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Convex sets and functions

The Euclidean setting and Minkowski notation
In what follows E will be a Euclidean space, i.e. a real-vector space equipped with an inner product
〈·, ·〉 : E × E→ R of dimension κ < ∞.

Examples

E = Rn , 〈x, y〉 := xT y, κ = n

E = Rm×n , 〈A , B〉 := tr (AT B), κ = mn

Minkowski addition/multiplication: Let A ⊂ E

A + B := {a + b | a ∈ A , b ∈ B } (B ⊂ E)

A + x := A + {x} (x ∈ E)

Λ · A := {λa | a ∈ A , λ ∈ Λ } (Λ ⊂ R)

λA := {λ} · A (λ ∈ R)

Examples:

U,V ⊂ E subspaces. Then U + V = span (U ∪ V)

Bε(x) = x + εB

pos S := R+S (conical hull)
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Convex sets and functions

Convex sets and cones

”The great watershed in optimization is not between linearity and nonlinearity, but convexity and
nonconvexity.” (R.T. Rockafellar, *1935)

S ⊂ E is said to be

convex if λS + (1 − λ)S ⊂ S (λ ∈ (0, 1));

a cone if λS ⊂ S (λ ≥ 0).

Note that K ⊂ E is a convex cone iff K + K ⊂ K .

0

Figure: Convex set/non-convex cone
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Convex sets and functions

The convex hull and the closed convex hull
Definition 1 (Convex hull/closed convex hull).

Let S ⊂ E nonempty. Then the convex hull of S is the smallest convex set containing S, i.e.

conv S :=
⋂
{C ⊂ E | S ⊂ C , C convex } .

The closed convex hull of S is the smallest closed, convex set containing S, i.e.

conv S :=
⋂
{C ⊂ E | S ⊂ C , C closed and convex } .

conv S = cl (conv S)

conv S =
{∑κ+1

i=1 λixi

∣∣∣ xi ∈ S, λi ≥ 0 (i = 1, . . . , κ + 1),
∑κ+1

i=1 λi = 1
}

(Carathéodory’s Theorem)

conv preserves compactness and boundedness, not necessarily closedness

Example: S := {(0
0)} ∪ {(a

1) | a ≥ 0},(
1

1/k

)
= 1

k

(
k
1

)
+

(
1 − 1

k

) (
0
0

)
∈ conv S.

But:
(

1
1/k

)
→

(
1
0

)
< conv S.

1

1
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Convex sets and functions

The topology relative to the affine hull

Affine set: A set S = U + x with x ∈ E and a subspace U ⊂ is called affine. This is characterized by

αS + (1 − α)S ⊂ S (α ∈ R).

Affine hull: affM :=
⋂
{S ∈ E | M ⊂ S, S affine } .

Relative interior/boundary: C ⊂ E convex.

ri C :=
{
x ∈ C

∣∣∣ ∃ε > 0 : Bε(x) ∩ aff C ⊂ C
}

(relative interior)
rbd C := cl C \ ri C (relative boundary)

x ∈ ri C ⇔ span C = R+(C − x)

aff C
ri C

C

C aff C ri C

{x} {x} {x}
[x, x′] {λx + (1 − λ)x′ | λ ∈ R} (x, x′)
Bε(x) E Bε(x)

Table: Examples for relative interiors
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Convex sets and functions

The horizon cone
Definition 2 (Horizon cone).

For a nonempty set S ⊂ E the set

S∞ := {v ∈ E | ∃{xk ∈ S}, {tk } ↓ 0 : tk xk → v }

is called the horizon cone of S. We put ∅∞ := {0}.

C

C∞

Figure: The horizon cone of an unbounded, nonconvex set

Proposition 3 (The convex case).

Let C ⊂ E be nonempty and convex. Then C∞ = {v | ∀x ∈ cl C , λ ≥ 0 : x + λv ∈ cl C } . In particular, C∞

is (a closed and) convex (cone) if C is convex.
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Convex sets and functions

Extended real-valued functions: An epigraphical perspective

Let f : E→ R := R ∪ {±∞}.

epi f :=
{
(x, α) ∈ E × R

∣∣∣ f(x) ≤ α
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Convex sets and functions

Lower semicontinuity

Let f : E→ R and x̄ ∈ E.

Lower limit:
lim infx→x̄ f(x) := inf

{
α

∣∣∣ ∃ xk → x̄ : f(xk )→ α
}

Lower semicontinuity: f is said to be lsc (or closed) at x̄ if

lim inf
x→x̄

f(x) ≥ f(x̄).

Closure: cl f : E→ R, (cl f)(x̄) := lim infx→x̄ f(x).

x̄
x

f(x)

Figure: f not lsc at x̄

Facts:

f lsc ⇐⇒ epi f closed ⇐⇒ f = cl f ⇐⇒ levr f
closed (r ∈ R)

cl f ≤ f

f proper, lsc and coercive (i.e. lim‖x‖→∞ f(x) = ∞) then:

argmin
E

f , ∅ and inf
E

f ∈ R

epi f

x

f(x)

Figure: f : x 7→
{

1
x x > 0,

+∞, else.
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Convex sets and functions

Convexity preserving operations - new from old

1 Set Operations

For C ,Ci (i ∈ I) ⊂ E, D ⊂ E′ convex, F : E→ E′ affine the following sets are convex:

◦ F(C) (affine image)
◦ F−1(D) (affine pre-image)
◦ C × D (Cartesian product)
◦ C1 + C2 (Minkowski sum)
◦

⋂
i∈I Ci (Intersection)

2 Functional operations
For fi , g : E→ R convex and F : E′ → E affine the following functions are convex:

(Affine pre-composition) f := g ◦ F : epi f = T−1(epi g), T : (x, α) 7→ (T(x), α)

(Pointwise supremum) f := supi∈I fi : epi f =
⋂

i∈I epi fi

(Moreau envelope) f := eλg : x 7→ infu

{
g(u) + 1

2λ ‖x − u‖2
}
: epi f = epi g + epi 1

2 ‖ · ‖
2.
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Subdifferentiation and conjugacy of convex functions

The convex subdifferential
Definition 4.
Let f : E→ R. A vector v ∈ E is called a subgradient of v at x̄ if

f(x) ≥ f(x̄) + 〈v , x − x̄〉 (x ∈ E). (1)

We denote by ∂f(x̄) the set of all subgradients of f at x̄ and call it the (convex) subdifferential of f at x̄.

The inequality (1) is referred to as subgradient inequality.

Slogan: ”The subgradients of f at x̄ are the slopes of affine minorants of f that coincide with f at x̄”.

The subdifferential operator is a set-valued mapping ∂f : E⇒ E. Set

dom ∂f :=
{
x ∈ E

∣∣∣ ∂f(x) , ∅
}
.

0 ∈ ∂f(x) ⇐⇒ x ∈ argminE f (Fermat’s rule)

∂f(x) closed and convex (x ∈ E)

∂f(x) is a singleton ⇐⇒ f differentiable at x ⇐⇒ f continuously differentiable at x

ri (dom f) ⊂ dom ∂f ⊂ dom f (f convex).
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Subdifferentiation and conjugacy of convex functions

Examples of subdifferentiation
(Indicator function/Normal cone) Let S ⊂ E.

Indicator function of S:

δS : E→ R ∪ {+∞}, δS (x) :=

{
0, x ∈ S,

+∞, else.

∂δS (x̄) =
{
v

∣∣∣ δC (x) ≥ δC (x̄) + 〈v , x − x̄〉 (x ∈ E)
}

=
{
v ∈ E

∣∣∣ 〈v , x − x̄〉 ≤ 0 (x ∈ S)
}

=: NS (x̄) (x̄ ∈ S)

S

NS (0)

Figure: Normal cone

(Euclidean norm) ‖ · ‖ :=
√
〈·, ·〉. Then

∂‖ · ‖(x̄) =


{

x̄
‖x̄‖

}
if x̄ , 0,

B if x̄ = 0.

(Empty subdifferential)

f : x ∈ R 7→
{
−
√

x if x ≥ 0,
+∞ else.

∂f(x) =


{
− 1

2
√

x

}
, x > 0,

∅, else.
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Subdifferentiation and conjugacy of convex functions

The Fenchel conjugate

For f : E→ R∪ {+∞} let f∗ : E→ R be the function whose epigraph encodes the affine minorants of epi f :

epi f∗ !
=

{
(v , β)

∣∣∣ 〈v , x〉 − β ≤ f(x) (x ∈ E)
}

=⇒ f∗(v) ≤ β ⇐⇒ sup
x∈E
{〈v , x〉 − f(x)} ≤ β ((v , β) ∈ E × R)

=⇒ f∗(v) = sup
x∈E
{〈v , x〉 − f(x)} (v ∈ E). (2)

Definition 5 (Fenchel conjugate).

Let f : E→ R proper. The function f∗ : E→ R defined through (2) is called the (Fenchel) conjugate of f .
The function (f∗∗) := (f∗)∗ is called the biconjugate of f .

Define Γ :=
{
f : E→ R | f convex and proper

}
and Γ0 := {f ∈ Γ | f closed } .

f∗ closed and convex - proper if f . +∞ with an affine minorant

f = f∗∗proper ⇐⇒ f ∈ Γ0 (Fenchel-Moreau)

f∗ = (cl f)∗ (f ∈ Γ)

f(x) + f∗(y) ≥ 〈x, y〉 (x, y ∈ E) (Fenchel-Young Inequality)
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Subdifferentiation and conjugacy of convex functions

Interplay of conjugation and subdifferentiation

Theorem 6 (Subdifferential and conjugate function).

Let f ∈ Γ0. TFAE:

i) y ∈ ∂f(x);

ii) f(x) + f∗(y) = 〈x, y〉;

iii) x ∈ ∂f∗(y).

In particular, ∂f∗ = (∂f)−1.

Proof.
Notice that

y ∈ ∂f(x) ⇐⇒ f(z) ≥ f(x) + 〈y, z − x〉 (z ∈ E)

⇐⇒ 〈y, x〉 − f(x) ≥ sup
z
{〈y, z〉 − f(z)}

⇐⇒ f(x) + f∗(y) ≤ 〈x, y〉
Fenchel−Young
⇐⇒ f(x) + f∗(y) = 〈x, y〉 ,

Applying the same reasoning to f∗ and noticing that f∗∗ = f if f ∈ Γ0, gives the missing equivalence. �
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Subdifferentiation and conjugacy of convex functions

Support functions: A special case of conjugacy
The support function σS of S ⊂ E (nonempty) is defined by

σS : E→ R ∪ {+∞}, σS (z) := δ∗S (z) = sup
x∈S
〈x, z〉 .

σS is finite-valued if and only if S is bounded (and nonempty)

σS = σconv S = σconv S = σcl S

σ∗S = δconv S

∂σS (x) =
{
z ∈ conv S

∣∣∣ x ∈ Nconv S (z)
}

epiσS =
⋂

s∈S epi 〈s, ·〉 is a nonempty, closed, convex cone, i.e. σS is proper, closed and
sublinear.

Here’s the complete picture:

Theorem 7 (Hörmander).

A function f : E→ R is proper, closed and sublinear if and only if it is a support function.

Proof.
Blackboard/Notes. �
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Subdifferentiation and conjugacy of convex functions

Gauges and polar sets
Definition 8 (Gauge function).

Let C ⊂ E. The gauge (function) of C is defined by γC : x ∈ E 7→ inf {λ ≥ 0 | x ∈ λC } .

If C ⊂ E be nonempty, closed and convex with 0 ∈ C, then γC is proper, lsc and sublinear.

Definition 9 (Polar sets).

Let C ⊂ E. Then its polar set is defined by

C◦ :=
{
v ∈ E

∣∣∣ 〈v , x〉 ≤ 1 (x ∈ C)
}
.

Moreover, we put C◦◦ := (C◦)◦ and call it the bipolar set of C.

If K is a cone then K ◦ =
{
v ∈ E

∣∣∣ 〈v , x〉 ≤ 0 (x ∈ K)
}
.

For C ⊂ E we have C◦◦ = conv (C ∪ {0}). (bipolar theorem)

Proposition 10.

Let C ⊂ E be closed and convex with 0 ∈ C. Then

γC = σC◦
∗
←→ δC◦ and γC◦ = σC

∗
←→ δC .
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Infimal convolution and the Attouch-Brézis Theorem

Infimal projection

Theorem 11 (Infimal projection).

Let ψ : E1 × E2 → R ∪ {+∞} be convex. Then the optimal value function

p : E1 → R, p(x) := inf
y∈E2

ψ(x, y)

is convex.

Proof.
Let L : (x, y, α) 7→ (x, α) and observe that

epi <p =

{
(x, α)

∣∣∣∣∣ inf
y
ψ(x, y) < α

}
=

{
(x, α)

∣∣∣ ∃y : ψ(x, y) < α
}

= L(epi <ψ).

Hence epi <p is a convex set, and thus p is convex. �



Fundamentals from Convex Analysis Conjugacy of composite functions via K -convexity and inf-convolution A new class of matrix support functionals

Infimal convolution and the Attouch-Brézis Theorem
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Infimal convolution - a special case of infimal projection
Definition 12 (Infimal convolution).

Let f , g : E→ R ∪ {+∞}. Then the function

f#g : E→ R, (f#g)(x) := inf
u∈E
{f(u) + g(x − u)}

is called the infimal convolution of f and g. We call the infimal convolution f#g exact at x ∈ E if

argmin
u∈E

{f(u) + g(x − u)} , ∅.

We simply call f#g exact if it is exact at every x ∈ dom f#g.

We always have:
dom f#g = dom f + dom g;
f#g = g#f ;
f , g convex, then f#g convex (as (f#g)(x) = infy h(x, y) with h : (x, y) 7→ f(y) + g(x − y)
convex).

Example 13 (Distance functions).

Let C ⊂ E. Then dC := δC #‖ · ‖, i.e.
dC (x) = inf

u∈C
‖x − u‖

is the distance function of C, which is hence convex if C is a convex.
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Conjugacy of infimal convolution
Proposition 14 (Conjugacy of inf-convolution).

Let f , g : E→ R ∪ {+∞}. Then the following hold:

a) (f#g)∗ = f∗ + g∗;

b) If f , g ∈ Γ0 such that dom f ∩ dom g , ∅, then (f + g)∗ = cl (f∗#g∗).

Proof.
a) For all y ∈ E, we have

(f#g)∗(y) = sup
x

{
〈x, y〉 − inf

u

{
f(u) + g(x − u)

}}
= sup

x,u

{
〈x, y〉 − f(u) − g(x − u)

}
= sup

x,u

{
(〈u, y〉 − f(u)) + (〈x − u, y〉 − g(x − u))

}
= f∗(y) + g∗(y).

b) (f∗#g∗)∗
a)
= f∗∗ + g∗∗

f ,g∈Γ0
= f + g

clear?
∈ Γ

=⇒ cl (f∗#g∗) = (f∗#g∗)∗∗ = (f + g)∗.

�
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Conjugacy of infimal convolution
Proposition 14 (Conjugacy of inf-convolution).

Let f , g : E→ R ∪ {+∞}. Then the following hold:

a) (f#g)∗ = f∗ + g∗;

b) If f , g ∈ Γ0 such that dom f ∩ dom g , ∅, then (f + g)∗ = cl (f∗#g∗).

Proof.
a) For all y ∈ E, we have

(f#g)∗(y) = sup
x

{
〈x, y〉 − inf

u

{
f(u) + g(x − u)

}}
= sup

x,u

{
〈x, y〉 − f(u) − g(x − u)

}
= sup

x,u

{
(〈u, y〉 − f(u)) + (〈x − u, y〉 − g(x − u))

}

= f∗(y) + g∗(y).

b) (f∗#g∗)∗
a)
= f∗∗ + g∗∗

f ,g∈Γ0
= f + g

clear?
∈ Γ

=⇒ cl (f∗#g∗) = (f∗#g∗)∗∗ = (f + g)∗.

�



Fundamentals from Convex Analysis Conjugacy of composite functions via K -convexity and inf-convolution A new class of matrix support functionals

Infimal convolution and the Attouch-Brézis Theorem
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Attouch-Brézis - drop the closure!

Theorem 15 (Attouch-Brézis).

Let f , g ∈ Γ0 such that
ri (dom f) ∩ ri (dom g) , 0 (CQ).

Then (f + g)∗ = f∗#g∗, and the infimal convolution is exact, i.e. the infimum in the infimal convolution is
attained on dom f∗#g∗.

Proof.
On blackboard. �

We note that (CQ) is always satisfied under any of the following:

int (dom f) ∩ dom g , ∅,

dom f = E,

and is equivalent to saying that
0 ∈ ri (dom f − dom g).
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Excursion: Moreau envelope and proximal operator 1

Let f ∈ Γ0 and λ > 0. Then

eλf := f#
1

2λ
‖ · ‖2

is called the Moreau envelope of f .

The map Pλf : E→ E given by

Pλf(x) := argmin
u

{
f(u) +

1
2λ
‖x − u‖2

}
.

We have

Pλf is 1-Lipschitz (in fact, firmly non-expansive)

eλf ∈ C1,1 ∩ Γ0

∇eλf = 1
λ (id − Pλf)

x ∈ argmin f ⇐⇒ x ∈ argmin eλf ⇐⇒ x = Pλf(x) (→ proximal point/gradient method)

eλf ↑ f (λ ↓ 0) (monotone pointwise convergence)

epi eλf → epi f (λ ↓ 0) (epi-convergence)

1Not in lecture notes!
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Consequences of Attouch-Brézis

Conjugacy for convex-linear composites

Let f ∈ Γ and L ∈ L(E,E′). Then

Lf : E′ → R, (Lf)(y) := inf
{
f(x)

∣∣∣ L(x) = y
}

is convex2.

Proposition 16.

Let g : E→ R be proper and L ∈ L(E,E′) and T ∈ L(E′,E). Then the following hold:

a) (Lg)∗ = g∗ ◦ L∗.

b) (g ◦ T)∗ = cl (T∗g∗) if g ∈ Γ.

c) The closure in b) can be dropped and the infimum is attained when finite if g ∈ Γ0 and

ri (rge T) ∩ ri (dom g) , ∅. (3)

Proof.
Notes and Part 2. �

2Show that epi <Lf = T(epi < f) for T : (x, y) 7→ (Tx, y).
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Consequences of Attouch-Brézis

Infimal projection revisited

Theorem 17 (Infimal projection II).

Let ψ ∈ Γ0(E1 × E2) and define p : E1 → R by

p(x) := inf
v
ψ(x, v). (4)
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domψ∗(·, 0) , 0 (5)
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Proof.
Blackboard/Notes.

�
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2. Conjugacy of composite functions via
K -convexity and inf-convolution
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K -convexity

Cone-induced ordering

Given a cone K ⊂ E, the relation

x ≤K y :⇐⇒ y − x ∈ K (x, y ∈ E)

induces an ordering on E which is a partial ordering if K is convex and pointed3.

Attach to E a largest element +∞• w.r.t. ≤K which satisfies x ≤K +∞• (x ∈ E).

Set E• := E ∪ {+∞•}.

For F : E1 → E
•
2 define

dom F :=
{
x ∈ E1

∣∣∣ F(x) ∈ E2

}
(domain),

gph F :=
{
(x,F(x)) ∈ E1 × E2 | x ∈ dom F

}
(graph),

rge F :=
{
F(x) ∈ E2 | x ∈ dom F

}
(range).

3 i.e. K ∩ (−K) = {0}
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K -convexity

K -convexity
Definition 18 (K -convexity).

Let K ⊂ E2 be a cone and F : E1 → E
•
2. Then we call F K-convex if

K -epi F :=
{
(x, v) ∈ E1 × E2

∣∣∣ F(x) ≤K v
}

(K -epigraph)

is convex (in E1 × E2).

F is K -convex ⇐⇒ F(λx + (1 − λ)y) ≤K λF(x) + (1 − λ)F(y) (x, y ∈ E1, λ ∈ [0, 1])

F K -convex, then ri (K -epi F) =
{
(x, v)

∣∣∣ x ∈ ri (dom F), F(x) �ri (K) v
}

K ⊂ L cones: F K -convex ⇒ L -convex

Examples:

K = Rm
+ and F : Rn → (Rm)• with Fi ∈ Γ (i = 1, . . . ,m)

K =
{
(x, t) ∈ Rn × R | ‖x‖ ≤ t

}
and F : Rn → Rn × R, F(x) = (x, ‖x‖)

K = Sn
+ and F : Sn → (Sn)•,F(X) =

{
X−1, X � 0,

+∞•, else

K = Sn
+ and F : Rm×n → Sn , F(X) = XXT

K arbitrary, F affine.
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Composite functions and scalarization

Convexity of composite functions

For F : E1 → E
•
2 and g : E2 → R ∪ {+∞} we define

(g ◦ F)(x) :=

{
g(F(x)) if x ∈ dom F ,

+∞ else.

Proposition 19.

Let K ⊂ E2 be a convex cone, F : E1 → E
•
2 K-convex and g ∈ Γ(E2) such that rge F ∩ dom g , ∅. If

g(F(x)) ≤ g(y) ((x, y) ∈ K-epi F) (6)

then the following hold:

a) g ◦ F is convex and proper.

b) If g is lsc and F is continuous then g ◦ F is lower semicontinuous.

Condition (6) holds if g is K-increasing, i.e.

x ≤K y =⇒ g(x) ≤ g(y).



Fundamentals from Convex Analysis Conjugacy of composite functions via K -convexity and inf-convolution A new class of matrix support functionals

Composite functions and scalarization

Convexity of composite functions

For F : E1 → E
•
2 and g : E2 → R ∪ {+∞} we define

(g ◦ F)(x) :=

{
g(F(x)) if x ∈ dom F ,

+∞ else.

Proposition 19.

Let K ⊂ E2 be a convex cone, F : E1 → E
•
2 K-convex and g ∈ Γ(E2) such that rge F ∩ dom g , ∅. If

g(F(x)) ≤ g(y) ((x, y) ∈ K-epi F) (6)

then the following hold:

a) g ◦ F is convex and proper.

b) If g is lsc and F is continuous then g ◦ F is lower semicontinuous.

Condition (6) holds if g is K-increasing, i.e.

x ≤K y =⇒ g(x) ≤ g(y).



Fundamentals from Convex Analysis Conjugacy of composite functions via K -convexity and inf-convolution A new class of matrix support functionals

Composite functions and scalarization

Convexity of composite functions

For F : E1 → E
•
2 and g : E2 → R ∪ {+∞} we define

(g ◦ F)(x) :=

{
g(F(x)) if x ∈ dom F ,

+∞ else.

Proposition 19.

Let K ⊂ E2 be a convex cone, F : E1 → E
•
2 K-convex and g ∈ Γ(E2) such that rge F ∩ dom g , ∅. If

g(F(x)) ≤ g(y) ((x, y) ∈ K-epi F) (6)

then the following hold:

a) g ◦ F is convex and proper.

b) If g is lsc and F is continuous then g ◦ F is lower semicontinuous.

Condition (6) holds if g is K-increasing, i.e.

x ≤K y =⇒ g(x) ≤ g(y).



Fundamentals from Convex Analysis Conjugacy of composite functions via K -convexity and inf-convolution A new class of matrix support functionals

Composite functions and scalarization

Scalarization

Given v ∈ E2 and the linear form 〈v , ·〉 : E2 → R, we set 〈v , F〉 := 〈v , ·〉 ◦ F , i.e.

〈v , F〉 (x) =

{ 〈
v , F(x)

〉
if x ∈ dom F ,

+∞ else.

For K a closed, convex cone we have:

F is K -convex ⇐⇒ 〈v , F〉 is convex (v ∈ −K ◦)

σgph F (u,−v) = 〈v , F〉∗ (u).

σK-epi F (u, v) = σgph F (u, v) + δK◦ (v)

Lemma 20 (Pennanen, JCA 1999).

Let f : E1 → E
•
2 with a convex domain and let K ⊂ E2 be the smallest closed convex cone with respect to

which F is convex. Then
(−K)◦ = {v ∈ E2 | 〈v , F〉 is convex } .



Fundamentals from Convex Analysis Conjugacy of composite functions via K -convexity and inf-convolution A new class of matrix support functionals

Composite functions and scalarization

Scalarization

Given v ∈ E2 and the linear form 〈v , ·〉 : E2 → R, we set 〈v , F〉 := 〈v , ·〉 ◦ F , i.e.

〈v , F〉 (x) =

{ 〈
v , F(x)

〉
if x ∈ dom F ,

+∞ else.

For K a closed, convex cone we have:

F is K -convex ⇐⇒ 〈v , F〉 is convex (v ∈ −K ◦)

σgph F (u,−v) = 〈v , F〉∗ (u).

σK-epi F (u, v) = σgph F (u, v) + δK◦ (v)

Lemma 20 (Pennanen, JCA 1999).

Let f : E1 → E
•
2 with a convex domain and let K ⊂ E2 be the smallest closed convex cone with respect to

which F is convex. Then
(−K)◦ = {v ∈ E2 | 〈v , F〉 is convex } .



Fundamentals from Convex Analysis Conjugacy of composite functions via K -convexity and inf-convolution A new class of matrix support functionals

Composite functions and scalarization

Scalarization

Given v ∈ E2 and the linear form 〈v , ·〉 : E2 → R, we set 〈v , F〉 := 〈v , ·〉 ◦ F , i.e.

〈v , F〉 (x) =

{ 〈
v , F(x)

〉
if x ∈ dom F ,

+∞ else.

For K a closed, convex cone we have:

F is K -convex ⇐⇒ 〈v , F〉 is convex (v ∈ −K ◦)

σgph F (u,−v) = 〈v , F〉∗ (u).

σK-epi F (u, v) = σgph F (u, v) + δK◦ (v)

Lemma 20 (Pennanen, JCA 1999).

Let f : E1 → E
•
2 with a convex domain and let K ⊂ E2 be the smallest closed convex cone with respect to

which F is convex. Then
(−K)◦ = {v ∈ E2 | 〈v , F〉 is convex } .



Fundamentals from Convex Analysis Conjugacy of composite functions via K -convexity and inf-convolution A new class of matrix support functionals

Conjugacy results

The main result

Theorem 21 (Conjugacy for composite function, H./Nguyen ’19, Bot et. al ’11).

Let K ⊂ E2 be a closed convex cone, F : E1 → E
•
2 K-convex such that K-epi F is closed and g0 ∈ Γ(E2)

such that (6) is satisfied, i.e.
x ≤K y =⇒ g(x) ≤ g(y).

Under the CQ
F(ri (dom F)) ∩ ri (dom g − K) , ∅ (7)

we have
(g ◦ F)∗(p) = min

v∈−K◦
g∗(v) + 〈v , F〉∗ (p)

with dom (g ◦ F)∗ =
{
p ∈ E1

∣∣∣ ∃v ∈ dom g∗ ∩ (−K ◦) : 〈v , F〉∗ (p) < +∞
}
.

Proof.
Blackboard/Notes. �

Remark:

The CQ (7) is trivially satisfied if g is finite-valued.

Condition (6) can be replaced by the stronger condition that g be K -increasing.

K -epi F is closed if F is continuous.
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Remark:

The CQ (7) is trivially satisfied if g is finite-valued.

Condition (6) can be replaced by the stronger condition that g be K -increasing.

K -epi F is closed if F is continuous.
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Conjugacy results

Extension to the additive composite setting

Corollary 22 (Conjugate of additive composite functions, H./Nguyen ’19).

Under the assumptions of Theorem 21 let f ∈ Γ0 such that

F(ri (dom f ∩ dom F)) ∩ ri (dom g − K) , ∅. (8)

Then
(f + g ◦ F)∗(p) = min

v∈−K◦ ,
y∈E1

g∗(v) + f∗(y) + 〈v , F〉∗ (p − y).

Proof.
(Sketch) Apply Theorem 21 to g̃ : (s, y) ∈ R × E2 7→ s + g(y), F̃ : x ∈ E1 → (f(x), x) and
K̃ := R+ × K . �
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Conjugacy results

The case K = −hzn g
For g ∈ Γ0 its horizon function g∞ is given via

epi g∞ = (epi g)∞.

The horizon cone of g is
hzn g :=

{
x

∣∣∣ g∞(x) ≤ 0
}∞
.

hzn g = (cone (dom g∗))◦

g is K -increasing for K = −hzn g: Let x �K y, i.e. y = x + b for some b ∈ K . Then

g(x) = sup
z∈dom g∗

{〈x, z〉 − g∗(z)} = sup
z∈dom g∗

{〈y, z〉 − 〈b , z〉 − g∗(z)} ≤ sup
z∈dom g∗

{〈y, z〉 − g∗(z)} = g(y),

Corollary 23 (Burke ’91, H./Nguyen ’19).

Let g ∈ Γ0(E2) and let F : E1 → E
•
2 be (−hzn g)-convex with −hzn g-epi F closed such that

F(ri (dom F)) ∩ ri (dom g + hzn g) , ∅.

Then
(g ◦ F)∗(p) = min

v∈E2
g∗(v) + 〈v , F〉∗ (p).
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Conjugacy results

The linear case

Corollary 24 (The linear case).

Let g ∈ Γ(E2) and F : E1 → E2 linear such that

rge F ∩ ri (dom g) , ∅.

Then
(g ◦ F)∗(p) = min

v∈E2

{
g∗(v)

∣∣∣ F∗(v) = p
}

with dom (g ◦ F) = (F∗)−1(dom g∗).

Proof.
We notice that F is {0}-convex. Hence we can apply Theorem 21 with K = {0}. Condition (7) then reads
rge F ∩ ri (dom g) , ∅, which is our assumption. Hence we obtain

(g ◦ F)∗(p) = min
v∈−K◦

g∗(v) + 〈v , F〉∗ (p) = min
v∈E2

g∗(v) + δ{F∗(v)}(p).

�
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Applications

Conic programming duality

Consider the general conic program

min f(x) s.t. F(x) ∈ −K (9)

or equivalently

min
x∈E1

f(x) + (δ−K ◦ F)(x) (10)

where f : E1 → R is convex, F : E1 → E2 is K -convex and K ⊂ E2 is a closed, convex cone. The
qualification condition (7) turns into a generalized Slater condition

rge F ∩ ri (−K) , ∅. (11)

Theorem 25 (Strong duality and dual attainment for conic programming).

Let f : E1 → R is convex, K ⊂ E2 a closed, convex cone, and let F : E1 → E2 be K-convex with closed
K-epigraph. If (11) holds then

inf
x∈E1

f(x) + (δ−K ◦ F)(x) = max
v∈−K◦

−f∗(y) − (δ−K ◦ F)∗(−y) = max
v∈−K◦

inf
x∈E1

f(x) +
〈
v , F(x)

〉
.
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Applications

Conjugate of pointwise maximum of convex functions

Proposition 26.

For f1, . . . , fm ∈ Γ0(E) define f := maxi=1,...,m fi . Then f ∈ Γ0(E) with

f∗(x) = min
v∈∆m

( m∑
i=1

vi fi

)∗
(x).

Proof.
We have f = g ◦ F for

F : x 7→

(f1(x), . . . , fm(x)) if x ∈
⋂m

i=1 dom fi ,
+∞• otherwise,

and g : y 7→ max
i=1,...,m

xi .

Then F is Rm
+-convex and g is Rm

+-increasing with dom g = Rm , and g∗ = δ∆m
4. Hence

(g ◦ F)∗(x) = min
v∈Rm

+

g∗(v) + 〈v , F〉∗ (x) = min
v∈Rm

+

δ∆m (v) + 〈v , F〉∗ (x) = min
v∈∆m

( m∑
i=1

vi fi

)∗
(x)

�

4∆m =
{
λ ∈ Rm

∣∣∣ ∑m
i=1 λi = 1, λi ≥ 0 (i1, . . . ,m)

}



Fundamentals from Convex Analysis Conjugacy of composite functions via K -convexity and inf-convolution A new class of matrix support functionals

Applications

Conjugate of pointwise maximum of convex functions

Proposition 26.

For f1, . . . , fm ∈ Γ0(E) define f := maxi=1,...,m fi . Then f ∈ Γ0(E) with

f∗(x) = min
v∈∆m

( m∑
i=1

vi fi

)∗
(x).

Proof.
We have f = g ◦ F for

F : x 7→

(f1(x), . . . , fm(x)) if x ∈
⋂m

i=1 dom fi ,
+∞• otherwise,

and g : y 7→ max
i=1,...,m

xi .

Then F is Rm
+-convex and g is Rm

+-increasing with dom g = Rm , and g∗ = δ∆m
4. Hence

(g ◦ F)∗(x) = min
v∈Rm

+

g∗(v) + 〈v , F〉∗ (x) = min
v∈Rm

+

δ∆m (v) + 〈v , F〉∗ (x) = min
v∈∆m

( m∑
i=1

vi fi

)∗
(x)

�

4∆m =
{
λ ∈ Rm

∣∣∣ ∑m
i=1 λi = 1, λi ≥ 0 (i1, . . . ,m)

}



Fundamentals from Convex Analysis Conjugacy of composite functions via K -convexity and inf-convolution A new class of matrix support functionals

Applications

Conjugate of pointwise maximum of convex functions

Proposition 26.

For f1, . . . , fm ∈ Γ0(E) define f := maxi=1,...,m fi . Then f ∈ Γ0(E) with

f∗(x) = min
v∈∆m

( m∑
i=1

vi fi

)∗
(x).

Proof.
We have f = g ◦ F for

F : x 7→

(f1(x), . . . , fm(x)) if x ∈
⋂m

i=1 dom fi ,
+∞• otherwise,

and g : y 7→ max
i=1,...,m

xi .

Then F is Rm
+-convex and g is Rm

+-increasing with dom g = Rm , and g∗ = δ∆m
4.

Hence

(g ◦ F)∗(x) = min
v∈Rm

+

g∗(v) + 〈v , F〉∗ (x) = min
v∈Rm

+

δ∆m (v) + 〈v , F〉∗ (x) = min
v∈∆m

( m∑
i=1

vi fi

)∗
(x)

�

4∆m =
{
λ ∈ Rm

∣∣∣ ∑m
i=1 λi = 1, λi ≥ 0 (i1, . . . ,m)

}



Fundamentals from Convex Analysis Conjugacy of composite functions via K -convexity and inf-convolution A new class of matrix support functionals

Applications

Conjugate of pointwise maximum of convex functions

Proposition 26.

For f1, . . . , fm ∈ Γ0(E) define f := maxi=1,...,m fi . Then f ∈ Γ0(E) with

f∗(x) = min
v∈∆m

( m∑
i=1

vi fi

)∗
(x).

Proof.
We have f = g ◦ F for

F : x 7→

(f1(x), . . . , fm(x)) if x ∈
⋂m

i=1 dom fi ,
+∞• otherwise,

and g : y 7→ max
i=1,...,m

xi .

Then F is Rm
+-convex and g is Rm

+-increasing with dom g = Rm , and g∗ = δ∆m
4. Hence

(g ◦ F)∗(x)

= min
v∈Rm

+

g∗(v) + 〈v , F〉∗ (x) = min
v∈Rm

+

δ∆m (v) + 〈v , F〉∗ (x) = min
v∈∆m

( m∑
i=1

vi fi

)∗
(x)

�

4∆m =
{
λ ∈ Rm

∣∣∣ ∑m
i=1 λi = 1, λi ≥ 0 (i1, . . . ,m)

}



Fundamentals from Convex Analysis Conjugacy of composite functions via K -convexity and inf-convolution A new class of matrix support functionals

Applications

Conjugate of pointwise maximum of convex functions

Proposition 26.

For f1, . . . , fm ∈ Γ0(E) define f := maxi=1,...,m fi . Then f ∈ Γ0(E) with

f∗(x) = min
v∈∆m

( m∑
i=1

vi fi

)∗
(x).

Proof.
We have f = g ◦ F for

F : x 7→

(f1(x), . . . , fm(x)) if x ∈
⋂m

i=1 dom fi ,
+∞• otherwise,

and g : y 7→ max
i=1,...,m

xi .

Then F is Rm
+-convex and g is Rm

+-increasing with dom g = Rm , and g∗ = δ∆m
4. Hence

(g ◦ F)∗(x) = min
v∈Rm

+

g∗(v) + 〈v , F〉∗ (x)

= min
v∈Rm

+

δ∆m (v) + 〈v , F〉∗ (x) = min
v∈∆m

( m∑
i=1

vi fi

)∗
(x)

�

4∆m =
{
λ ∈ Rm

∣∣∣ ∑m
i=1 λi = 1, λi ≥ 0 (i1, . . . ,m)

}



Fundamentals from Convex Analysis Conjugacy of composite functions via K -convexity and inf-convolution A new class of matrix support functionals

Applications

Conjugate of pointwise maximum of convex functions

Proposition 26.

For f1, . . . , fm ∈ Γ0(E) define f := maxi=1,...,m fi . Then f ∈ Γ0(E) with

f∗(x) = min
v∈∆m

( m∑
i=1

vi fi

)∗
(x).

Proof.
We have f = g ◦ F for

F : x 7→

(f1(x), . . . , fm(x)) if x ∈
⋂m

i=1 dom fi ,
+∞• otherwise,

and g : y 7→ max
i=1,...,m

xi .

Then F is Rm
+-convex and g is Rm

+-increasing with dom g = Rm , and g∗ = δ∆m
4. Hence

(g ◦ F)∗(x) = min
v∈Rm

+

g∗(v) + 〈v , F〉∗ (x) = min
v∈Rm

+

δ∆m (v) + 〈v , F〉∗ (x)

= min
v∈∆m

( m∑
i=1

vi fi

)∗
(x)

�

4∆m =
{
λ ∈ Rm

∣∣∣ ∑m
i=1 λi = 1, λi ≥ 0 (i1, . . . ,m)

}
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3. A new class of matrix support functionals
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The generalized matrix-fractional function

Motivation I: Nuclear norm minimization/smoothing

Rank minimization (→ Netflix recommender problem)

min
X∈Rn×m

rank X s.t. MX = B (M ∈ Rp×n ,B ∈ Rp×m) (12)

Approximating the rank function (→ combinatorial)

rank X = ‖σ(X)‖0
Convex approx.

∼ ‖σ(X)‖1 =: ‖X‖∗ (nuclear norm)5

Convex approximation of (12)
min

X∈Rn×m
‖X‖∗ s.t. MX = B

Hsieh/Olsen ’14: ‖X‖∗ = minV∈Sn++

1
2 tr (V) + 1

2 tr (XT V−1X) (X ∈ Rn×m)

Smooth approximation of (12)

min
(X ,V)∈Rn×n×Sn++

1
2

tr (V) +
1
2

tr (XT V−1X) s.t. MX = B

5σ(X) = (σ1 , . . . , σn) is the vector of positive singular values of X .
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The generalized matrix-fractional function

Motivation II: Maximum likelihood estimation
Let yi ∈ R

n (i = 1, . . . ,N) be measurements of

y ∼ N(µ,Σ) (µ ∈ Rn ,Σ ∈ Sn
++ → unknown)

Likelihood function:

`(µ,Σ) :=
1

(2π)n/2

N∏
i=1

1
(det Σ)1/2

exp

(
−

1
2

(yi − µ)T Σ−1(yi − µ)

)
log-likelihood function

log `(µ,Σ) = −
N
2

log(det Σ) −
1
2

N∑
i=1

(yi − µ)T Σ−1(yi − µ) −
n
2

log(2π)

Maximum likelihood estimation

max
(µ,Σ)

`(µ,Σ) ⇔ min
(µ,Σ)
− log `(µ,Σ)

xi :=yi−µ
⇔ min

(X ,Σ)∈Rn×N×Sn++

1
2

tr (XT Σ−1X) +
N
2

log(det Σ)
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The generalized matrix-fractional function

The Moore-Penrose pseudoinverse
Theorem 27 (Moore-Penrose pseudoinverse).

Let A ∈ Rm×n with rank A = r and the singular value decomposition

A = UΣVT with Σ = diag (σi), U,V orthogonal.

The matrix

A† := VΣ†UT with Σ† :=



σ−1
1

. . .
σ−1

r
0

. . .
0


,

called the (Moore-Penrose) pseudoinverse of A is the unique matrix with the following properties.

a) AA†A = A and A†AA† = A†

b) (AA†)T = AA† and (A†A)T = A†As

Moreover:

c) A invertible ⇒ A† = A−1

d) A � 0 ⇒ A† � 0
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The generalized matrix-fractional function

The closure of the matrix-fractional function

Put E := Rn×m × Sn .

φ : (X ,V) ∈ E 7→

{
1
2 tr (XT V−1X) if V � 0,

+∞ else. (matrix-fractional function)

Schur
⇒ epi φ =

{
(X ,V , α)| ∃Y ∈ Sm :

(
V X

XT Y

)
� 0, V � 0, 1

2 tr (Y) ≤ α

}
⇒ φ proper, sublinear and not lsc.

⇒ cl φ : (X ,V) ∈ E 7→

{
1
2 tr (XT V†X) if V � 0, rge X ∈ rge V ,

+∞ else
is proper, lsc and sublinear

Hörmander’s Theorem
⇒ cl φ is a support function
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The generalized matrix-fractional function

Motivation III: Quadratic programming

For A ∈ Rp×n and V ∈ Sn put

M(V) :=
(

V AT
A 0

)
and KA :=

{
V ∈ Sn

∣∣∣ uT Vu ≥ 0 (u ∈ ker A)
}
.

Theorem 28 (Burke, H. ’15).

For b ∈ rge A, we have

inf
u∈Rn

{
1
2

uT Vu − xT u | Au = b
}

=

 −
1
2

(
x
b

)T

M(V)†
(

x
b

)
if x ∈ rge [V AT ], V ∈ KA ,

−∞ else.

Question: For A ∈ Rp×n ,B ∈ Rp×m , is

ϕA ,B : (X ,V) ∈ E 7→

 1
2 tr

(
(X

B)
T

M(V)†(X
B)

)
if rge (X

B) ⊂ rge M(V), V ∈ KA ,

+∞ else

a support function?
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V AT
A 0

)
and KA :=

{
V ∈ Sn

∣∣∣ uT Vu ≥ 0 (u ∈ ker A)
}
.

Theorem 28 (Burke, H. ’15).

For b ∈ rge A, we have

inf
u∈Rn

{
1
2

uT Vu − xT u | Au = b
}

=

 −
1
2

(
x
b

)T

M(V)†
(

x
b

)
if x ∈ rge [V AT ], V ∈ KA ,

−∞ else.

Question: For A ∈ Rp×n ,B ∈ Rp×m , is

ϕA ,B : (X ,V) ∈ E 7→

 1
2 tr

(
(X

B)
T

M(V)†(X
B)

)
if rge (X

B) ⊂ rge M(V), V ∈ KA ,

+∞ else

a support function?
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The generalized matrix-fractional function

A new class of matrix support functions
Define

D(A ,B) :=

{(
Y ,−

1
2

YYT
)
∈ E

∣∣∣ Y ∈ Rn×m : AY = B
}

(A ∈ Rp×n ,B ∈ Rp×m).

Theorem 29 (Burke, H. ’15).

For rge B ⊂ rge A

σD(A ,B)(X ,V) =

 1
2 tr

(
(X

B)
T

M(V)†(X
B)

)
if rge (X

B) ⊂ rge M(V), V ∈ KA ,

+∞ else
((X ,V) ∈ E)

with
int (domσD(A ,B)) =

{
(X ,V) ∈ E | V ∈ intKA

}
.

In particular,

σD(0,0)(X ,V) =

{
1
2 tr (XT V†X) if V � 0, rge X ⊂ rge V ,

+∞ else = cl φ(X ,V).

Proof.
Blackboard/Notes. �
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The closed convex hull of D(A ,B) with applications

Closed convex hull of D(A ,B) : Carathéodory-based description

Recall

∂σD(A ,B)(X ,V) =
{
(Y ,W) ∈ convD(A ,B)

∣∣∣ (X ,V) ∈ NconvD(A ,B)(Y ,W)
}

and σD(A ,B) = δ∗convD(A ,B)

where

D(A ,B) :=

{(
Y ,−

1
2

YYT
)
∈ E

∣∣∣ Y ∈ Rn×m : AY = B
}
.

Proposition 30 (Burke, H. ’15).

convD(A ,B) =

{
(Z(d ⊗ Im),−

1
2

ZZT )
∣∣∣ (d,Z) ∈ F (A ,B)

}
.6

where

F (A ,B) :=

(d,Z) ∈ Rκ+1 × Rn×m(κ+1)

∣∣∣∣∣∣ d ≥ 0, ‖d‖ = 1,

AZi = diB (i = 1, . . . , κ + 1)

 .7

6d ⊗ Im = (di Im) ∈ Rm(κ+1)

7κ := dimE
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The closed convex hull of D(A ,B) with applications

Closed convex hull of D(A ,B) : A new description
Define

Ω(A ,B) :=

{
(Y ,W) ∈ E

∣∣∣∣∣ AY = B and
1
2

YYT + W ∈ K◦A

}
, (13)

and observe that
K◦A = R+conv

{
−vvT | v ∈ ker A

}
.

Theorem 31 (Burke, Gao, H. ’17).

We have
convD(A ,B) = Ω(A ,B).

In particular,

convD(0, 0) =

{
(Y ,W) ∈ E

∣∣∣∣∣ AY = B and
1
2

YYT + W � 0
}
.

Proof.
Notes. �

Corollary 32 (Conjugate of GMF).

We have
σ∗
D(A ,B) = δΩ(A ,B).
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The closed convex hull of D(A ,B) with applications

Convex geometry of Ω(A ,B)

Recall that Ω(A ,B) :=
{
(Y ,W) ∈ E

∣∣∣ AY = B and 1
2 YYT + W ∈ K◦A

}

Proposition 33 (Burke, Gao, H. ’17).

Let Ω(A ,B) be given as above. Then:

a) ri Ω(A ,B) =
{
(Y ,W) ∈ E

∣∣∣ AY = B and 1
2 YYT + W ∈ ri (K◦A )

}
.

b) affΩ(A ,B) =
{
(Y ,W) ∈ E

∣∣∣ AY = B and 1
2 YYT + W ∈ spanK◦A

}
.

c) Ω(A ,B)◦ =
{
(X ,V)

∣∣∣∣∣ rge (X
B) ⊂ rge M(V), V ∈ KA ,

1
2 tr

(
(X

B)
T

M(V)†(X
B)

)
≤ 1

}
.

d) Ω(A ,B)∞ = {0n×m} × K
◦
A .

Proposition 34 (Burke, Gao, H. ’17).

Let Ω(A ,B) be given as above and let (Y ,W) ∈ Ω(A ,B). Then

NΩ(A ,B)(Y ,W) =

(X ,V) ∈ E

∣∣∣∣∣∣∣∣∣
V ∈ KA ,

〈
V ,

1
2

YYT + W
〉

= 0

and rge (X − VY) ⊂ (ker A)⊥

 .
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The closed convex hull of D(A ,B) with applications

Subdifferentiation of the GMF
For any set C recall that

∂σC (x) =
{
z ∈ conv C

∣∣∣ x ∈ Nconv C (z)
}

(14)

Corollary 35 (The subdifferential of σD(A ,B)).

For all (X ,V) ∈ domσD(A ,B), we have

∂σD(A ,B) =

(Y ,W) ∈ Ω(A ,B)

∣∣∣∣∣∣∣∣∣∣
∃Z ∈ Rp×m : X = VY + AT Z ,〈

V ,
1
2

YYT + W
〉

= 0

 .

Corollary 36.

The GMF σD(A ,B) is (continuously) differentiable on the interior of its domain with

∇σD(A ,B)(X ,V) =

(
Y ,−

1
2

YYT
)

((X ,V) ∈ int (domσD(A ,B)))

where Y := A†B + (P(PT VP)−1PT )(X − A†X), P ∈ Rn×(n−p) is any matrix whose columns form an
orthonormal basis of ker A and p := rank A.
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The GMF σD(A ,B) is (continuously) differentiable on the interior of its domain with

∇σD(A ,B)(X ,V) =

(
Y ,−

1
2

YYT
)

((X ,V) ∈ int (domσD(A ,B)))

where Y := A†B + (P(PT VP)−1PT )(X − A†X), P ∈ Rn×(n−p) is any matrix whose columns form an
orthonormal basis of ker A and p := rank A.
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Applications of the GMF

Conjugate of variational Gram functions
For M ⊂ Sn

+ (w.lo.g.) closed, convex, the associated variational Gram function (VGF) is given by

ΩM : Rn×m → R ∪ {+∞}, ΩM(X) =
1
2
σM(XXT ).

With

F : Rn×m → Sn , F(X) =
1
2

XXT . (15)

ΩM = σM ◦ F fits the composite scheme studied in Section 2.

Sn
+ is the smallest closed convex cone in Sn with respect to which F is convex;

−hznσM ⊃ S
n
+. In particular, F is (−hznσM)-convex.

Theorem 37 (Jalali et al. ’17/ Burke, Gao, H. ’19).

Let M ⊂ Sn
+ be nonempty, convex and compact. Then Ω∗M is finite-valued and given by

Ω∗(X) =
1
2

min
V∈M

{
tr (XT V†X)

∣∣∣ rge X ⊂ rge V
}
.

Proof.
Blackboard/Notes. �
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Applications of the GMF

Nuclear norm smoothing
For A ∈ Rp×n set

Ker A :=
{
V ∈ Rn×n | AV = 0

}
and Rge A :=

{
W ∈ Rn×n

∣∣∣ rge W ⊂ rge A
}
.

Theorem 38.
Let p : Rn×m → R be defined by

p(X) = inf
V∈Sn

σΩ(A ,0)(X ,V) +
〈
Ū, V

〉
for some Ū ∈ Sn

+ ∩ Ker A and set C(Ū) :=
{
Y

∣∣∣ 1
2 YYT � Ū

}
. Then we have:

a) p∗ = δC(Ū)∩Ker A is closed, proper, convex.

b) p = σC(Ū)∩Ker A = γC(Ū)◦+Rge AT is sublinear, finite-valued, nonnegative and symmetric (i.e. a
seminorm).

c) If Ū � 0 with 2Ū = LLT (L ∈ Rn×n) and A = 0 then p = σC(Ū) = ‖LT (·)‖∗, i.e. p is a norm with
C(Ū)◦ as its unit ball and γC(Ū) as its dual norm.

Proof.
Blackboard/Notes. �
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Applications of the GMF

Current and future directions

K -convexity

When is conv (gph F) = K -epi F for F K -convex ?

Subdifferential analysis for convex convex-composites, unification with the nonconvex
convex-composite case (BCQ etc.)
Learn more about existing literature!

Generalized matrix-fractional function

Systematic study of (partial) infimal projections

p(X) = inf
V∈Sn

σΩ(A ,B)(X ,V) + h(V).

for h ∈ Γ0(Sn). → SIOPT article to appear.
Numerical methods based on GMF.
Compute (analytically/numerically) the projection onto Ω(A ,B) (→ projection/proximal-based
algorithms).
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