations, and we conclude that a

Hopf bifurcation occurs in the time-reversed surrogate system, and hence in the original

state-dependent DDE. For the time-reversed system, the bifurcation is subcritical since

the fixed point is stable for values of α for which the periodic orbit exists, but unstable

in the parameter regime for which periodic orbits do not exist.

In Fig. 4 we show the evolution of the periodic orbits as α is varied by plotting
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Figure 4. Twenty periodic orbits with m1 = 1, m2 = 250, ro = 27.946237, and

different values of α for each orbit between 0.110232 (the largest orbit) and 0.114982

(the smallest orbit) smaller than the critical value α∗ = 0.1152323.

twenty periodic orbits for different values of α. Away from the critical value α∗, the

orbits have increasing amplitude for the oscillation of the light particle m1 about the

rest value ro, while the heavy particle m2 is virtually at rest, but is perturbed away

from its equilibrium value. This perturbation of the heavy particle from equilibrium is

caused by the periodic motion of the light particle m1, which over one period exerts an

average force on the heavy particle m2 which is greater than if m1 were at rest, effectively

moving the equilibrium point for the heavy particle. For these large amplitude solutions

the periodic orbit found does not enclose the fixed point x1 = x2 = ro and so we are

far from the linear case for which periodic orbits have the form xk = ro + roAk exp(iωt)

and are thus necessary concentric about x1 = x2 = ro. The linearized dynamics, which

treat the delays as constant, and so strictly are only valid in the limit of infinitesimally

small oscillations, do however provide a reasonable approximation to the dynamics of

the full system in the case of orbits of small amplitude.

Similar dynamics can be observed with other mass ratios, though when m2/m1 is

very large, the oscillations of the heavy particle are barely discernable, and in Fig. 5 a

branch of periodic orbits is shown for m1 = 1 and m2 = 1836.

6. The Wheeler-Feynman case (b)

In the case χ = 0 the equation of motion is of mixed-type, i.e.,

mk
dφk

dτk

=
exp(2φ−j )

2r2
kj(−)

+
exp(−2φ+

j )

2r2
kj(+)

− εk. (24)

Equation of motion (24) for particle k uses the other particles’s position and velocity

at the advanced time t+j defined by the state-dependent condition (3) and the other

particles’s position and velocity at the retarded time t−j defined by the state-dependent

condition (4).
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Figure 5. Amplitude (varying quadratically) and Period (varying linearly) of branch

of periodic solutions as α is varied with m1 = 1, m2 = 1836, ro = 204.5541,

εo = 5.9748034× 10−6 and α∗ = 0.1501618.

With (5–7) the fixed points are the same as for the χ 6= 0 case, (i) the unphysical

point, xk = ro and φk = yk = 0, and (ii) the physical point, xk = −ro and φk = yk = 0,

where again 2ro > 0 is the separation at the fixed point. The characteristic equation

Eq. (11) is real for both cases and the determinant is

(∓1 − α1 +m1roσ
2)(∓1 − α2 +m2roσ

2) = (σ sin(σ) ∓ cos(σ))2. (25)

To solve Eq. (25) it is convenient to set α1 = α and α2 = κα, so that κ = α2/α1 when

α1 6= 0. Then Eq. (25) can be written as a quadratic in α

0 = κα2 +
[

±(1 + κ) − (κm1 +m2)roσ
2

]

α +

(1 ∓m1roσ
2)(1 ∓m2roσ

2) − (σ sin(σ) ∓ cos(σ))2 (26)

with discriminant

d(κ, σ) =
[

(1 − κ) ± (κm1 −m2)roσ
2

]2

+ 4κ(σ sin(σ) ∓ cos(σ))2 (27)

Equation (27) illustrates the first qualitative difference of the χ = 0 dynamics from

the χ 6= 0 case considered before. Since d(κ, 0) = (1 + κ)2, for both the physical and

nonphysical points, whenever κ 6= −1 (that is whenever α1 6= −α2) the discriminant

d(κ, σ) > 0 for all small σ and so (26) has two solutions, and the centre-manifold

harmonic oscillation exists in the neighbourhood of both points (i) and (ii). Similarly,

whenever κm1 6= m2 we have d(κ, σ) > 0 for all σ sufficiently large, and again (26) has

two solutions.

Moreover, let Σ = {σ > 0 : (σ sin(σ) ∓ cos(σ)) = 0} and Σ∗ = {σ ∈ Σ :

(1 − κ) ± (κm1 − m2)roσ
2 = 0}, and note that the points of Σ are close to nπ for

large σ. If κm1 6= m2 then Σ∗ contains at most one point which is defined by

roσ
2 =

±(κ− 1)

(κm1 −m2)
.
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This point only exists if the right-hand side is positive, and the resulting σ is contained

in Σ, so generically Σ∗ = ∅, but the parameters can always be deliberately chosen to

make Σ∗ be nonempty. On the other hand, if m1 = m2 and κ = 1, then Σ∗ = Σ and

contains countably many points. Now, for all κ > 0, and all σ > 0 such that σ 6∈ Σ∗, we

have d(κ, σ) > 0 and so harmonic oscillations exist for both points (i) and (ii) for any

positive ratio of α2/α1 and any σ 6∈ Σ∗.

The exceptional set Σ∗ is also very interesting. If σ ∈ Σ∗ then the discriminant

d(κ, σ) = 0 and the quadratic Eq. (26) has exactly one (repeated) root α. Also Eq. (25)

implies that (∓1 − αk + mkroσ
2) = 0 for both k = 1 and k = 2 so that Bk = B± = 0

in Eq. (11), and solutions for Ak are arbitrary. This indicates a possible bifurcation of

higher co-dimension, which we will not study here. When κ > 0 either d(κ, σ) > 0 or

σ ∈ Σ∗, so there are no other cases to consider.

For κ < 0, first consider the case of κ = −1 when α1 = −α2. As noted above,

d(−1, 0) = 0, but we may also compute dσ(κ, 0) = 0 for all κ and

dσσ(−1, 0) = ∓8[Mro ∓ 1 − 2],

so at the unphysical point (i) dσσ(−1, 0) > 0 if Mro < 3, while at the physical point

(ii) dσσ(−1, 0) > 0 if Mro > 1 in which case, again, d(−1, σ) > 0 for all σ sufficiently

small and, as for the cases κ 6= −1, Eq. (26) has two solutions, and the centre-manifold

harmonic oscillation exists in the neighbourhood of both points (i) and (ii). Since for

κ < 0 necessarily κm1 6= m2, in this case there are always solutions of Eq. (26) for

σ sufficiently large. Also when κ < 0 the set Σ∗ = ∅ for the physical point (ii) and

contains at most one point for the unphysical point (i). Nevertheless, it is possible for

d(κ, σ) < 0 for both the physical and nonphysical point, and for d(κ, σ) = 0 for σ 6∈ Σ∗,

when a centre-manifold harmonic oscillation exists, defined by the repeated root of (26),

where since σ 6∈ Σ∗, we expect a different higher co-dimension bifurcation than in the

case σ ∈ Σ∗.

It is interesting to observe that at χ = 0 both points (i) and (ii) have a centre-

manifold, but that point (ii) loses the zero-amplitude harmonic orbit for χ 6= 0. Our

linear stability analysis suggests that the case χ = 0 is exceptional, because then the

determinant of Eq. (11) is real and its vanishing poses a single condition, as opposed

to two conditions for vanishing real and imaginary parts at any χ 6= 0. The fact that

the case χ = 0 accepts a one-parameter family of bounded circular orbits in the 3D

case [12], while no one ever found a solution for the case χ 6= 0, suggests that it is the

exceptional case which is the most interesting. The phenomenon of losing solutions as

χ varies is a bifurcation that we shall not investigate here.

7. Numerical Integration of the Wheeler-Feynman case (b)

In the following we search for small-amplitude periodic oscillations near the physical

point (ii) and at χ = 0. To do this we first choose the masses m1 and m2, the field ratio

κ, and ro. Then choosing σ fixes ω and the period T of the zero amplitude solutions, and
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we solve (26) to find the value of α for the bifurcation. Since (11) is real when χ = 0,

solutions of the linearized equations of motion (9) are then given by yk = Ak cos(ωt)

where the amplitudes Ak are related by

0 = B1A1 +B−A2 (28)

= (1 − α1 +m1roσ
2)A1 + (σ sin(σ) + cos(σ))A2

and the motions of the two particles are either in phase or anti-phase depending on

sign(B1B−). Such a periodic solution of the linearized equations is illustrated in Fig. 6.

−1.15 −1.1 −1.05 −1 −0.95 −0.9 −0.85
−1.2

−1.15

−1.1

−1.05

−1

−0.95

−0.9

−0.85

−0.8

x1/r0

x2
/r

0

scaled linearized solutions in phase space

Figure 6. A Periodic solution of the linearized equations of motion (9) with χ = 0,

m1 = 1, m2 = 2, ro = 103, εo = 2.5 × 10−7, σ = 2.5, κ = 2, α = 6.2502 × 103, and

period T = 5.0265× 103 with A2/A1 = −1.1532.

Next we consider the fully nonlinear equations of motion Eqs. (1,24,3-4), and

parametrize the solution by t = t1(τ 1) = t2(τ 2), whereby each proper time is a function

of the common particle time and τ k is a monotonic function of t with derivative defined

by Eq. (22). There is no exponential runaway of solutions for the χ = 0 Wheeler-

Feynman dynamics, and so Eqs. (1,24,3-4) can be numerically integrated forwards or

backwards in time. Equation (24) results in one advanced and one retarded argument

for each particle, so four shifted arguments in total. In the case of forwards integration

along a periodic orbit the advanced time defined by (3) can be period-shifted to the

past using

t+j = tk + |xk(tk) + xj(t
+

j )| − T. (29)

Since the period of the oscillation at zero amplitude is

T =
2π

ω
=

4πro

σ
, (30)

which is greater than the bifurcation delay time 2ro as long as σ < 2π, Eq. (29) always

gives retarded times for small amplitude orbits when σ < 2π. If Eq. (29) does not result

in a delayed time, one must subtract a higher multiple of T . We refer to Eqs. (1,24,29,4)
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as forward surrogate dynamical system, which now has four delays. As before, if the

surrogate system has a periodic orbit of period T , then this is a periodic orbit of the full

nonlinear equations of motion. Similarly, if integrating backwards in time Eq. (4) must

be replaced by (23), resulting in a backward surrogate dynamical system Eqs. (1,24,3,23)

(with four ‘advances’).

For oscillations of small amplitude

xk = −ro + roAk cos(ωt), (31)

is an approximation for the periodic orbit, and can be used as an initial history to

start the numerical integration, which is again performed with RADAR5 [10]. However,

in contrast to the Dirac case, in the Wheeler-Feynman case of χ = 0 the equation of

motion (2) is reversible even with the non-constant electric field. Therefore, if a periodic

orbit or other invariant set has a stable manifold, it will also have an unstable manifold.

This prevents us from using the numerical approach we applied in the Dirac case, where

we used the attractivity of an invariant manifold to locate the periodic orbits for the

nonlinear dynamics, since such an attractive manifold cannot exist in the Wheeler-

Feynman case; manifolds and orbits are either neutrally-stable or have saddle structure.

We illustrate this by solving the nonlinear equations of motion for the forward and

backward surrogate systems starting from the initial history (31) and using the same

parameters as in the linear example of Fig. 6.
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Relative Motions of m1 vs m2: Unstable Manifold

Figure 7. A solution of the forward surrogate dynamical system with χ = 0, m1 = 1,

m2 = 2, ro = 103, εo = 2.5× 10−7, κ = 2, and α = 6.2502× 103. The periodic solution

of the linearized equation (9) with σ = 2.5, period T = 5.0265×103 and A1 = 0.13901,

A2 = −0.16028 (shown in black) is used as the initial history for the solution of the

nonlinear equation (2) which is plotted progressively darkening shades (of red).

Fig. 7 shows an orbit for the forward surrogate dynamical system with initial

history given by a small amplitude periodic orbit of period T of the linearized equations

and integrated over a time interval of 25T . The solution of the forward surrogate

system is clearly not periodic of period T . Although the two particles oscillate with
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Figure 8. A solution of the backward surrogate dynamical system with χ = 0, m1 = 1,

m2 = 2, ro = 103, εo = 2.5× 10−7, κ = 2, and α = 6.2502× 103. The periodic solution

of the linearized equation (9) with σ = 2.5, period T = 5.0265×103 and A1 = 0.13901,

A2 = −0.16028 (shown in black) is used as the initial history for the solution of the

nonlinear equation (2) which is plotted in progressively darkening shades (of blue).

approximately the predicted frequency, there is a gradual phase shift between the

oscillations. Numerical experiments reveal that decreasing the initial amplitude of the

orbit results in a slower drift, but that the drift cannot be eliminated for non-zero

amplitudes for these parameter values. This suggests that there is a family of periodic

orbits bifurcating from the trivial solution, in a sub or super-critical Hopf bifurcation

for some perturbed parameter values, but because of the lack of stability it is impossible

to isolate this family of periodic solutions with the numerical techniques available.

Nevertheless, the nonlinear orbit seen in Fig. 7 likely gives a good approximation to

the unstable manifold of such a periodic orbit. Fig. 8 is similar, except that it shows an

orbit for the backward surrogate system. This also drifts away from the linear periodic

orbit, but since this drift is backwards in time, returning time to its original direction,

this orbit is approaching the periodic solution of the linearized equations, and so gives

an approximation to the stable manifold. However, the linear periodic orbit is not a

solution of the nonlinear equations, so the nonlinear solution after approaching this orbit

will drift away from it along the orbit plotted in Fig. 7.

Although, the solutions of the forward and backward surrogate systems drift away

from the periodic solution of the linearized equations, unlike the Dirac case, there is

no runaway instability in the Wheeler-Feynman case and the orbits of the surrogate

dynamical system remain bounded for all time. We plot one such orbit in Figure 9 over

a time interval of 600T . The oscillations of the two particles, which start in phase (along

the solid (black) line in the figure) persist over this time interval and return into phase

(the dashed (red) line in the figure). Integrating another 600T time units, the system

returns to the original configuration. This memory of the initial conditions is another

reason why our approach from the previous section of integrating towards the periodic
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Figure 9. A solution (plotted in grey) of the forward surrogate dynamical system with

χ = 0, m1 = 1, m2 = 2, ro = 103, εo = 2.5 × 10−7, κ = 2, and α = 6.2502 × 103. The

periodic solution of the linearized equation (9) with σ = 2.5, period T = 5.0265× 103

and A1 = 0.13901, A2 = −0.16028 (shown in black) is used as the initial history for

the solution of the nonlinear equation (2) which is plotted over a time interval of 600T .

orbit will fail; not only will the periodic orbit have an unstable manifold if it has a

stable manifold, but any error between the initial conditions and the periodic orbit are

retained rather than converging to zero through the computation.

For general values of the parameters, we would like to vary α slightly from the

bifurcation value and find a bifurcating family of periodic orbits for the full nonlinear

equations, but as illustrated above, this approach will not work using RADAR5 because

of the lack of stability of the orbits. The lack of stability would not be a problem if we had

access to a boundary value problem solver that could directly find the periodic orbits of

an implicitly state-dependent advanced-retarded system, but although such numerical

solvers exist for fixed and explicitly state-dependent advanced-retarded systems [13],

there is no such software for implicitly state-dependent problems, such as we consider.

Since it is not possible to start from a linear approximation and use stability to

converge to the periodic orbit of the full nonlinear system, we seek special values of the

parameters for which the full nonlinear system has periodic orbits which correspond to

the periodic orbits of the linearized system, and we find two classes of such solutions.

Fig. 10 shows a periodic orbit of the full nonlinear system Eqs. (1,24,3-4) with the

same masses m1, m2, separation ro and field ratio κ as in the previous example. The only

modification to the previous example is to set σ = π in the linearized equations used to

define the initial history which resulting in different values of α and Tc at the bifurcation

point. Fig. 10 shows 250 periods of the solution of the full nonlinear equations with no

apparent phase drift (compare to the drift seen in Fig. 7 over just 25 periods in the

previous example). There is actually a whole family of such periodic solutions of the

full nonlinear equations which we illustrate in Fig. 11 by showing the motion of particle

1 only (the motion of particle two is the same and in phase) for twenty such periodic
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Figure 10. A periodic solution of period T = 4004.625 of the nonlinear system with

χ = 0, m1 = 1, m2 = 2, ro = 103, εo = 2.5 × 10−7, κ = 2, and α = 9.8696 × 103 for

which the linearized equations have σ = π and Tc = 4000.
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Figure 11. Periodic solutions of the nonlinear system with χ = 0, m1 = 1, m2 = 2,

ro = 103, εo = 2.5 × 10−7, κ = 2, and α = 9.8696 × 103 for which the linearized

equations have σ = π and Tc = 4000, and the full nonlinear equations have periodic

with period greater than 4000, with the period increasing with the amplitude. The

motion of the first particle only is shown, and the smallest orbit shown has period

T = 4000.04628 growing to T = 4018.46 for the largest orbit.

orbits. This figure also shows that the amplitude of the oscillations remains constant.

The numerical integration of the full nonlinear equations works in this case due to an

extra symmetry introduced by the choice of σ = π. In this case the period of the zero

amplitude solutions is T = 4πro/σ = 4ro which is twice the separation distance 2ro,

so the advances and delays are exactly half a period, and fall on the same point in the

periodic orbit for solutions of zero amplitude. For the computation of the full nonlinear

system the period increases from T = 4ro = 4000 for the zero amplitude solutions
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proportional to the square of the amplitude of the solution, with the largest orbit shown

in Fig. 11 having period 4018.46.

In the two examples above, κ is chosen to be equal to the ratio m2/m1, because this

was found to result in motions where both particles oscillate with similar amplitudes.

Other choices of κ lead to the lighter particle having an amplitude of oscillation orders of

magnitude larger than that of the heavier particle. This raises the question of whether

we can choose parameter values which allow one particle to oscillate, while the other

particle remains fixed in place, i.e., the frozen proton orbit. We now show that the

linearized equations admit such solutions, and show numerically that they can persist

for the full nonlinear equations.

Using the notation of (12), and recalling that χ = 0 for the Wheeler-Feynman

case, choosing parameters such that B− = 0, B1 = 0 and B2 6= 0 equation (11) is

satisfied for A2 = 0 and arbitrary values of A1. In the notation of the previous section

B− = 0 and one of Bi = 0 implies that σ ∈ Σ (while Σ∗ is the set of σ such that

B− = B1 = B2 = 0). In numerical experiments we found that these orbits persist for

the full nonlinear equations when the mass ratio m2/m1 and the separation ro are large.

For small separations, or small mass ratios, or when B2 ≈ 0, the heavily particle begins

to oscillate with small but growing amplitude.
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Figure 12. A periodic solution of the full nonlinear system with period T =

4.491608 × 105 and χ = 0, m1 = 1, m2 = 1836, ro = 105, εo = 2.5 × 10−11,

α1 = 7.83097×105 α2 = 7.18825×108 for which the linearized equations have periodic

orbits with particle 2 stationary, and particle 1 performing periodic orbits of the form

(31) about −ro of arbitrary amplitude with σ = 2.798386 and Tc = 4.490578× 105.

In Figure 12 we show such an orbit for the full nonlinear system with m2 = 1836,

ro = 105 and B2 = α2 = (1 + m2roσ
2)/2. The orbit is shown over 25 periods during

which the heavy particle remains stationary to machine precision (the variation in x2

over the whole time integration was ±1.35 × 10−17 from −ro). In Figure 13 we plot

the motion of particle 1 only for the same orbit and 19 others, showing that there is a

family of co-existing periodic orbits of this form. As in the previous example we find
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Figure 13. The motion of particle 1 for 20 periodic solutions of different amplitude

and period for the nonlinear system with χ = 0, m1 = 1, m2 = 1836, ro = 105,

εo = 2.5 × 10−11, α1 = 7.83097 × 105 α2 = 7.18825 × 108 for which the linearized

equations have σ = 2.798386 and Tc = 4.490578×105, and the full nonlinear equations

have a periodic orbits whose period increases with the amplitude of the solution (for

the orbits shown T varies between 4.490619× 105 and 4.507037× 105).

that the period of the nonlinear solutions increases from the critical period Tc at zero

amplitude, proportional to the square of the amplitude.

8. Conclusions and perspectives

In this paper, we have studied the electromagnetic two-body problem without

introducing any approximation, i.e. keeping the state-dependent character of the

interactions. By using a surrogate dynamical system, making use of the periodicity to

convert advances to delays or vice versa, and in the case of the Dirac model integrating

backwards in time, and using appropriate software [10], we are able to determine periodic

solutions for the equations of motion of two particles moving along the same straight-

line. This setup, besides providing a testbed for the algorithms to handle equations with

state-dependent delay, revealed some of the subtleties of the Lorentz-Dirac equations,

confirming that qualitative differences arise when both particle masses are finite. For

the Dirac case we showed that no bifurcation can occur at the physical fixed point. For

the unphysical point we found a bifurcating orbit of the Dirac-like case, which served

as an example of state-dependent delay dynamics with electromagnetic-like difficulties.

We determined a subcritical Hopf bifurcation for the surrogate equations of motion

and thus for the Dirac-like equations near the unphysical point. The linear stability

analysis also guided the search for periodic orbits for the Wheeler-Feynman case, and we

found several interesting families of periodic orbits of physical interest. The bifurcation

structure of the fixed point in the Wheeler-Feynman case could not be accessed because

of the time-reversibility of the system. The frozen-particle orbit could be expected in
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this setup given the linear dependence of the electrostatic external field at each particle.

In a three-dimensional setup the external force is not needed for a bounded orbit, as

the attraction can provide the centripetal force for rotation. The analogue of a frozen-

particle orbit for a three-dimensional case without external field should be interesting.

Given the peculiarity of the 1D case, it would certainly be interesting to pass to the

more realistic and physical case of a 2D/3D setup. A linearized version of such a case

is considered in [15]. Our method might be generalizable to find periodic orbits of

electromagnetic motion in three spatial dimensions, but Unfortunately, apart from the

one-dimensional motion, the Wheeler-Feynman equations are neutral-delay equations.

For such equations solution derivatives can be discontinuous and there may be solution

termination [16], while periodic orbits with a discontinuous acceleration at breaking

points could exist [14]. Furthermore, an even less intuitive two-body dynamics could

be found for larger velocities (close to the speed of light) [14], but in order to simulate

these, it would be necessary to handle the stiffness of the electromagnetic equations

of motion. The bifurcation analysis of the Wheeler-Feynman case, as well as a proper

determination of the frozen proton orbit, await the construction of a boundary-value

problem solver for implicitly state-dependent problems.
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