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LATEX

Schedule for Numerical Algorithms for Differential

Equations and Dynamical Systems

Sunday June 13
1:30-2:20 Tony Humphries Numerics and Dynamics
2:30-3:20 Raymond Spiteri A Comparison of Stiffness Detection

Methods for Initial-Value ODEs
3:45-4:35 Wayne Hayes A Practical Shadowing-based Timestep

Criterion for Galaxy Simulations
4:45-5:35 Eusebius Doedel Bifurcation of periodic orbits in the

Circular Restricted 3-Body Problem
Monday June 14
1:30-2:20 Ned Nedialkov Solving Differential-Algebraic Equations

by Taylor Series
2:30-2:55 David Cottrell A backward analysis of simple collisions
3:00-3:25 Martin Gander Moving Mesh Methods and Energy

Conservation
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LATEX

Numerics of Dynamics

In dynamical systems it is often the asymptotic (large time) be-
haviour for general initial conditions that is of interest. However
traditional numerical analysis typically focuses on the solution of a
given initial value problem over a finite time interval, usually provid-
ing error bounds which grow exponentially in time, which are not
directly useful in a dynamical systems context. Over the last two
decades there has been an explosion of work in the "numerics of
dynamics" providing techniques for numerically studying dynamical
systems and rigorous meanings for the pretty pictures obtained.
In this session we will see some of these techniques including di-
rect methods for computing special trajectories (eg periodic orbits),
backward error analysis, stiffness and adaptive time-stepping. In
this overview talk we introduce some issues that arise, and the
techniques used to tackle them. Along the way we will show that
the backward Euler method is a very bad method.
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ODEs and Dynamical Systems

Consider autonomous ODE

u̇ = f(u) ∈ IRp

Existence and uniqueness of solutions allows us to define an
evolution operator

S(t) : u(0)→ u(t)

and plot solutions as curves (parameterized by t) in phase
space IRp.
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LATEX

Invariant Sets and Attractors

Asymptotic behaviour defined by ω-limit sets which are
invariant under S(t).

Invariant sets include fixed points, periodic orbits, invariant
tori, heteroclinic and homoclinic connections, strange
attractors.
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Numerical Approximation

un is approx to u(nh) which solves u̇ = f(u), u(0) = U .

Forward Euler (order 1): un+1 = un + hf(un)

Backward Euler (order 1): un+1 = un + hf(un+1)

General order p order implicit and explicit Runge-Kutta
methods

Classical error bound:

‖u(tn)− un‖ ≤ Chp+1(eLtn − 1).

“Traditional” numerical analysis fixes finite time interval [0, T ]
and initial condition u(0) = U and considers h→ 0.

Error bound grows exponentially in time, so what do
long-time numerics mean ?
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Taylor Series Methods

Runge-Kutta methods are not the only numerical methods for
ODEs...

Runge-Kutta methods approximate the Taylor series of the
exact solution just evaluations of f(u).

This avoids symbolic differentiation of f which would be
required to evaluate the Taylor series directly.

With modern computer power and techniques symbolic
differentiation is not so expensive as it once seemed, and
Taylor series solutions can be competitive for some
applications.

N. Nedialkov will present Taylor Series methods for solving
high-index differential algebraic equations (DAEs).

Halifax June 2004 – p.7/39



LATEX

The Direct and Indirect Approach

Two approaches to

u̇(t) = f(u(t)), u(0) = U ∈ IRd,

1. Direct Approach
Set up equations to directly solve for interesting invariant
sets.

2. Indirect Approach
Simulate dynamical system numerically and invariant sets
are observed indirectly in the flow.

Approaches are complementary. Akin to zoom or wide-angle
camera lens.
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Organisation of flow on chaotic attractors
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ẋ = σ(y − x)
ẏ = rx− y − xz
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Flow in forward time organ-
ised by fixed points and un-
stable manifolds.

1. Seek to reproduce fixed point & local unstable manifold
structure

2. Requires (much more than) good solutions near fixed points

Halifax June 2004 – p.9/39



LATEX

Organisation of flow on chaotic attractors

−20
0

20 −40

0

40

0

25

50

u
2

Phase Space
Dormand−Prince 5(4) applied to Lorenz

u
1

u 3

Lorenz Equations
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The Indirect Approach

Backward Error Analysis: Shadowing

Numerical trajectory is a poor approximation to solution with
given initial value, due to growing error.

Can we find a perturbed initial condition ũ(0) such that the
numerical solution with initial condition u(0) stays close to
the exact solution with initial condition ũ(0) for long or
infinite time?

Infinite time shadowing usually not possible in practical
applications.

W. Hayes will present work on shadowing in Galaxy
Simulations.
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The Indirect Approach

Backward Error Analysis: Modified Equations

Rather than perturb initial condition perturb the vector field.

Can find a hierarchy of vector fields fq(u) = f(u) +O(hq)

such that un is O(hq+1) close to solution of u̇ = fq(u).

Usually sequence does not converge, but truncating
optimally can find small perturbation of original differential
equation which numerical solution solves nearly exactly.

This sort of backward error analysis particularly successful for
Hamiltonian systems.

The symplectic Runge-Kutta methods have numerical
solutions which define a symplectic map when applied to a
Hamiltonian ODE, which are the exact solution of a
Hamiltonian perturbation of the original Hamiltonian system.

D. Cottrell will present a backward error analysis of the
symplectic Euler method applied to a particle collision model.
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LATEX

The Indirect Approach

Backward Error Analysis: Modified Equations

Rather than perturb initial condition perturb the vector field.

Can find a hierarchy of vector fields fq(u) = f(u) +O(hq)

such that un is O(hq+1) close to solution of u̇ = fq(u).

Usually sequence does not converge, but truncating
optimally can find small perturbation of original differential
equation which numerical solution solves nearly exactly.

This sort of backward error analysis particularly successful for
Hamiltonian systems.

D. Cottrell will present a backward error analysis of the
symplectic Euler method applied to a particle collision model.

Halifax June 2004 – p.11/39



LATEX

Analysis of

The Indirect Approach

Let S(t) : u(0)→ u(t) be evolution operator for dynamical
system u̇ = f(u).

The numerical method defines a map Sh : un → un+1. Eg
for Forward Euler un+1 = un + hf(un) so

Shu = u + hf(u),

For implicit methods Sh defined implicitly. Eg for Backward
Euler un+1 = un + hf(un+1) so

Shu = u + hf(Shu).

So numerical methods define discrete dynamical systems.

We can use dynamical systems techniques to compare
behaviour of the dynamical system defined by S(t) and the
one parameter family of dynamical systems defined by Sh,
especially their invariant sets.

This approach well established, many results......
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Parameterized Families of Dynamical Systems

We treat step-size h as a bifurcation parameter.

But if original dynamical system has parameter(s) we get
multiple bifurcation parameters. Eg we will consider Lorenz
equations with r varying.

Can have spurious bifurcations of co-dimension 1 or higher.
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Fixed Point Bifurcations

For the forward Euler method Shu = u+ hf(u) so if f(u) = 0
then Shu = u. Thus the method preserves all fixed points of
dynamical system.

[Iserles]: all Runge-Kutta and linear multistep methods
preserve all fixed points of underlying dynamical system

For parameterised family of dynamical systems this implies
that all fixed point bifurcations are reproduced exactly with
exact parameter values.

However Runge-Kutta methods may admit additional
spurious fixed points and fixed point bifurcations.
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Spurious Solutions and Stability

Let λ be eigenvalue of Jacobian of f at a fixed point. Then
numerical stability in direction of corresponding eigenvector
determined by solution of numerical method applied to

u̇ = λu.

For general Runge-Kutta method

un+1 = R(hλ)un, un =
{
R(hλ)

}n
u0,

For Forward Euler

un+1 = un + hλun, so R(z) = 1 + z.

Region on which |R(z)| < 1 is called stability region.
When this boundary is crossed stability changes and in general
bifurcation occurs.
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Saddle Point Example

Backward Euler ≡ Forward Euler

Consider simple linear saddle point

u̇1 = −u1, u̇2 = u2

Forward Euler

un+1
1

= un1 − hun1

stability h < 2, mono h < 1

Backward Euler

un+1
1

= un1 − hun+1
1

mono stability ∀h > 0
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u̇1 = −u1, u̇2 = u2

Forward Euler

un+1
1

= un1 − hun1

stability h < 2, mono h < 1

un+1
2

= un2 + hun2
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un+1
1
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1

mono stability ∀h > 0

un+1
2

= un2 + hun+1
2
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The Indirect Approach

The Problem of Stiffness

Spurious invariant limit sets typically bifurcate from linear
stability (or instability) limit.

So keep step-size below stability limit (and instability limit) if
possible.

Large negative eigenvalues present a problem. Require stiff
L-stable methods with R(z)→ 0 as |z| → ∞ to avoid having
to use very small step-sizes. All such methods implicit.

Stiff methods are not a cure all. Stiffness theory typically
ignores saddle points and problem of preservation of
instability.

Problem of stiffness detection important: R. Spiteri will
consider this.
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Spurious Solutions and Stability Limit

Forward Euler Method
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Spurious Solutions and Stability Limit

Backward Euler Method
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Spurious Solutions and Stability Limit

Backward Euler Method
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Simulating Systems with

Hopf Bifurcations
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Perturbation of Hopf Bifurcation
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Lorenz Hopf Bifurcation

Location in r-h parameter space
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Lorenz Hopf Bifurcation

RK2 simulations
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Hopf Bifurcation Theorem

Theorem For a Runge-Kutta method of linear order 2p for p > 0

µ∗ − µ∗

h = O(h2p+1)

where µ∗ is parameter value of Hopf bifurcation of dynamical
system and µ∗

h is perturbed bifurcation for numerical method
with step-size h.

[Humphries & Christodoulou, in prep]
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The Direct Approach

Finding Invariant Sets

How do we find periodic orbits implied by Hopf bifurcation
theorem, and other invariant sets ?

Set up equations defining required invariant set and solve.

For u̇ = f(u) fixed points given by f(u) = 0.

Periodic orbits, heteroclinic connections etc not so easy.

Strange attractor: not possible.
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The Direct Approach

Periodic Orbits

Subject of Doedel’s talk.

Need to solve for orbit and period T . Let v(t) = u(tT ) ∈ IRp then

v̇ = Tf(v), t ∈ [0, 1]

v(0) = v(1).

One more unknown than equations. One parameter family
of solutions, starting anywhere on orbit.

Add phase condition to fix particular orbit. Use Doedel’s
AUTO code to solve.

More difficult with Hamiltonian systems with families of
periodic orbits. Need to break Hamiltonian structure.

Parameter continuation, bifurcation detection all possible.
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The Indirect Approach

Variable Time-Stepping

Now allow step-size hn to vary step to step, for efficiency.

Dynamical systems techniques still appropriate but harder

Evolution (un, hn)→ (un+1, hn+1) includes step-size so is
different dimension to underlying dynamical system

Map is discontinuous due to step-size rejections.

Traditional time-stepping based on local error control

Analysis of this relied on tolerance proportionality
assumption which is false.

[Stuart],[Lamba & Stuart]: rigorous finite time convergence
for some cases.
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Stable Fixed Point Example

Consider the method RK1(2) applied to the linear system

u̇ =

[
−5 0

0 −1

]
, u =

[
u1

u2

]
, u(0) =

[
1, 10−4

]T
.
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(0, 0) – stable fixed point.

For this method, the numerical solu-
tion gives persistent spurious oscilla-
tions and the y1 component has O(τ)
oscillation about the fixed point.

Halifax June 2004 – p.29/39



LATEX

RK2(3) & RK4(5) Saddle Point Example

u̇ =
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0 1
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RK2(3) numerical solution does
not pass close to fixed point or the
local unstable manifold.

RK4(5) has spurious oscillations about
the unstable manifold. Numerical solu-
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the unstable manifold. −0.02 0 0.02 0.04 0.06 0.08 0.1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

y
1

y 2

RK4(5) with Standard

y
n

y(t)

Halifax June 2004 – p.30/39



LATEX

RK2(3) & RK4(5) Saddle Point Example

u̇ =

(
−1 0

0 1

)
u, u =

(
u1

u2

)
, u(0) =

(
0.99, 10−10

)T
.

0 0.02 0.04 0.06 0.08 0.1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

y
1

y 2

RK2(3) with Standard

y
n

y(t)

RK2(3) numerical solution does
not pass close to fixed point or the
local unstable manifold.

RK4(5) has spurious oscillations about
the unstable manifold. Numerical solu-
tion can ultimately end up either side of
the unstable manifold. −0.02 0 0.02 0.04 0.06 0.08 0.1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

y
1

y 2

RK4(5) with Standard

y
n

y(t)

Halifax June 2004 – p.30/39



LATEX

RK2(3) & RK4(5) Saddle Point Example

u̇ =

(
−1 0

0 1

)
u, u =

(
u1

u2

)
, u(0) =

(
0.99, 10−10

)T
.

0 0.02 0.04 0.06 0.08 0.1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

y
1

y 2

RK2(3) with Standard

y
n

y(t)

RK2(3) numerical solution does
not pass close to fixed point or the
local unstable manifold.

RK4(5) has spurious oscillations about
the unstable manifold. Numerical solu-
tion can ultimately end up either side of
the unstable manifold. −0.02 0 0.02 0.04 0.06 0.08 0.1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

y
1

y 2

RK4(5) with Standard

y
n

y(t)

Halifax June 2004 – p.30/39



LATEX

Local error approximation

With user-defined tolerance, 0 < τ ¿ 1, step hn chosen by

‖E(un, hn)‖ 6 τ, where E(un, hn) =
1

h
ρ
n
(un+1 − ũn+1).

with ρ = 0 error per step (EPS) or ρ = 1 error per unit step
(EPUS).

Algorithm attempts to ensure

E(un, hn) ≈ γτ, γ ∈ (0, 1) safety factor

Leads to trouble near fixed points since f(un) = 0 implies

E(un, hn) = 0.
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Variable Time-stepping

Summary

Standard algorithm must fail near (un)stable manifolds;
seeks to control error over infinite time interval

[Hall 1986], [Hall & Higham 1988] showed step-size driven
to linear stability limit near fixed point

Tolerance proportionality fails; maximum step-size
independent of tolerance

Stiff Implicit methods unsuitable; typically severe step-size
restrictions required to preserve the genuine instabilities
which drive chaos

No better time-stepping algorithm. Gustaffson’s
PI-controller based algorithm addresses stable fixed point
problem, ensures step-size driven to stability limit in stable
manner; does not address underlying dynamics.
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We need a Different Time-Stepping Approach

Control theory step-size controllers [Gustaffson &
Soderlind] address stability of step-size sequence, but use
same error control so dynamics not resolved

M. Gander will present an idea based on a moving mesh
formulation.

We consider a alternative approach devising a phase space
based error control which can be applied in consort with the
traditional error control.
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LATEX

Phase Space (PSθ) Error Control

We demand at each step the phase space (PSθ) error
control

‖un+1 − un − hn[(1− θ)f(un) + θf(un+1)]‖

≤ ϕhn‖(1− θ)f(un) + θf(un+1)‖, ϕ ∈ (0, 1).

hn‖(1− θ)f(un) + θf(un+1)‖ is approximation to arc length
evolved over step.

So PSθ error control bounds an approximation to local error
by a fraction ϕ of an approximation to solution arc length in
phase space. So is a phase space error control.

Will show it also acts as a stability control.

Will combine this error control with standard error control;
and demand both are satisfied at every step.

Halifax June 2004 – p.34/39



LATEX

Phase Space (PSθ) Error Control

We demand at each step the phase space (PSθ) error
control

‖un+1 − un − hn[(1− θ)f(un) + θf(un+1)]‖

≤ ϕhn‖(1− θ)f(un) + θf(un+1)‖, ϕ ∈ (0, 1).

hn‖(1− θ)f(un) + θf(un+1)‖ is approximation to arc length
evolved over step.

So PSθ error control bounds an approximation to local error
by a fraction ϕ of an approximation to solution arc length in
phase space. So is a phase space error control.

Will show it also acts as a stability control.

Will combine this error control with standard error control;
and demand both are satisfied at every step.

Halifax June 2004 – p.34/39



LATEX

Phase Space (PSθ) Error Control

We demand at each step the phase space (PSθ) error
control

‖un+1 − un − hn[(1− θ)f(un) + θf(un+1)]‖

≤ ϕhn‖(1− θ)f(un) + θf(un+1)‖, ϕ ∈ (0, 1).

hn‖(1− θ)f(un) + θf(un+1)‖ is approximation to arc length
evolved over step.

So PSθ error control bounds an approximation to local error
by a fraction ϕ of an approximation to solution arc length in
phase space. So is a phase space error control.

Will show it also acts as a stability control.

Will combine this error control with standard error control;
and demand both are satisfied at every step.

Halifax June 2004 – p.34/39



LATEX

Phase Space (PSθ) Error Control

We demand at each step the phase space (PSθ) error
control

‖un+1 − un − hn[(1− θ)f(un) + θf(un+1)]‖

≤ ϕhn‖(1− θ)f(un) + θf(un+1)‖, ϕ ∈ (0, 1).

hn‖(1− θ)f(un) + θf(un+1)‖ is approximation to arc length
evolved over step.

So PSθ error control bounds an approximation to local error
by a fraction ϕ of an approximation to solution arc length in
phase space. So is a phase space error control.

Will show it also acts as a stability control.

Will combine this error control with standard error control;
and demand both are satisfied at every step.

Halifax June 2004 – p.34/39



LATEX

Phase Space (PSθ) Error Control

We demand at each step the phase space (PSθ) error
control

‖un+1 − un − hn[(1− θ)f(un) + θf(un+1)]‖

≤ ϕhn‖(1− θ)f(un) + θf(un+1)‖, ϕ ∈ (0, 1).

hn‖(1− θ)f(un) + θf(un+1)‖ is approximation to arc length
evolved over step.

So PSθ error control bounds an approximation to local error
by a fraction ϕ of an approximation to solution arc length in
phase space. So is a phase space error control.

Will show it also acts as a stability control.

Will combine this error control with standard error control;
and demand both are satisfied at every step.

Halifax June 2004 – p.34/39



LATEX

Key Properties of Phase Space Error Control

Negligible additional computation is needed;

Away from fixed points the standard error control is
sufficient to ensure that the PSθ condition is satisfied.

Prevents spurious fixed points;

Forces convergence to stable fixed points;

Gives stable step-size sequence with suitable step-size
selection mechanism

Good behaviour near saddle points

Satisfies tolerance proportionality condition which implies
most of above.
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LATEX

Properties

Non-stiff hyperbolic fixed point for ϕ suff small

Stable: numerical convergence to fixed point, typical
solutions tangential to slowest direction

Saddle: numerical manifolds exist tangential to exact
manifolds at fixed point

Stiff hyperbolic fixed point for ϕ suff small indep of stiffness

Stable: numerical convergence to fixed point, max angle
between typical solutions and slowest direction decreases
with ϕ

Saddle: orbits entering close to stable manifold exit close to
unstable manifold at max angle which decreases with ϕ
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LATEX

Saddle Point Example (Revisited)
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Recall solution with RK2(3) standard algorithm
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Saddle Point Example (Revisited)
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With PSθ spurious oscillation is removed
Step-size is kept below stability limit.
Step-sizes bounded near fixed point.
PSθ only determines step-size near fixed point.
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LATEX

Nonlinear Saddle Point Example
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ode45.m applied to problem from Hale & Kocak
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LATEX

Summary

Numerical methods have been used to simulate dynamical
systems for a long time.

To give meaning to these solutions its fruitful to use
dynamical systems techniques to study these numerical
solutions.

There are many unresolved issues especially interaction of
stiffness and dynamics and adaptive time-stepping

Much current research is concerned with similar issues
applied to DAEs, Stochastic DEs, Functional Differential
Equations.
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