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Abstract. We introduce a phase space error control, which is a generalisation of the
error control first proposed in [8]. Variable time-stepping algorithms for initial value ordinary
differential equations are traditionally designed to solve a problem for a fixed initial condition
and over a finite time. It can be shown that these algorithms may perform poorly for long time
computations which pass through a small neighbourhood of a fixed point. In this regime there
are orbits that are bounded in space but unbounded in time, and the classical error-per-step
or error-per-unit-step philosophy may be improved upon. A new error criterion is introduced
that essentially bounds the truncation error at each step by a fraction of the solution arc length
over the corresponding time interval. This new control can be incorporated within a standard
algorithm as an additional constraint at negligible additional computational cost. The new
criterion is shown to be admissible, in the sense that it can always be satisfied with non-zero
step-sizes. It is shown that this new criterion has a positive effect on the linear stability and
dynamical properties, and hence improves behaviour in the neighbourhood of stable fixed points
and saddle points. Furthermore spurious fixed points are prevented. Implementation details
and numerical results are given.
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1 Introduction

We are concerned with variable time-stepping methods for dynamical systems defined by au-
tonomous initial value ordinary differential equations (ODEs)

yt = f(y), y(0) = y0 ∈ IRm, (1.1)

where f : IRm → IRm is assumed to be Lipschitz continuous.

In [8] a new type of phase space based error control was proposed. We will introduce a
generalisation of that phase space error control and analyse its dynamical properties, and also
address a number of implementation issues not previously fully resolved.

In a dynamical systems context an accurate solution of (1.1) over a given finite time-interval
with a particular y0 is often of little relevance; rather, it is the global behaviour of the system
for general values of y0 in the limit as t→∞ that is of interest.

When a fixed time-stepping numerical method is used to approximate the flow of (1.1) on or
near to a chaotic attractor the error between the numerical approximation and exact solution
grows exponentially in time. This leads us to question the meaningfulness of the numerical
solution in the limit as t → ∞. This issue has now been studied in detail, and the approach
of considering the numerical solution as a discrete dynamical system in its own right, and then

†Centre for Mathematical Analysis and its Applications, School of Mathematical Sciences, University of Sussex,
Brighton, BN1 9QH, UK. Supported by EPSRC Grant No. GR/M06925.

‡A.R. Humphries is grateful to Universidade de Aveiro, Portugal for their hospitality.



2 A.R. Humphries and N. Christodoulou

comparing the dynamics of this system with the dynamics of (1.1), has been particularly fruitful
(see [13] and the references therein).

It is widely accepted that to be efficient an ODE algorithm must be adaptive; that is, the
step-size must be varied according to some error measure. In contrast to the fixed step-size
case, a dynamical systems oriented theory for variable step-size algorithms is far from complete.
Contributions in this area include [3, 5, 6] on behaviour near stable equilibria, [7, 12] on systems
with particular nonlinear structures, and [1] on spurious fixed points.

To motivate our work, we mention three areas in which typical adaptive ODE algorithms
perform badly. The first is behaviour around a stable fixed point. Hall [5] showed that typical
methods fail to capture the correct dynamics in this very simple and important scenario. An
illustration of this behaviour was given in [8]. A second area where poor behaviour can arise
was identified in [1], where it was shown that almost all adaptive explicit Runge-Kutta methods
admit stable spurious fixed points for arbitrarily small tolerances.

The third example of poor performance of a typical adaptive ODE algorithm, and perhaps
the most important in a dynamical systems context, is near to saddle points. In a chaotic
attractor it is often the unstable manifolds of the fixed points which organise the flow on the
attractor. The numerical solution will thus only be give a good approximation to the flow on
the attractor if it models the unstable manifolds well. But to do this it must produce good
approximations to the local unstable manifolds. It was shown in [8], and is illustrated again
below in Figure 3 that the typical adaptive ODE algorithm fails to do this. Trajectories of (1.1)
which approach a saddle point close to the stable manifold and should pass close to the fixed
point before exiting close to the unstable manifold, can result in numerical trajectories which
do not pass close to the fixed point and unstable manifold, or which oscillate about the unstable
manifold. In this case, we cannot be confident that the numerical solution is giving a good
approximation to the attractor or the dynamics on it.

To tackle these issues we introduce a new error control, the principal component of which
is to demand that the numerically generated solution {yn}∞n=0 satisfies the phase space θ (PSθ)
constraint

‖yn+1 − yn −∆tn[(1− θ)f(yn) + θf(yn+1)]‖ 6 ϕ∆tn‖(1− θ)f(yn) + θf(yn+1)‖, (1.2)

at every step, where ϕ ∈ (0, 1) is a user defined parameter akin to a tolerance, and θ ∈ [0, 1] is
also a parameter to be chosen. This is a generalisation of the PS error control introduced in [8],
which corresponded to (1.2) with θ = 1/2. Although the constraint is suitable for application to
any numerical method, we will restrict attention in this paper to embedded Runge-Kutta pairs.

We will motivate this error control in Section 2.2, but let us immediately give some numerical
examples of a typical adaptive ODE algorithm displaying poor behaviour as outlined above, and
how this is remedied by the addition of the PSθ constraint.

First consider the RK1(2) and DOPRI5(4) methods (defined in Section 2) applied to (1.1)
with

f(y) =

[
−5 0
0 −1

] [
y1

y2

]
, (1.3)

and y(0) = [1, 10−4]T . A typical adaptive algorithm (as defined in Section 2) produces the
dynamics observed in Figure 1.

For the RK1(2) method the numerical solution gives a persistent spurious oscillation, whilst
the DOPRI5(4) method converges to a spurious fixed point. Although in both cases the final so-
lution is order of the tolerance from the fixed point, the spurious behaviour persists for arbitrary
small tolerances, and it is not possible to force the solution to converge to the fixed point.

If we now apply the RK1(2) method with PSθ error control we obtain the numerical solution
in Figure 2(i), where we see that the numerical solution converges to the true fixed point. In
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Figure 1: Numerical solutions of a typical adaptive algorithm near a stable fixed point for (i)
RK1(2), (ii) DOPRI5(4).

Figure 2(ii) we show the step-sizes used by the two algorithms. The typical adaptive algorithm
has many step-size rejections, whilst the PSθ algorithm has no rejections and quickly converges
to a constant value. Similar behaviour is seen for the DOPRI5(4) method.
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Figure 2: (i) Numerical solution using RK1(2) with PSθ error control around a stable fixed
point. (ii) Step-sizes used by the typical and PSθ augmented algorithms.

Now, we apply the RK2(3) and Fehlberg4(5) methods to (1.1) with

f(y) =

[
−1 0
0 1

] [
y1

y2

]
, (1.4)

so that the origin is a saddle point, and take y(0) = [0.99, 10−10]T ; very close to the stable
manifold.

In one case the numerical solution has a spurious oscillation about the unstable manifold, and
although this oscillation decays as the solution moves away from the fixed point, the numerical
solution can ultimately end up on either side of the unstable manifold depending on the exact
initial condition; thus the property of the unstable manifold of the fixed point acting as a
separatrix is lost by the numerical solution. In the other example the numerical solution does
not pass as close to the fixed point or the local unstable manifold as it should, and there is also
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Figure 3: Numerical solutions of a typical adaptive algorithm near a saddle point for (i) RK2(3),
(ii) Fehlberg4(5).

a significant phase difference between the exact and numerical solutions. As in the previous
example this behaviour persists for arbitrary small tolerances.

If we now apply the RK2(3) method with PSθ error control we obtain the numerical solution
in Figure 4(i), where we see that the numerical solution follows the exact solution very closely.
In Figure 4(ii) we show the step-sizes used by the two algorithms. The PSθ algorithm quickly
settles to a constant step-size whilst the solution is near the local stable manifold then adjusts
to a different constant step-size whilst the solution is near to the local unstable manifold. In
contrast the poorer dynamical behaviour of the typical adaptive algorithm results from the
large step-sizes that it uses whilst the solution is near to the origin. Note that ultimately as y2

becomes large the local error estimate determines and reduces the step-size in both algorithms;
the different times at which it does so reveals the large phase shift introduced by the typical
adaptive algorithm. Similar behaviour is seen for the Fehlberg4(5) method.
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Figure 4: (i) Numerical solution using RK2(3) with PSθ error control around a saddle point.
(ii) Step-sizes used by the typical and PSθ augmented algorithms.

In the next section we outline the traditional error control approach, and in Section 2.2 we
motivate the PSθ error control.

In Section 3 we show that the PSθ error condition (1.2) is admissible in the sense that it can
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always be satisfied with step-sizes bounded away from zero. In Section 4 we briefly show that
the PSθ error control prevents spuriosity.

In Section 5 we study the linear stability properties of PSθ error control in detail. In [8] it
was shown that with θ = 1/2 on linear scalar problems the numerical solution displays decay
or growth in modulus in accordance with the exact solution. Whilst this is clearly a desirable
dynamical property, it does not resolve the problem of oscillatory solutions seen above. To
prevent oscillations we require additionally that the linear stability function of the Runge-Kutta
method R(λ∆tn) > 0 for any acceptable step-size ∆tn. Only for certain methods is this achieved
with θ = 1/2, but we show that by increasing the value of θ this can be achieved for any method.
We also consider the generalisation to the complex case.

In Section 6 we consider implementation details, which are similar to the PS error control of
[8], with the exception of step-size selection. In particular we show how the PSθ error control can
be incorporated within a typical adaptive ODE algorithm as an additional constraint. Step-size
selection is non-trivial for phase space error controls as they are not based on a simple error
estimate, and the step-size selection scheme used in [8] often leads to highly irregular step-size
sequences for solutions passing close to fixed points of non-scalar problems. We show why this
arises and introduce a new step-size selection scheme which leads to stable step-sizes (with fast
linear convergence to a constant value) near fixed points.

In Section 7 we give fuller details of the numerical simulations presented above, and present
additional numerical simulations which illustrate and confirm our analysis, as regards the dy-
namics of the numerical solution and the step-size sequences near to fixed points. Although in
principal the PSθ error control (1.2) can be applied with arbitrary norm, we note that in practice
the 2-norm should be preferred to the ∞-norm.

In summary, we have introduced an error control motivated from a geometrical, or phase
space, viewpoint. The new control does not influence the numerical solution in most regions of
phase space, but improves the performance near fixed points. More precisely, the new control
is designed to positively affect the linear stability properties around true fixed points. This
enhancement is particularly relevant when the numerical solution is to be driven to a stable fixed
point, and more generally when computations take place around (stable or unstable) invariant
manifolds. The new control is also proved to prevent spurious fixed points that might otherwise
be allowed by the adaptive algorithm.

The PSθ control analysed here was motivated by a residual test based on the theta method.
There are many other geometrically-based controls that could be considered, and analysing
the benefits of such controls is clearly of interest. Moreover, we hope to have illustrated that
traditional error control algorithms are fundamentally tied to the finite-time/fixed initial value
paradigm, and that other approaches can be fruitful for adaptive, long time simulations.

2 Embedded Runge-Kutta Formulae and Error Control

Most of the ideas in this work apply to general variable step-size algorithms. However to state
precise results we focus on explicit embedded Runge-Kutta methods. We now describe the main
details of a typical adaptive algorithm of the type found in numerical software libraries, and for
which we have already presented numerical solutions in the introduction. Further details can be
found, for example, in [4, 11].

An embedded Runge-Kutta pair is defined by

Yi = yn +∆tn

i−1∑

j=1

aijf(Yj), 1 6 i 6 s. (2.1)
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yn+1 = yn +∆tn

s∑

i=1

bif(Yi), (2.2)

ŷn+1 = yn +∆tn

s∑

i=1

b̂if(Yi), (2.3)

where ∆tn is the step-size such that ∆tn := tn+1 − tn and tn =
∑n−1

j=0 ∆tn. In equation (2.2),
yn+1 gives an approximation to the solution y(tn+1) of (1.1), whereas ŷn+1 is the result of a
different Runge-Kutta formula applied at yn and is used only for step-size control.

The coefficients of the formula pair {aij , bi, b̂i}, for 1 6 i 6 s and 1 6 j 6 i − 1, define a
particular method, which is usually represented using the Butcher tableau

A

b

b̂

.

The simple RK1(2) method

0 0
1
2 0

1 0
0 1

, (2.4)

corresponding to Euler’s method with second order error control is a useful test method. We
will also use the RK2(3) method (also known as Fehlberg2(3))

0 0 0
1 0 0
1
4

1
4 0

1
2

1
2 0

1
6

1
6

2
3

, (2.5)

and the RK2(3)B, Fehlberg4(5), DOPRI5(4) and DOPRI8(7) methods the parameters of which
are all stated in [4].

Equations (2.1)-(2.3) are denoted by RKp(q), where p is the order of the method using Yi and
yn+1, and q is the order of the method using Yi and ŷn+1. The order of the secondary formula
ŷn+1, may be higher or lower than that of the main formula yn+1. If p > q, then the method
is said to be in extrapolation mode, whereas if p < q, then it is said to be in non-extrapolation
mode. Thus Fehlberg4(5) is in non-extrapolation mode, and if implemented in extrapolation
mode would be denoted Fehlberg5(4).

2.1 Standard Error Control

In typical local error control the difference between the solutions yn, ŷn, yields an estimate of
the local error which can be used for step-size control. This is usually given by

E(yn,∆tn) = ∆tr−1
n ‖yn+1 − ŷn+1‖, (2.6)

with either r = 1 (Error-Per-Step (EPS)) or r = 0 (Error-Per-Unit-Step (EPUS)). This formula
is useful both to control the local error and for time-step selection. An approximation yn+1 is
regarded as acceptable if

E(yn,∆tn) 6 τ, (2.7)
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where τ > 0 is some user-defined tolerance.

The constraint (2.7) must be coupled to a step-size selection mechanism. The theory that
we develop will be largely independent of this mechanism; thus we will not consider it in detail,
but merely note that it is usually based on the formula

∆tn+1 = γ

(
τ

E(yn,∆tn)

)1/q̃

∆tn, (2.8)

where γ ∈ (0, 1) is a safety factor and q̃ is the largest integer such that E(yn,∆tn) = O(∆tq̃n); so
q̃ = min(p, q) + 1, and thus with q = p+ 1 (non-extrapolation mode) q̃ = q and with p = q + 1
(extrapolation mode) q̃ = p.

2.2 Phase Space Error Control

In [8], a new error control, (PS error control), was introduced such that the local error is bounded
at each step by an approximation to a fraction of the solution arc-length of the exact solution
of (1.1) over the corresponding time interval. This error control can be added into the standard
adaptive algorithm as an additional constraint without any significant extra computational cost.
It is shown that it has positive effect in a neighbourhood of stable fixed points and furthermore
spurious fixed points and period two solutions are prevented.

To bound the local error at each step as a fraction of the solution arc-length the step-size
control (2.7) could be augmented by the additional constraint

‖ŷn+1 − yn+1‖ 6 ϕ‖ŷn+1 − yn‖,

where ‖ŷn+1 − yn+1‖ is an error estimate, ‖ŷn+1 − yn‖ approximates the solution arc-length,
and ϕ ∈ (0, 1) a user defined parameter specifies the allowable error per step as a fraction of
solution arc length. However, it is difficult to analyse this error control since it contains two
Runge-Kutta methods, and in practice any analysis would have to be repeated for each pair of
methods. Thus, since this error control does not force closeness in some power of the step-size
but in an O(1) sense, ŷn+1 maybe replaced by some other Runge-Kutta formula chosen with
respect to linear stability or any other properties. We replace ŷn+1 with

yn +∆tn[(1− θ)f(yn) + θf(yn+1)] (2.9)

to obtain the PSθ error control (1.2);

‖yn+1 − yn −∆tn[(1− θ)f(yn) + θf(yn+1)]‖ 6 ϕ∆tn‖(1− θ)f(yn) + θf(yn+1)‖.

This is a generalisation of the PS control of [8] which corresponds to (1.2) with θ = 1/2, and we
refer to [8] for further justification/motivation of this error control.

Finally in this section we note the similarity of (2.9) and to the theta method

yn+1 = yn +∆tn[(1− θ)f(yn) + θf(yn+1)]. (2.10)

The crucial difference is that when (2.9) is inserted into (1.2) the f(yn+1) is calculated using the
order p Runge-Kutta method from the embedded pair, not the theta method (2.10). Nevertheless
setting ϕ = 0 in (1.2) would force the numerical solution to be equivalent to that of the theta
method, and we will see below that dynamical properties of the theta method are still inherited
by the adaptive Runge-Kutta method when ϕ > 0. We emphasise that (1.2) is a geometric
requirement unrelated to order, and as such can be applied to a RKp(q) method for arbitrary p
and q.
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3 Admissibility of PSθ Error Control

In this section we demonstrate that the PSθ error control (1.2) is admissible when applied to
(2.1)-(2.2), in the sense that we can find an infinite solution sequence {yn}∞n=0 such that the error
control (1.2) is satisfied at every step. Moreover we show that for this solution sequence it is
not possible to have both {∆tn}∞n=0 and {yn}∞n=0 bounded; hence we avoid circumstances where
{yn}∞n=0 remains bounded but the numerical solution does not progress beyond some finite time
interval.

The term admissible was introduced in [12], where under structural assumptions on f it was
proved that the infinite sequence {yn}∞n=0 is bounded with

∑∞
n=0 ∆tn unbounded for particular

Runge-Kutta methods. In this paper will not make any structural assumptions on f , hence will
be only able to show that either {yn}∞n=0 or

∑∞
n=0 ∆tn is unbounded.

We require some notation. Let

A = max
i

s∑

j=1

|aij | and B =
s∑

i=1

|bi|.

Note that for consistency of the Runge-Kutta method we require B > 1. We also require the
following lemma.

Lemma 3.1 Suppose f is Lipschitz on B ⊆ IRm with a Lipschitz constant L, yn ∈ B and
∆tn < 1/(L(A+ θB)). Then any solution of the Runge-Kutta method (2.1)-(2.2) which satisfies
Yi ∈ B for all i also satisfies

‖f(Yi)− θf(yn+1)− (1− θ)f(yn)‖

6

[
L(A + θB)∆tn

1− L(A + θB)∆tn

]
‖θf(yn+1) + (1− θ)f(yn)‖ ∀i = 1, . . . , s. (3.1)

Proof. By using the triangle inequality and the Lipschitz continuity we obtain

‖f(Yi)− θf(yn+1)− (1− θ)f(yn)‖ 6 L(1− θ)‖Yi − yn‖+ Lθ‖Yi − yn+1‖

6 Lθ∆tn‖
s∑

j=1

bjf(Yj)‖+ L∆tn‖
s∑

j=1

aijf(Yj)‖

6 L∆tn(A + θB)µ, (3.2)

where µ = maxi ‖f(Yi)‖. Now using the triangle inequality and (3.2)

‖f(Yi)‖ 6 ‖f(Yi)− θf(yn+1)− (1− θ)f(yn)‖+ ‖θf(yn+1) + (1− θ)f(yn)‖
6 L∆tn(A + θB)µ+ ‖θf(yn+1) + (1− θ)f(yn)‖.

Thus in particular

µ 6 L∆tn(A + θB)µ+ ‖θf(yn+1) + (1− θ)f(yn)‖,

and provided ∆tn < 1/(L(A + θB)) this implies that

µ 6
1

1− L(A + θB)∆tn
‖θf(yn+1) + (1− θ)f(yn)‖.

Hence result follows from (3.2). 2

We now prove a result for the case where f is globally Lipschitz, and then consider the more
general case of f locally Lipschitz. (Recall that f is said to be locally Lipschitz if f satisfies a
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Lipschitz condition on every bounded subset B ⊂ IRm; where the Lipschitz constant may depend
upon B, [9, 13].) We do this because the essence of the proofs of the two results is the same,
but the globally Lipschitz case is easier and clearer to follow since it does not require some
technicalities that arise in the locally Lipschitz case.

Theorem 3.2 Let f : IRm → IRm be globally Lipschitz. Then the solution sequence of the ERK
formula (2.1)-(2.2) satisfies the PSθ error control (1.2), for any θ ∈ [0, 1], at every step if

∆tn 6
ϕ

L(A + θB)(B + ϕ)
. (3.3)

Proof. We have

‖yn+1 − yn −∆tn[θf(yn+1) + (1− θ)f(yn)]‖ = ∆tn‖
s∑

i=1

bi(f(Yi)− θf(yn+1)− (1− θ)f(yn))‖

6 ∆tnB max
16i6s

‖f(Yi)− θf(yn+1)− (1− θ)f(yn)‖.

However, since ϕ ∈ (0, 1) and by consistency B > 1, (3.3) implies that

∆tn <
1

L(A + θB)
.

Hence Lemma 3.1 implies that

‖yn+1 − yn −∆tn[θf(yn+1) + (1− θ)f(yn)]‖

6 ∆tn

[
L(A + θB)B∆tn

1− L(A + θB)∆tn

]
‖θf(yn+1) + (1− θ)f(yn)‖.

Now from (3.3) we obtain

ϕ >
L(A + θB)B∆tn

1− L(A + θB)∆tn
.

Thus the theta error control (1.2) holds, as required. 2

The above theorem shows that when f is globally Lipschitz, for any yn we can find ∆tn
and hence yn+1 such that the PSθ error control (1.2) is satisfied. Thus we can always find a
solution sequence {yn}∞n=0, when f is globally Lipschitz. Moreover, (3.3) shows that we can
choose the solution sequence so that {∆tn}∞n=0 is uniformly bounded away from zero, and hence
that

∑∞
n=0 ∆tn is unbounded.

We now consider the case where f is locally Lipschitz. We require the following lemma.

Lemma 3.3 Suppose f is Lipschitz with Lipschitz constant L on N (B, ε), where B ⊂ IRm, ε > 0
and

N (B, ε) =
{
x ∈ IRm : dist(x,B) < ε

}
, (3.4)

and let
M = sup

y∈N (B,ε)
‖f(y)‖ <∞. (3.5)

If

∆tn < min

(
ε

AM ,
1

LA

)
(3.6)

then for any yn ∈ B the unique solution of (2.1)-(2.2) satisfies

Yi ∈ B(yn, ε) ⊂ N (B, ε) ∀i = 1, . . . , s,

where
B(yn, ε) =

{
x ∈ IRm : ‖x− yn‖ < ε

}
.
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Proof. See Lemma 4.2.4 in [8]. 2

Theorem 3.4 Let f : IRm → IRm be locally Lipschitz. Then for any bounded set B and any
yn ∈ B ⊂ IRm there exists ∆̂t = ∆̂t(B) > 0 such that yn+1 in the explicit Runge-Kutta formula

(2.1)-(2.2) satisfies the PSθ condition (1.2) for all ∆tn ∈ (0, ∆̂t(B)), for any θ ∈ [0, 1].

Proof. Choose ε > 0 and letN (B, ε) andM be defined by equations (3.4) and (3.5) respectively,
and let L be a Lipschitz constant for f on N (B, ε). Define

∆̂t = min

(
ε

AM ,
ϕ

L(A + θB)(B + ϕ)
,
ε

BM

)
.

Since ϕ ∈ (0, 1) and B > 1 then

ϕ

L(A + θB)(B + ϕ)
<

1

LA
.

Hence Lemma 3.3 shows that Yi ∈ B(yn, ε) for all i, and since ∆tn < ε/(BM) we also conclude
that yn+1 ∈ B(yn, ε).

Now follow the proof of Theorem 3.2 applying (3.1) from Lemma 3.1 with B = B(yn, ε) to
derive the result. 2

4 Prevention of Spuriosity

We show that the PSθ error control (1.2) does not allow the numerical solution to have spurious
fixed points. Moreover when θ = 1/2 it does not allow period two solutions. Note that the
following result is independent of the method used to generate the solution sequence {yn}∞n=0 or
the step-size sequence {∆tn}∞n=0.

Theorem 4.1 An algorithm that satisfies the PSθ control (1.2) for any θ ∈ [0, 1] does not allow
spurious fixed points. Moreover if θ = 1/2 the algorithm does not allow period two solutions.

Proof. If yn+1 = yn = y∗ in (1.2) then

(1− ϕ)∆tn‖f(y∗)‖ 6 0. (4.1)

from which it follows that f(y∗) = 0 and hence that the method does not admit spurious fixed
points.

If θ = 1/2 then the method reduces to the PS control and the result follows from Theorem
5.1 of [8]. 2

Although the possibility of spurious period two solutions cannot be eliminated entirely when
θ 6= 1/2 we will show in the next section that they can be prevented near to fixed points of
linear problems for θ 6= 1/2, and so should not arise near to hyperbolic fixed points of nonlinear
problems.
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5 Linear Stability Analysis

Consider the explicit Runge-Kutta method (2.1)-(2.3) applied to the linear scalar test problem

yt = λy, y(0) = y0 ∈ IR, (5.1)

where either λ ∈ IR or λ ∈ C. Then the numerical solution evolves according to

yn+1 = R(zn)yn, (5.2)

where zn = λ∆tn with ∆tn determined by the particular time-stepping strategy in use, and R(·)
is the linear stability function of the method, which for an explicit s-stage method is given by

R(z) =
s∑

i=0

ciz
i, (5.3)

where by consistency c0 = c1 = 1. Recall also that the linear stability region, S, of a Runge-
Kutta method is given by S = {z ∈ C : |R(z)| 6 1}.

In the next two sections we investigate the behaviour of adaptive explicit Runge-Kutta
methods under PSθ error control (1.2) when applied to this test problem for λ ∈ IR and λ ∈ C,
respectively. These problems are relevant following the argument in [8] that in a general a single
real or complex conjugate pair of eigenvalues will dominate the dynamical behaviour near to the
stable and unstable manifolds of a fixed point.

Note that with (5.2) the PSθ condition (1.2) becomes

∣∣∣R(zn)− 1− zn[θR(zn) + (1− θ)]
∣∣∣ 6 ϕ

∣∣∣zn[θR(zn) + (1− θ)]
∣∣∣. (5.4)

5.1 Real λ

The following lemma will be useful.

Lemma 5.1 Suppose the adaptive ERK method (2.1)-(2.2) is applied to the linear scalar test
problem (5.1) with λ ∈ IR, and suppose that the PSθ error control (1.2) is satisfied with θ ∈ [0, 1].
Let

p = R(zn)− 1, (5.5)

q = −zn[θR(zn) + (1− θ)]. (5.6)

Then pq < 0, and furthermore if p < 0 then

q >
1

1 + ϕ
[1−R(zn)]. (5.7)

Proof. If pq > 0 then p and q have the same sign. Therefore

|R(zn)− 1− zn[θR(zn) + (1− θ)]| = |R(zn)− 1|+ |zn[θR(zn) + (1− θ)]|
> ϕ|zn[θR(zn) + (1− θ)]|

which contradicts (5.4). Thus pq < 0.
Now assume that p < 0 (equivalently R(zn) < 1) and that

0 < q <
1

1 + ϕ
(1−R(zn)). (5.8)
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Then
|R(zn)− 1− zn[θR(zn) + (1− θ)]| > (1−R(zn))− |q| >

ϕ

1 + ϕ
(1−R(zn)), (5.9)

by (5.8). But (5.8) also implies that

1−R(zn) > (1 + ϕ)
∣∣∣zn[θR(zn) + (1− θ)]

∣∣∣,

and combining this with (5.9) we obtain

∣∣∣R(zn)− 1− zn[θR(zn) + (1− θ)]
∣∣∣ > ϕ

∣∣∣zn[θR(zn) + (1− θ)]
∣∣∣,

which contradicts the PSθ error control (5.4), and hence establishes (5.7). 2

In the following theorem we show that the PSθ error control (1.2) preserves the stability of
(5.1), in the sense that with suitable parameters |R(zn)| < 1 when λ < 0 and |R(zn)| > 1 when
λ > 0.

Theorem 5.2 Suppose the adaptive ERK method (2.1)-(2.2) is applied to the linear scalar test
problem (5.1) with λ ∈ IR, subject to the PSθ error control (1.2) with θ ∈ [0, 1] and ϕ ∈ (0, 1).

(a) If λ < 0 then

(I) for θ ∈ (0, 1/2), R(zn) ∈ (−(1 − θ)/θ, 1) for all ϕ ∈ (0, 1). Moreover let L < 0 be
such that R(z) 6∈ [−(1− θ)/θ,−1] for all z 6 L. Then |R(zn)| < 1

(i) for all ϕ ∈ (0,−1− 2
L(1−2θ)) if θ ∈ (1

2 + 1
L ,

1
2 + 1

2L),

(ii) for all ϕ ∈ (0, 1) if θ ∈ [ 12 + 1
2L ,

1
2),

(II) for θ ∈ [1/2, 1], |R(zn)| < 1 for all ϕ ∈ (0, 1).

(b) If λ > 0 then |R(zn)| > 1

(i) for all ϕ ∈ (0, 1) if θ ∈ [0, 1/2],

(ii) for all ϕ ∈ (0, 1) and all θ ∈ [0, 1] ifM 6 1/2,

(iii) for all ϕ ∈ (0, 1) if θ ∈ [0, 1/(2M)], and 1/2 <M < 1,

(iv) for all ϕ ∈ (0,−1 + 1/(Mθ)) if θ ∈ (1/2, 1], and 1/2 6M 6 1,

(v) for all ϕ ∈ (0,−1 + 1/(Mθ)) if θ ∈ (1/2, 1/M], and 1 <M < 2,

whereM is the smallest number such that |R(z)| > 1 for all z >M.

Proof. (a) Consider λ < 0 and suppose that |R(zn)| > 1.
If R(zn) > 1 then by inspection p, q have the same sign, since zn < 0. But by Lemma 5.1

this cannot occur.
Now, if R(zn) 6 −1 then p 6 −2. If also θ ∈ [1/2, 1], then q 6 −zn(1− 2θ) 6 0 since zn < 0

and again we get a contradiction by Lemma 5.1.
It only remains to consider the case where R(zn) 6 −1, θ ∈ (0, 1/2) and hence by Lemma 5.1

q >
1

1 + ϕ
[1−R(zn)].

But using (5.6) and rearranging we obtain

R(zn) >
1 + zn(1− θ)(1 + ϕ)

1− znθ(1 + ϕ)
= −1− θ

θ
+

1

θ(1− znθ(1 + ϕ))
> −1− θ

θ
.
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But R(zn) 6 −1 by assumption. So to avoid a contradiction we require

−1 >
1 + zn(1− θ)(1 + ϕ)

1− znθ(1 + ϕ)
.

Rearranging this, and also noting that zn < 0 we obtain

zn 6 − 2

(1 + ϕ)(1− 2θ)
< 0.

It follows from (5.3) that for an explicit consistent method |R(z)| → ∞ as |z| → ∞. Thus
there exists L < 0 such that R(z) 6∈ [−(1 − θ)/θ,−1] for all z < L. Thus it is not possible for
R(zn) 6 −1 if

− 2

(1 + ϕ)(1− 2θ)
6 L,

or equivalently

ϕ < −1− 2

L(1− 2θ)
.

Now −1− 2
L(1−2θ) > 0 if and only if θ > 1

2 + 1
L , and −1− 2

L(1−2θ) > 1 if and only if θ >
1
2 + 1

2L .

Statement (a) of the theorem follows.

(b) Now consider λ > 0 and suppose that |R(zn)| 6 1, which implies that p 6 0.

If θ ∈ [0, 1/2], then 1−2θ 6 θR(zn)+1− θ 6 1 and thus since zn > 0 we obtain q 6 0. Thus
p and q have the same sign which cannot occur by Lemma 5.1.

Now suppose that, |R(zn)| 6 1 and θ ∈ (1
2 , 1]. By Lemma 5.1 we must have

q >
1

1 + ϕ
[1−R(zn)].

But using (5.6) and zn > 0 we obtain

R(zn)(1− znθ(1 + ϕ)) > 1 + zn(1− θ)(1 + ϕ) > 0. (5.10)

Recall that we need q > 0 to avoid a contradiction, but q = −zn[θR(zn) + (1− θ)] and zn > 0.
So for q > 0 we require θR(zn) + (1− θ) < 0 which implies that

R(zn) < −
1− θ
θ

6 0,

for θ ∈ (1/2, 1]. But substituting R(zn) < 0 in (5.10) implies that 1− znθ(1 + ϕ) < 0, and thus

zn >
1

θ(1 + ϕ)
> 0.

But, for an explicit method the domain of absolute stability S is bounded. So there exists
M > 0 such that |R(z)| > 1 for all z >M > 0. Now if

1

θ(1 + ϕ)
>M (5.11)

we derive a contradiction since we have shown that for |R(zn)| 6 1 we need zn >
1

θ(1+ϕ) >M >

zn. Rearranging (5.11) we obtain that

ϕ < −1 + 1

θM , (5.12)
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guarantees |R(zn)| > 1. Now −1 + 1
θM > 0 if and only if θ 6 1/M, and −1 + 1

θM > 1 if and
only if θ > 1/(2M). This completes the proof. 2

Remark For many common methods, including all methods with ci > 0 for all i, the stability
function (5.3) satisfies R(z) > 1 for all z > 0. For such methods Theorem 5.2(b) is trivial, and
so Theorem 5.2(a) is the more significant result.

Theorem 5.2 is unsatisfactory for simulation of dynamical systems. Although it guarantees
that for a linear scalar problem the fixed point of the numerical solution will be stable (unstable)
when the fixed point of the underlying dynamical system is stable (unstable), it allows the
possibility of R(zn) < 0. As was argued in the introduction, this is very undesirable as it
allows spurious oscillations to be introduced to the numerical simulation. Thus we seek stronger
conditions on the parameters to ensure that R(zn) > 0.

Theorem 5.3 Suppose the adaptive ERK method (2.1)-(2.2) is applied to the linear scalar test
problem (5.1) with λ ∈ IR, subject to the PSθ error control (1.2) with θ ∈ [0, 1] and ϕ ∈ (0, 1).

(a) If λ < 0 then 0 < R(zn) < 1

(i) for all ϕ ∈ (0,−1− 1
L∗(1−θ)) for θ ∈ (1− 1

L∗ , 1− 1
2L∗ ),

(ii) for all ϕ ∈ (0, 1) for θ ∈ [1− 1
2L∗ , 1],

where L∗ < 0 is such that R(z) 6∈ [−(1− θ)/θ, 0] for all z 6 L∗.

(b) If λ > 0 then R(zn) > 1

(i) for all ϕ ∈ (0, 1) if θ = 0.

If, furthermore there existsM∗ > 0 such that R(z) > 1 for all z >M∗ then R(zn) > 1

(ii) for all ϕ ∈ (0, 1) and all θ ∈ [0, 1] ifM∗ 6 1/2,

(iii) for all ϕ ∈ (0, 1) if θ ∈ [0, 1/(2M∗)], andM∗ > 1/2,

(iv) for all ϕ ∈ (0,−1 + 1/(M∗θ)) if θ ∈ (1/(2M∗), 1], and 1/2 <M∗ 6 1,

(v) for all ϕ ∈ (0,−1 + 1/(M∗θ)) if θ ∈ (1/(2M∗), 1/M∗), andM∗ > 1.

Proof. (a) Noting that L∗ 6 L, it follows from Theorem 5.2 that |R(zn)| < 1 under the conditions
given in (a), and it only remains to prove that R(zn) > 0. Let p and q again be defined by (5.5)
and (5.6) respectively.

If R(zn) 6 0 then p 6 −1. Hence by Lemma 5.1 if the PSθ control (1.2) is satisfied with
R(zn) 6 0 and zn < 0 then

q >
1

1 + ϕ
[1−R(zn)]

which implies that

R(zn) >
1 + zn(1− θ)(1 + ϕ)

1− znθ(1 + ϕ)
> −(1− θ)

θ
.

Note that, since by assumption R(zn) 6 0, this gives an immediate contradiction for θ = 1. For
θ ∈ [0, 1) to avoid a contradiction we require

0 > R(zn) >
1 + zn(1− θ)(1 + ϕ)

1− znθ(1 + ϕ)
,
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and thus since zn < 0,
0 > 1 + zn(1− θ)(1 + ϕ),

or on rearranging,

zn 6 − 1

(1 + ϕ)(1− θ) < 0.

It follows from (5.3) that for an explicit consistent method |R(z)| → ∞ as |z| → ∞. Thus there
exists L∗ < 0 such that R(zn) 6∈ [−(1 − θ)/θ, 0] for all zn < L∗. Thus it is not possible for
R(zn) 6 0 if

− 1

(1 + ϕ)(1− θ) 6 L∗,

or equivalently

ϕ < −1− 1

L∗(1− θ) .

Now −1− 1
L∗(1−θ) > 0 if and only if θ > 1+ 1

L∗ , and −1− 1
L∗(1−θ) > 1 if and only if θ > 1+ 1

2L∗ .

Statement (a) of the theorem follows.
(b) Consider λ > 0, and note that sinceM∗ >M, it follows from Theorem 5.2 that |R(zn)| > 1
under the conditions given in (b), and hence it only remains to prove that R(zn) > 0.

If R(zn) < −1 then p 6 −2. Hence by Lemma 5.1

q >
1

1 + ϕ
[1−R(zn)] > 1

which implies
R(zn)(1− znθ(1 + ϕ)) > 1 + zn(1− θ)(1 + ϕ) > 0. (5.13)

But substituting R(zn) < −1 in (5.13) implies that 1− znθ(1 + ϕ) < 0 (which proves the θ = 0
case), and thus for θ 6= 0,

zn >
1

θ(1 + ϕ)
> 0.

Now if the stability function (5.3) has cs > 0 then there existsM∗ > 0 such that R(z) > 1 for
all z >M∗ > 0. Now if

1

θ(1 + ϕ)
>M∗ (5.14)

we derive a contradiction since we have shown that for R(zn) < −1 we need zn > 1
θ(1+ϕ) >

M∗ > zn. Rearranging (5.14) we obtain that

ϕ < −1 + 1

θM∗
, (5.15)

guarantees R(zn) > 1. Now −1 + 1
θM∗ > 0 if and only if θ 6 1/M∗, and −1 + 1

θM∗ > 1 if and
only if θ > 1/(2M∗). This completes the proof. 2

Remark Theorem 5.3 shows that if λ < 0 and the PSθ error control (1.2) is satisfied for any
ϕ ∈ (0, 1) then provided θ 6 1 is sufficiently large then 0 < R(zn) < 1, and so the numerical
approximation to the solution of (5.1) converges monotonically to the fixed point, just like the
exact solution to (5.1). For many methods, including all methods with ci > 0 for all i, the
stability function (5.3) satisfies R(z) > 1 for all z > 0, and so for λ > 0 we have R(zn) > 1 and
hence monotonic divergence of the numerical solution from the fixed point, irrespective of the
time-stepping strategy. For methods with cs > 0, but R(z) 6 1 for some z > 0, the theorem
shows that if λ > 0 and the PSθ error control (1.2) is satisfied for any ϕ ∈ (0, 1) then provided
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θ > 0 is sufficiently small then R(zn) > 1, and so the numerical approximation to the solution
of (5.1) diverges monotonically from the fixed point. However, for methods with cs < 0 in the
stability function R(z) (5.3), including the DOPRI8(7) method, the theorem only guarantees
that R(zn) > 1 for λ > 0 if θ = 0.

We denote the stability function of the two-stage theta method (2.10) by Rθ(z) so that

Rθ(z) =
1 + (1− θ)z

1− θz , (5.16)

and now show how the numerical solution to (5.1) generated by a PSθ controlled method is
geometrically related to that of the two-stage theta method.

Theorem 5.4 Suppose the adaptive ERK method (2.1)-(2.2) is applied to the linear scalar test
problem (5.1) with λ ∈ IR, subject to the PSθ error control (1.2) with θ ∈ [0, 1] and ϕ ∈ (0, 1).

(i) If λ < 0 and (θ, ϕ) satisfy one of Theorem 5.3(a)(i)-(ii) then

Rθ((1 + ϕ)zn) 6 R(zn) 6 Rθ((1− ϕ)zn).

(ii) If λ > 0 and (θ, ϕ) satisfy one of Theorem 5.3(b)(i)-(v) then 0 < zn < 1/[θ(1− ϕ)] and

Rθ((1− ϕ)zn) 6 R(zn).

If furthermore, 0 < zn < 1/[θ(1 + ϕ)], then

Rθ((1− ϕ)zn) 6 R(zn) 6 Rθ((1 + ϕ)zn).

Proof. (i) By Theorem 5.3(a), 0 < R(zn) < 1. Hence by Lemma 5.1

−zn[θR(zn) + (1− θ)] >
1

1 + ϕ
[1−R(zn)]

which implies that

R(zn) >
1 + zn(1− θ)(1 + ϕ)

1− znθ(1 + ϕ)
= Rθ(zn).

Now, suppose that the right-hand inequality fails so that Rθ((1 − ϕ)zn) < R(zn). Using
(5.16) and rearranging (noting that 1− θ(1− ϕ)zn > 0), we have

R(zn)− 1− [θR(zn) + (1− θ)]zn > −ϕzn[θR(zn) + (1− θ)].

But by Theorem 5.3(a), 0 < R(zn) < 1 if λ < 0. Thus 1 − θ < θR(zn) + (1 − θ) < 1, and the
term on the right-hand side is positive. Therefore

|R(zn)− 1− [θR(zn) + (1− θ)]zn| > ϕ|zn[θR(zn) + (1− θ)]|,

which contradicts (5.4), thus the right-hand side inequality holds.

(ii) Now consider λ > 0. Theorem 5.3(b) shows R(zn) > 1. Suppose that

R(zn)[1− θ(1− ϕ)zn] < 1 + (1− θ)(1− ϕ)zn,

then

R(zn)− 1− zn[θR(zn) + (1− θ)] < −ϕzn[θR(zn) + (1− θ)].
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But since the right-hand side is negative, this implies that

|R(zn)− 1− zn[θR(zn) + (1− θ)]| > ϕ|zn[θR(zn) + (1− θ)]|

which contradicts (5.4) and hence we have

R(zn)[1− θ(1− ϕ)zn] > 1 + (1− θ)(1− ϕ)zn. (5.17)

Since the right-hand side of (5.17) is positive, so is the left-hand side, which implies that

zn <
1

θ(1− ϕ) .

Now dividing (5.17) by 1− θ(1− ϕ)zn (which we have just shown to be positive) gives

R(zn) >
1 + (1− θ)(1− ϕ)zn

1− θ(1− ϕ)zn
= Rθ((1− ϕ)λzn),

as required. Now suppose further that 0 < zn < 1/[θ(1 + ϕ)]. If

R(zn) >
1 + (1− θ)(1 + ϕ)zn

1− θ(1 + ϕ)zn
,

then
R(zn)− 1− zn[θR(zn) + (1− θ)] > ϕzn[θR(zn) + (1− θ)].

But R(zn) > 1 implies that the right-hand side is positive and hence

|R(zn)− 1− zn[θR(zn) + (1− θ)]| > ϕ|zn[θR(zn) + (1− θ)]|

which contradicts (5.4). Hence we must have

R(zn) 6
1 + (1− θ)(1 + ϕ)zn

1− θ(1 + ϕ)zn
= Rθ((1 + ϕ)zn. 2

Whilst the preceding theorems give an indication of the behaviour of PSθ error control for
z ∈ IR, the behaviour can be much better for particular methods. In particular, the Fehlberg
2(3) method (in non-extrapolation mode) and the DOPRI5(4) method (in extrapolation mode)
have the properties that

(i) R(z) > 0 for all z ∈ IR,

(ii) R(z) > 1 for all z > 0.

Thus for these methods under PSθ error control (1.2) applied to (5.1) we have

0 < R(zn) < 1 if λ < 0,
1 < R(zn) if λ > 0,

}
∀ϕ ∈ (0, 1), ∀θ ∈ [0, 1], (5.18)

making them particularly good candidates to use with this error control.
For general methods with λ < 0, Theorem 5.3(a)(i-ii) implies the existence of 0 6 θ− < θ+ <

1 such that 0 < R(zn) < 1 if λ < 0,

(i) for ϕ ∈ (0, ϕ∗(θ)) for θ ∈ (θ−, θ+),

(ii) for all ϕ ∈ (0, 1) for θ ∈ [θ+, 1].
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The values of θ−, θ+ and ϕ∗(θ) are easy to calculate using matlab [10]. Let z∗ < 0 be such that
R(z∗) = 0, then since by Theorem 5.2 R(zn) < 1 , we only need to find the values of θ, ϕ at
which R(z∗) = 0 and z∗ satisfies (5.4) with equality, so that

ϕ∗ =
| − 1− z∗(1− θ)|
|z∗(1− θ)| . (5.19)

The values of θ− and θ+ correspond to ϕ∗ = 0 and ϕ∗ = 1 respectively in (5.19), and hence
θ− = 1 + 1/z∗ and θ+ = 1 + 1/(2z∗), where of course z∗ depends on the method (2.2). The
resulting values for some popular methods are given in Table 1. The corresponding values of
ϕ∗ for θ ∈ [0, 1] are plotted in Figure 5 for several of the methods; graphs are similar for other
methods.

Method θ− θ+

RK1(2) 0 0.5
RK2(3)B 0.3746 0.6873

Fehlberg4(5) 0.5138 0.7569
Fehlberg5(4) 0.5760 0.7880
DOPRI8(7) 0.7285 0.8643

Table 1: Values of θ− and θ+ for some popular methods
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Figure 5: The maximum value ϕ∗ as a function of λ, such that 0 < R(zn) < 1 when (5.4) is
satisfied for λ < 0 with ϕ ∈ (0, ϕ∗) for (i) RK1(2) (ii) Fehlberg4(5) (iii) DOPRI8(7).

Note that with the exception of DOPRI8(7) all of these methods have R(z) > 1 for all z > 0
and so satisfy R(zn) > 1 when λ > 0 regardless of the error control used.

5.2 Complex λ

We now indicate how far the results above can be extended to the case of complex λ. It will be
useful to define the acceptable region, Q(ϕ, θ) ∈ C, for any θ ∈ [0, 1] and any ϕ ∈ (0, 1) to be
the set of points in C which satisfy (5.4). Note that for a consistent method

R(z)− 1− z[θR(z) + (1− θ)] = O(z2),

z[θR(z) + (1− θ)] = z +O(z2),

and that both expressions are polynomials of degree s + 1. Thus by (5.4) for any ϕ > 0, the
acceptable region Q(ϕ, θ) contains a neighbourhood of the origin. Also, since the terms of degree
s+ 1 have different coefficients for ϕ ∈ (0, 1) the acceptable region Q(ϕ, θ) is bounded.
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Since as noted in [8], for explicit methods the stability region intersects the imaginary axis
in a neighbourhood of the origin only at the origin, it follows that there will exist points close
to the origin and the imaginary axis which satisfy (5.4) but for which either Re(λ) < 0 and
|R(λ∆tn)| > 1 or Re(λ) > 0 and |R(λ∆tn)| < 1. As noted in [8], the concept of A(α)-stability
can be generalized to this situation, although we will not pursue this further here.

It follows trivially from (5.4) that the acceptable region Q(ϕ, θ) is monotonically increasing
in ϕ; that is Q(ϕ1, θ) ⊆ Q(ϕ2, θ) if ϕ1 6 ϕ2. In order to gain some insight we investigate Q(0, θ)
which is given by solving

R(z)− 1− z[θR(z) + (1− θ)] = 0. (5.20)

For an explicit s-stage method (5.20) is a polynomial of degree s+ 1 and hence has s+ 1 roots.
For every consistent method at least two of these roots are at the origin, and at least three roots
are at the origin for method of at least second order if θ = 1/2. The location of the other roots
influences the acceptable region.
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Figure 6: The regions of absolute stability (with the subset on which Re(R(z)) > 0 shaded) and
the acceptable regions Q(ϕ, θ) for ϕ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, . . . , 1, for (i) the Fehlberg4(5)
method with θ = 0.1, and (ii) the Fehlberg5(4) method with θ = 0.5.

In Figure 6, the acceptable regionsQ(ϕ, θ) for the Fehlberg 4(5) method and its extrapolation
version Fehlberg 5(4) are shown for various values of ϕ. That Q(ϕ, θ) is monotonically increasing
in ϕ with its form for small ϕ dependent on its behaviour for ϕ = 0 is clearly apparent from
the plots. Note that for the Fehlberg4(5) method with θ = 0.1 there are three distinct non-
zero roots of (5.20), one of which is real, and all of which fall in the left half-plane outside the
stability region of the method. This means that if we apply PSθ error control to this method
with θ = 0.1 and a negative eigenvalue, however close to zero we take ϕ we cannot ensure that
the numerical solution mimics the contraction of (5.1). By Theorem 5.2(a)(I)(i) we can ensure
contraction of the numerical solution for small ϕ in the case of a real negative eigenvalue by
taking θ sufficiently large. This result can also be seen to extend to the complex case, since for
0 < ϕ ¿ 1, all points of Q(ϕ, θ) are close to points of Q(0, θ), where the latter set is given by
(5.20), or on rearranging,

R(z) =
1 + (1− θ)z

1− zθ = Rθ(z). (5.21)

Since the region of absolute stability Sθ of the theta method (2.10) contains the entire left half
complex plane for any θ > 1/2, it follows that for θ > 1/2, if z ∈ Q(0, θ) with Re(z) < 0 then
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z ∈ Sθ, hence |R(z)| = |Rθ(z)| < 1 and so z ∈ S the region of absolute stability of the method
(2.2). Thus for all ϕ sufficiently small and all θ sufficiently large Q−(ϕ, θ) ⊆ S− where Q−(ϕ, θ)
and S− are the subsets of Q(ϕ, θ) and S in the left half complex plane.

In Figure 6(ii), we indeed see that Q(0, θ) ⊆ S for the Fehlberg 5(4) method with θ = 0.5, so
thatQ−(ϕ, 1/2) ⊆ S− for ϕ sufficiently small. However we would like a stronger result. There are
five points on the boundary of S for the Fehlberg 5(4) method with R(z) = −1, corresponding to
spurious period two solutions; however by Theorem 4.1 these points are excluded from Q(ϕ, 1/2).
But as θ < θ− (see Table 1) there do exist points in Q(ϕ, 1/2) on the negative real axis with
R(z) < 0. We have already noted in Theorem 5.3 and its preamble that R(zn) < 0 results in
spatial oscillations which lead to poor approximations to dynamical behaviour. In the complex
case, the arg(R(zn)) corresponds to a rotation, with arg(R(zn)) = π again corresponding to
a spurious oscillation, and arg(R(zn)) close to π giving a perturbed oscillation, and chaotic
looking dynamics. All such spuriosity can be avoided by choosing parameters such that for
z ∈ Q(ϕ, θ) with Re(z) < 0, not only |R(z)| < 1 but also Re(R(z)) > 0; which corresponds
to | arg(R(z))| 6 π/2 so that we require the numerical solution to perform at least four steps
when approximating a periodic orbit. This is achievable, since it follows from (5.21) that for
z ∈ Q(0, θ),

Re(R(z)) > 0, if

∣∣∣∣z −
1− 2θ

2θ(1− θ)

∣∣∣∣ 6
1

2θ(1− θ) . (5.22)

In particular for θ = 1, Re(R(z)) > 0 for all z such that Re(z) < 1. Thus for all ϕ sufficiently
small and all θ sufficiently large Q−(ϕ, θ) ⊆ S+

− where S+
− is the subset of S in the left half

complex plane on which Re(R(z)) > 0.

Note that for both cases shown in Figure 6 there are points of Q(0, θ) close to the imaginary
axis, and to the boundary of S, and that for both methods we could get incorrect stability of
the numerical solution for near imaginary eigenvalues. However λ imaginary corresponds to a
non-hyperbolic fixed point, and for λ close to imaginary the fixed point is close to being non-
hyperbolic. This suggests that PSθ error control might not perform too well near non-hyperbolic
fixed points. However, since standard time-stepping performs poorly even for hyperbolic fixed
points, in this paper we will content ourselves with trying to derive a method which performs
well near hyperbolic fixed points, and will not address further the behaviour of the method with
near imaginary eigenvalues.
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Figure 7: The regions of absolute stability (with the subset on which Re(R(z)) > 0 shaded) and
the acceptable regions Q(ϕ, θ) for ϕ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, . . . , 1, for (i) the Fehlberg2(3)
method and (ii) the DOPRI5(4) method, both with θ = 0.5.
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In Figure 7, the acceptable regions Q(ϕ, θ) for the Fehlberg 2(3) and DOPRI5(4) methods
are shown for various values of ϕ with θ = 1/2. Recall that the Fehlberg2(3) and DOPRI5(4)
methods satisfy (5.18). We consider θ = 0.5, since then Theorem 4.1 guarantees that the methods
admit no spurious two solutions. We see from Figure 7(i) that the Fehlberg2(3) method behaves
excellently with

1. |R(zn)| > 1 for all zn ∈ Q(ϕ, 1/2) with Re(zn) > 0 for all ϕ ∈ (0, 1)

2. |R(zn)| < 1 and Re(R(zn)) > 0 for all zn ∈ Q(ϕ, 1/2) with Re(zn) < 0 except near to the
imaginary axis, for all ϕ ∈ (0, 0.5).

The DOPRI5(4) method does not perform quite so well in that there are two points z, z ∈
Q(0, 1/2) with Re(R(z)) < 0. However unless arg(λ) is exactly equal to arg(z) or arg(z), by
choosing ϕ sufficiently small we can ensure that Re(R(zn)) > 0, if we wish to. Alternatively
following (5.22) we can increase the value of θ to ensure that Re(R(z)) > 0 for all z ∈ Q(0, θ).
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Figure 8: The regions of absolute stability (with the subset on which Re(R(z)) > 0 shaded) and
the acceptable regions Q(ϕ, θ) for ϕ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, . . . , 1, for (i) the DOPRI5(4)
method and (ii) the Fehlberg2(3) method, both with θ = 0.8.

In Figure 8(i) the acceptable region Q(ϕ, θ) for DOPRI5(4) method is shown for various
values of ϕ with θ = 0.8. Note that Re(R(z)) > 0 for all z ∈ Q(0, θ), however there is now a
z ∈ Q(0, θ) with z < 0 (and real). The same can be seen to occur in In Figure 7(ii) for the
Fehlberg2(3) method. Real non-zero values of z ∈ Q(0, θ) always occur for θ near to 1/2 for
methods of order 2 and above, since then, as noted already, (5.20) has three roots at zero for
θ = 1/2 and two roots at zero for θ 6= 1/2. Real non-zero z ∈ Q(0, θ) is undesirable for two
reasons. Firstly, we would like to be able to force reductions in the step-size by reducing ϕ, so
that we can achieve arbitrary accuracy of the numerical solution. From Figure 7 we see that
this cannot be guaranteed for λ < 0 in this case, since there is a z ∈ Q(0, θ) with z < 0 which
satisfies (5.4) for all ϕ ∈ (0, 1). Nevertheless, this value of z is below the linear stability limit,
so the method will still drive the solution to the fixed point, thus performing better than the
standard error control. Secondly, in this case

∣∣∣R(z)− 1− z[θR(z) + (1− θ)]
∣∣∣

∣∣∣z[θR(z) + (1− θ)]
∣∣∣

, (5.23)

is not monotonically increasing as z < 0 becomes larger in modulus. Thus, when we seek to set
up an algorithm, in Section 6, to drive the step-size to a limit ∆tn → ∆t∗ such that (5.4) is
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satisfied with the ratio (5.23) equal to χϕ for some safety factor χ < 1, there will be multiple
possible values of ∆t∗. Thus, in general, PSθ error control (1.2) should not be applied with
θ ≈ 1/2 but θ 6= 1/2, or when there exists real z ∈ Q(0, θ) with z < 0.

In Figure 9 the acceptable regions Q(ϕ, θ) for the methods in Table 1 are shown for various
values of ϕ with θ = θ+. Recall that θ+ is defined so that the boundary of Q(1, θ+) crosses the
negative real axis at the point at which R(z) = 0. With the exception of the RK1(2) method,
ϕ sufficiently small ensures that if z ∈ Q(ϕ, θ+) with z not close to the imaginary axis then not
only is z ∈ S but also Re(R(z)) > 0. Thus with these parameters these methods do not admit
spurious oscillations near to fixed points.
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Figure 9: The regions of absolute stability (with the subset on which Re(R(z)) > 0 shaded)
and the acceptable regions Q(ϕ, θ) for ϕ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, . . . , 1, for the methods in
Table 1 with θ = θ+.

We note finally that the choice of θ = θ+ is not arbitrary. These methods do not perform as
well for θ significantly smaller than θ+ for two reasons. Firstly if θ < θ− then there exist points
of Q(0, θ) on the negative real axis either outside of S or inside S with R(z) < 0, as in Figure 6,
resulting in spurious oscillatory solutions. Even if θ ∈ (θ−, θ+) then there can exist z ∈ Q(0, θ)
with z < 0 and real, similar to the case of Figure 8 and undesirable for the same reasons.
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6 Algorithm

In this section we show how to incorporate the PSθ constraint into a practical variable time-
stepping algorithm, by making a few changes to a traditional time-stepping algorithm. We now
outline a strategy which is similar to that using for the PS error control in [8], only differing in
perhaps its most important aspect, the step-size selection. Note that choosing a new step-size
when the PSθ constraint is violated (or is close to being violated), is non-trivial as we do not
have a simple error estimate to use.

It is convenient to use the following common representation of a Runge-Kutta method,

ki = f(yn +∆tn

i−1∑

j=1

aijkj), 1 6 i 6 s, (6.24)

yn+1 = yn +∆tn

s∑

i=1

biki, (6.25)

with

E(yn,∆tn) = ∆trn‖
s∑

i=1

eiki‖ (6.26)

where r = 0 or 1 for EPUS or EPS control, respectively. This is identical to (2.1)-(2.3) and
(2.6)-(2.6) noting that ki = f(Yi) for i = 1, . . . , s and letting ei = bi − b̂i.

Some care is needed when implementing PSθ control in finite precision arithmetic. Although
Theorem 3.4 shows that there is always an acceptable step-size, since both the right and left-
hand sides of (1.2) tend to zero as ∆t→ 0, in practice rounding errors could cause the rejection
of what is otherwise an acceptable step-size. To avoid unnecessary cancellation, we implement
(1.2) in the equivalent form

‖(b1 + θ − 1)f(yn)− θf(yn+1) +
s∑

i=2

biki‖ 6 ϕ‖θf(yn+1) + (1− θ)f(yn)‖. (6.27)

The basic algorithm for solving (1.1) over 0 6 t 6 T can be summarised as follows.

Algorithm 6.1 (PSθ)
set n = 0, y0 = y(0), t0 = 0, k1 = f(y0) and choose ∆t0
while tn < T
compute ki, i = 2, ..., s from (6.24)
ynew = yn +∆tn

∑s
i=1 biki

fnew = f(ynew)
E(ynew,∆tn) = ∆trn‖

∑s
i=1 eiki‖

Tl = ‖(b1 + θ − 1)k1 − θfnew +
∑s

i=2 biki‖
Tr = ‖θfnew + (1− θ)k1‖
if E(ynew,∆tn) 6 τ and Tl 6 ϕTr
yn+1 = ynew
k1 = fnew
tn+1 = tn +∆tn
compute ∆tnew and set ∆tn+1 = ∆tnew
increment n to n+ 1

else

compute ∆tnew and set ∆tn = ∆tnew
end

end
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We now describe in detail the strategy for computing ∆tnew. It is common to include a
maximum step-size ratio, α > 1, in a code. A typical choice is α = 5. Consecutive step-sizes
must satisfy ∆tn+1 6 α∆tn; this restricts the relative increase of the step-size over each step. It
is also common to impose a maximum step-size, ∆tmax, so that ∆tn 6 ∆tmax for all n. Thus,
using the standard formula (2.8) we calculate

∆test = γ

(
τ

E(yn,∆tn)

)1/q

∆tn, (6.28)

and set
∆tnew = min{∆test, α∆tn,∆tmax, T − tn}. (6.29)

In our new step-size selection strategy, we allow α to change on each step in order to take
account of the extra constraint (6.27). Recall that our overall aim is to depart from the step-size
that would be predicted by the local error based formula only when the phase space error is
significant. Hence, letting r := Tl/Tr, we set α = α1 if r < βmin, where α1 is the maximum
step-size ratio used by the traditional strategy and βmin is a small parameter, such as ϕ/10. In
this way, we expect the new strategy to be invisible away from fixed points.

If the constraint r 6 ϕ is violated then we force the step-size to be halved; that is, we set
α = 1/2.

To avoid excessive rejections it is important to have a safety factor. Hence, we introduce
a parameter βmax (say, βmax = ϕ/2) such that we set α < 1 if r > βmax, so that we force a
step-size reduction at the next step if we are close to rejecting. We set α = 1 if r = βmax and if
r < βmax we set α > 1 so that step-size increases are only allowed if r < βmax.

Specifically we set

α(r) :=





α1 when r 6 βmin,
α2(r) := p1r

2 + p2r + p3 when βmin 6 r 6 βmax,
α3(r) := q1r

2 + q2r + q3 when βmax 6 r 6 ϕ,
1/2 when r > ϕ,

(6.30)

where the coefficients of the functions α2(r) and α3(r) are chosen so that

α2(βmin) = α1,
α2(βmax) = 1,
α′2(βmax) = − 1

βmaxκ
,

and

α3(βmax) = 1,
α3(ϕ) =

1
2 ,

α′3(βmax) = − 1
βmaxκ

,
(6.31)

where the parameter κ is a strictly positive integer, dependent on the method is used, defined
later in Table 2. With this dynamic choice of α, equation (6.29) defines the new stepsize selection
process.

Thus for r between βmin and βmax, α is a quadratic function which decreases from α1 to 1,
and for r between βmax and ϕ, α is a quadratic function which decreases from 1 to 1/2. We will
show below that α is strictly monotonic decreasing for r ∈ [βmin, ϕ] if βmax > ϕ/(1 + κ).

In [8] simple linear functions were used for α2(r) and α3(r). However this does not work
well for orbits on (or near) the stable manifold of a fixed point y∗, as in this case the solution
will tend to the fixed point, and ideally we would expect the step-size to also tend to a limit.
Near to the fixed point y∗ the step-size will be fixed if r = βmax so that α(r) = 1, but we will
see below that stability of this fixed point of the step-size will depend on the value of α′(βmax).
For the linear functions used in [8] α′(r) is discontinuous at r = βmax. In contrast with the
quadratic functions defined by (6.30),(6.31) continuity of α′(r) is ensured and α′(βmax) can be
set to a suitable value.

One final point must be made about Algorithm 6.1. In the case where the numerical solution
is driven to a fixed point, both Tl and Tr tend to zero. Hence, to avoid division by zero errors,
let δ be the machine precision and compute r as follows.
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if Tr > δ
r := Tl/Tr

else
if Tl 6 δ
r := βmax

else
r := ϕ

end
end

Thus a decrease in the step-size is forced if Tr is small but Tl is not, and the same step-size is
kept if both Tr and Tl are small.

6.1 Step-size Selection

In this section we give more details and analysis of the step-size selection function α(r) (6.30).
It is useful to define parameters 0 < ψ < χ < 1 such that

βmin = ψϕ, (6.32)

βmax = χϕ. (6.33)

This together with (6.31) implies

p1 =
χκ(α1 − 1) + ψ − χ
χϕ2κ(χ− ψ)2 ,

p2 =
(χ2 − ψ2)− 2χ2κ(α1 − 1)

χκϕ(χ− ψ)2 ,

p3 =
κ+ 1

κ
+
χ2κ(α1 − 1)− χ(χ− ψ)

κ(χ− ψ)2 ,

and

q1 =
2− χ(2 + κ)

2χκϕ2(1− χ)2 ,

q2 =
χ2κ− (1− χ2)

χϕκ(1− χ)2 ,

q3 =
κ+ 1

κ
+

2χ− χ2(2 + κ)

2κ(1− χ)2 .

(6.34)

In Figure 10 examples of α(r) for κ = 1, 2 are plotted. Note that in both cases α(r) appears to
be monotonically decreasing for r ∈ [βmin, ϕ]. This is a highly desirable property, as the larger
r is the closer the PSθ control (1.2) is to being violated, and hence the less we would want to
increase the step-size.

A little algebra shows that α(r) is strictly monotonic decreasing for r ∈ [βmin, βmax] =
[ψϕ, χϕ] provided α1 > 1+(χ−ψ)/(2χκ) which is satisfied for any κ > 1 and any 0 < ψ < χ < 1
if α1 > 3/2. Since α1 is usually taken to be 5 this presents no problem. However for α(r) to
be strictly monotonic decreasing for r ∈ [βmax, ϕ] = [χϕ,ϕ] we require χ > 1/(1 + κ). Thus to
ensure monotonicity we must not choose χ too small, but the choice of χ = 1/2 is suitable for
all κ > 1.

If the solution of (1.1) is tending to a fixed point, then by Theorem 5.2 we expect the
numerical solution to also be driven to the fixed point. In a “good” time-stepping strategy the
step-size ∆tn should also tend to a constant value, and we will now show how the algorithm
given above is set up to achieve this.

Close to a hyperbolic fixed point “most” solutions on the stable manifold will approach
the fixed point in the direction of the eigenvector of the Jacobian matrix corresponding to
the eigenvalue with negative real part smallest in modulus. This is modelled by the linear
problem (5.1), and we again consider PSθ error control applied to this problem. Note that for
the problem (5.1) the PSθ constraint (1.2) becomes (5.4), which depends only on zn = λ∆tn



26 A.R. Humphries and N. Christodoulou

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6
α(r)

←α(φ)=0.5

←α(β
max

)=1

←α(β
min

)=5

( r )

( 
α 

)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6
α(r)

←α(φ)=0.5

←α(β
max

)=1

←α(β
min

)=5

( r )

( 
α 

)

Figure 10: Graph of the function α(r), given by (6.30) for κ = 1, 2, with ψ = 0.1, χ = 0.5, and
ϕ = 0.1.

and is independent of the spatial position yn. Thus for this problem we can consider the
sequence {zn}n>0 to determine whether it tends to a constant value, independently of the spatial
behaviour. Since the standard time-stepping strategy drives the step-size ∆tn to the linear
stability limit in the neighbourhood of a fixed point and the numerical solution remains bounded
away from the fixed point (see Hall [5]), for the numerical solution to be driven to the fixed point
by our algorithm we require that in a neighbourhood of the fixed point at every step the step-
sizes are chosen in (6.29) according to the dynamic maximum step-size ratio ∆tnew = α∆tn
where α defined by (6.30). By Theorem 5.2 this will ensure that the solution is driven to the
fixed point for suitable choice of ϕ and θ.

Thus in the neighbourhood of the fixed point the evolution of the step-size, will be determined
by

zn+1 = α(r(zn))zn := F(zn), (6.35)

where zn = λ∆tn, provided r(zn) < ϕ where the ratio r is given by

r(z) =
|R(z)− 1− z[θR(z) + (1− θ)]|

|z[θR(z) + (1− θ)]| . (6.36)

By (6.30),(6.31),(6.33) this iteration has a fixed point z∗ = F(z∗) at z∗ such that r(z∗) = χϕ =
βmax and hence α(r(z∗)) = α(χϕ) = α(βmax) = 1. For this iteration to be stable we require
that |F ′(z∗)| < 1, with quadratic convergence if F ′(z∗) = 0. We now show how to achieve
convergence of this iteration for small ϕ with quadratic convergence in the limit as ϕ→ 0.

Since F(zn) is given by (6.35),

F ′(z∗) = α′(r(z∗))r′(z∗)z∗ + α(r(z∗))

= α′(r(z∗))r′(z∗)z∗ + 1. (6.37)

Since the stability function R(z) is given by equation (5.3), in (6.36) we have R(zn) − 1 −
zn[θR(zn) + (1 − θ)] = O(zk), k > 2, and zn[θR(zn) + (1 − θ)] = O(z), and thus r(z) = O(z).
We define

r1(z) := z−1(R(z)− 1− z[θR(z) + (1− θ)]), (6.38)

r2(z) := sign(r1(z))|[θR(z) + (1− θ)]|, (6.39)
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so that r(z) = r1(z)/r2(z), and

r′(z) =
r′1(z)r2(z)− r′2(z)r1(z)

r2(z)2
. (6.40)

But r(z∗) = χϕ, hence r2(z
∗) = r1(z

∗)/(χϕ), and so (6.40) implies

r′(z∗) =
χϕ[r′1(z

∗)− χϕr′2(z∗)]
r1(z∗)

= χϕ
r′1(z

∗)

r1(z∗)
+O(χ2ϕ2). (6.41)

Now for an explicit Runge-Kutta method (5.3) and (6.38) imply that

r1(z) = z−1[(c2 − θ)z2 +
s+1∑

i=3

(ci − θci−1)z
i] = (c2 − θ)z +

s∑

i=2

(ci+1 − θci)zi.

Let zκ be the first term with non-zero coefficient then

r1(z) = (cκ+1 − θcκ)zκ +O(zκ+1), (6.42)

where 1 6 κ 6 s and cj ’s are the coefficients of R(z). Then

r′1(z) = κ(cκ+1 − θcκ)zκ−1 +O(zκ). (6.43)

Thus

z
r′1(z)

r1(z)
= z

κ(cκ+1 − θcκ)zκ−1 +O(zκ)
(cκ+1 − θcκ)zκ +O(zκ+1)

= κ+O(z).

Now, r(z) = O(z), implies that O(z∗) = r(z∗) = χϕ, and thus by (6.41)

z∗r′(z∗) = χϕz∗
r′1(z

∗)

r1(z∗)
+O(z∗χ2ϕ2) = χϕκ+O(z∗χϕ) = χϕκ+O(χ2ϕ2). (6.44)

Finally (6.37) implies that

F ′(z∗) = 1 + α′(χϕ)[χϕκ+O(χ2ϕ2)] = O(χϕ)

provided α′(χϕ) = −1/(χϕκ), or equivalently α′(βmax) = −1/(βmaxκ) as specified in (6.31).
Thus with the choice of parameters given we expect the step-size to converge to a constant value
in the neighbourhood of a fixed point, with quadratic convergence in the limit as ϕ→ 0.

The integer parameter κ in (6.31) follows from (6.42) and depends only on θ and the param-
eters ci of the stability function R(z) (5.3) of the method (2.2), where the dependence is given
by Table 2.

Condition κ

c2 6= θ 1
c2 = θ, c3 6= θ2 2

c2 = θ, c3 = θ2, c4 6= θ3 3
...

...
ci+1 = θi, i = 1, . . . , q − 1 and cq+1 6= θq q

Table 2: Determining κ ∈ {1, 2, . . . , s} for equation (6.31) in terms of the coefficients of the
stability function.

Note from Table 2 that there are three main cases.
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(i) Method (2.2) of order p = 1 and c2 6= θ implies κ = 1,

(ii) Method (2.2) of order p > 2 and θ 6= 1/2 implies κ = 1,

(iii) Method (2.2) of order p > 3 and θ = 1/2 implies κ = 2.

Note that values of κ > 2 can only arise with first and second order methods. For example
θ = 1/2 and R(z) = 1 + z + z2/2 + z3/4 implies that κ = 3.

We now consider two examples, where F(z∗) is computed without approximation to confirm
the convergence of the step-size to a constant value as was suggested by the approximate analysis
above.

6.2 PSθ control for RK1(2)

Consider the RK1(2) method (2.4) in non-extrapolation mode, applied to the scalar linear
problem (5.1) with λ < 0. This method has stability function

R(zn) = 1 + zn, zn = λ∆tn,

and from Table 2 we have κ = 1. Now (6.36) becomes

r(z) =
|θz|
|1 + θz| , (6.45)

and since the fixed point z∗ < 0 of the iteration (6.35) satisfies r(z∗) = χϕ we have

|θz∗| = χϕ|1 + θz∗|. (6.46)

For any θ 6= 0 there are two cases to consider depending on whether θz∗ = ±χϕ(1 + θz∗).

(i) If z∗ < −1/θ then (6.46) implies −θz∗ = −χϕ(1 + θz∗) and hence since χϕ ∈ (0, 1), we
have 0 > z∗ = χϕ/θ(1− χϕ) > 0, a contradiction.

(ii) Thus −1/θ < z∗ < 0 and (6.46) implies −θz∗ = χϕ(1 + θz∗) and hence

z∗ = − χϕ

θ(1 + χϕ)
. (6.47)

Thus since χϕ ∈ (0, 1) we have z∗ ∈ (−1/(2θ), 0).

Now for z∗ ∈ (−1/(2θ), 0) equation (6.45) implies that

r(z∗) =
|θz∗|
|1 + θz∗| =

−θz∗
1 + θz∗

.

Hence using (6.47),

z∗r′(z∗) = − θz∗

(1 + θz∗)2
= χϕ(1 + χϕ).

Thus since α′(χϕ) = −1/(χϕ) equation (6.37) implies

F ′(z∗) = 1− 1

χϕ
χϕ(1 + χϕ) = −χϕ.

So if ϕ = 0 then F ′(z∗) = 0 and in limit of small ϕ we obtain quadratic convergence of
the step-size to z∗ in (6.35). Moreover −1 < −χ < F ′(z∗) < 0 for all χ, ϕ ∈ (0, 1) and so zn
converges to z∗ for any χ ∈ (0, 1) and any ϕ ∈ (0, 1).
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6.3 PSθ control for RK2(3)

Consider the RK2(3) method (2.5) in non-extrapolation mode, applied to the scalar linear
problem (5.1) with λ < 0. This method has stability function

R(z) = 1 + z +
z2

2
, z = λ∆tn,

and from Table 2 we have κ = 2 for θ = 1/2 and κ = 1 otherwise. Consider first the case where
θ = 1/2 recommended in Section 5.2. Then (6.36) becomes

r(z) =
| − z3/2|

|z3/2 + z2 + 2z| =
z2

z2 + 2z + 4
(6.48)

and since the fixed point z∗ < 0 of the iteration (6.35) satisfies r(z∗) = χϕ we have

χϕ(z∗2 + 2z∗ + 4) = z∗2,

and hence

z∗ =
χϕ−

√
4χϕ− 3χ2ϕ2

1− χϕ .

It follows from (6.48) that

r′(z) =
2z(z + 4)

(z2 + 2z + 4)2
,

Thus since α′(χϕ) = −1/(2χϕ) equation (6.37) implies

F ′(z∗) = 1− 1

2χϕ

2z∗2(z∗ + 4)

(z∗2 + 2z∗ + 4)2
=
χϕ(z∗ + 1)

z∗
.

The graph of F ′(z∗) against χϕ for θ = 1/2 is given in Figure 11.
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Figure 11: Graph of F ′(z∗) against χϕ for the RK2(3) method with θ = 1/2.

Thus |F ′(z∗)| < 1 for all 0 < χϕ < 1, with quadratic convergence in the limit as ϕ→ 0.

If θ 6= 1/2 which implies κ = 1 the situation is not so simple. For θ < 1/2 a similar argument
to that above gives a unique negative value of z∗ and then F ′(z∗) can be computed as a function
of both θ and χϕ, the result of which is given in Figure 12(i). We see that convergence will
occur for any θ < 1/2 and 0 < χϕ < 1, except for (θ, χϕ) close to (0.5, 0), with F ′(z∗) very close
to zero for θ and χϕ both small, indicating rapid convergence of the step-size in this case.
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Figure 12: (i) Contours of F ′(z∗) for RK2(3) with 0 < θ 6 1/2 and χϕ ∈ [0, 1]. (ii) Fixed point
solutions z∗ < 0 of (6.35) against χϕ for RK2(3) with θ = 0.8.

For θ ∈ (1/2, 1] if

χϕ <
θ(2θ − 3) +

√
2θ

2θ(2− θ) (6.49)

there exist multiple fixed points z∗ < 0 of the step-size. This can be seen from examining the
contours in Figure 8(ii). In Figure 12(ii) we plot these fixed points against χϕ for θ = 0.8. We
wish to force the algorithm to converge to the step-size z∗ which tends to 0 as χϕ→ 0, so that
we can attain arbitrary accuracy by decreasing ϕ sufficiently. However this fixed point only
exists for χϕ sufficiently small, which imposes an upper bound on χϕ which is very restrictive
for θ close to 1/2, so we do not advocate implementing the method like this. Nevertheless it
can be shown that when (6.49) is satisfied, the step-size selection scheme in Section 6.1 ensures
that the required fixed point z∗ is stable, whilst the other fixed points are not. See [2] for more
details.

6.4 Choice of Parameters

To summarize, the parameter ϕ ∈ (0, 1), is user defined, and acts akin to a tolerance with smaller
values giving more accurate solutions. We suggest

ψ = 0.1, βmin = ψϕ,
χ = 0.5, βmax = χϕ,

although from the analysis above other values are also possible.
To complete the implementation, method dependent values of θ and κ are required. We

suggest θ = θ+ (though θ = 1 might also be useful) leading to the values in Table 3 for well-
known methods.

7 Illustration of Numerical Tests

In this section we illustrate the performance of the PSθ method on a number of numerical test
problems. Extensive testing has been done with the RK1(2), RK2(3), DOPRI5(4), DOPRI8(7)
and Fehlberg4(5) methods and conclusions shown here have been found to be valid in general.

We compare the standard adaptive algorithm, as described in Section 2, with the same
algorithm augmented by PSθ control as described in Section 6. In all the examples presented
EPUS control is used with parameter values ϕ = 0.1, ψ = 0.1, χ = 0.5, α1 = 5, δ = 10−15.



Phase Space Error Control II 31

Method θ κ

RK 1(2) 0.5 1
RK 2(1) 0.5 2

RK 2(3) 0.5 2

RK 2(3)B 0.6873 1

Fehlberg 4(5) 0.7569 1
Fehlberg 5(4) 0.7880 1

Dormand-Price 5(4) 0.5 2

Dormand-Price 8(7) 0.8643 1

Table 3: Suggested values of κ and θ for common methods.

Similar results are obtained for EPS control. The values of κ and θ for each method are as
given in Table 3. The two-norm is used in all examples. Local error tolerances of τ = 10−2

or τ = 10−3 were used. These are larger than would be used in practice, but we emphasise
that poor dynamic behaviour of the standard adaptive algorithm persists for arbitrary small
tolerances.

First consider the DOPRI8(7) method applied to the scalar linear test problem (5.1) with
λ = −10, for t ∈ [0, 30] with τ = 10−2. Figure 13(i) shows the numerical solution for the standard
adaptive algorithm and for the PSθ method. The standard adaptive solution remains at O(τ)
from the fixed point, whilst the PSθ solution is driven to the fixed point. Figure 13(ii) shows the
step-sizes used by both methods. The standard adaptive algorithm drives the step-size to the
linear stability limit of the method, whilst for the PSθ method, the step-size tends to a constant
value below the linear stability limit. Similar behaviour is seen with other methods with the PSθ
method driving the solution to the fixed point and the step-size to a constant value below the
linear stability limit in each case, whilst the standard adaptive algorithm has step-sizes which
tend to or oscillate about the linear stability limit and numerical solutions tending to spurious
fixed points (if R(z) = 1 at the linear stability limit of the method) or period two solutions (if
R(z) = −1).
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Figure 13: DOPRI8(7) around a scalar stable fixed point ẏ = −10y, y0 = 10−2, ∆t0 = 0.4 and
τ = 1e− 2. (i) Solutions using standard and PSθ methods. (ii) Step-sizes for each method

Now consider the RK1(2) and DOPRI5(4) methods applied to (1.1) with f defined by (1.3).
Using EPUS with τ = 10−3 Figures 1 and 2 in the introduction show that behaviour similar
to the previous example results, with the standard algorithm resulting in spurious behaviour
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whilst the PSθ method drives the solution to the fixed point, with a smooth step-size sequence.
Equation (1.1) with f defined by (1.4) illustrates a saddle point. For this example we took

τ = 10−2 with the other method parameters for both the standard and PSθ methods as above.
Figure 3 shows that the standard adaptive algorithm either results in oscillations about the
unstable manifold (if R(z) = −1 at the linear stability limit) or solutions which do not oscillate
but fail to pass close to the local unstable manifold (if R(z) = 1). In contrast the PSθ method
gives a solution, Figure 4, which closely follows the exact solution.

In Figure 14 we illustrate the improvement in the new step-size selection mechanism of the
PSθ method over that of the PS method of [8], by applying the RK2(3) method to the previous
problem. The PSθ method uses different constant step-sizes near to the local stable and unstable
manifolds with a smooth transition between them. In contrast the step-size sequence for the
original PS method is unstable near to the stable manifold and transition between the stable
and unstable manifold.
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Figure 14: Comparing with step-size sequences of the RK2(3) method with PS and PSθ control
applied to (1.1) with f defined by (1.4).

Next we illustrate the behaviour around a stable fixed point with non-real eigenvalues. We
apply the DOPRI8(7) method with EPUS control to (1.1) with

f(y) =




−7.947 4.668 3.0229 −0.345
−1.278 −5.527 −3.639 −3.533
−0.832 −2.305 −4.526 −4.049
−5.359 −0.502 0.153 −6







y1

y2

y3

y4


 . (7.50)

f(y) has eigenvalues −10±5i and −2± i. We took y(0) = [1, 1, 1, 1]T , ∆t0 = 0.5, and τ = 1e−3.
Figure 15 gives the solution norm and step-sizes. Just as for the problems with real eigenvalues
we see that PSθ control has the effect of driving the solution towards equilibrium.

Finally we note that use of the 2-norm is not arbitrary. If the ∞-norm is used step-size
instabilities arise in problems with saddle points, where there is a transition between step-sizes
near the local stable and unstable manifolds, and in problems with complex eigenvalues.
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