Topics in Convex Analysis

Tim Hoheisel (McGill University, Montreal)

Spring School on Variational Analysis
Paseky, May 19-25, 2019

Outline

1 Fundamentals from Convex Analysis

- Convex sets and functions
- Subdifferentiation and conjugacy of convex functions
- Infimal convolution and the Attouch-Brézis Theorem
- Consequences of Attouch-Brézis

2 Conjugacy of composite functions via K-convexity and inf-convolution

- K-convexity
- Composite functions and scalarization
- Conjugacy results
- Applications

3 A new class of matrix support functionals

- The generalized matrix-fractional function
- The closed convex hull of $\mathcal{D}(A, B)$ with applications
- Applications of the GMF

1. Fundamentals from Convex Analysis

The Euclidean setting and Minkowski notation

In what follows \mathbb{E} will be a Euclidean space, i.e. a real-vector space equipped with an inner product $\langle\cdot, \cdot\rangle: \mathbb{E} \times \mathbb{E} \rightarrow \mathbb{R}$ of dimension $\kappa<\infty$.

The Euclidean setting and Minkowski notation

In what follows \mathbb{E} will be a Euclidean space, i.e. a real-vector space equipped with an inner product $\langle\cdot, \cdot\rangle: \mathbb{E} \times \mathbb{E} \rightarrow \mathbb{R}$ of dimension $\kappa<\infty$.
Examples
■ $\mathbb{E}=\mathbb{R}^{n}, \quad\langle x, y\rangle:=x^{\top} y, \quad \kappa=n$
■ $\mathbb{E}=\mathbb{R}^{m \times n}, \quad\langle A, B\rangle:=\operatorname{tr}\left(A^{T} B\right), \quad \kappa=m n$

The Euclidean setting and Minkowski notation

In what follows \mathbb{E} will be a Euclidean space, i.e. a real-vector space equipped with an inner product $\langle\cdot, \cdot\rangle: \mathbb{E} \times \mathbb{E} \rightarrow \mathbb{R}$ of dimension $\kappa<\infty$.
Examples
■ $\mathbb{E}=\mathbb{R}^{n}, \quad\langle x, y\rangle:=x^{\top} y, \quad \kappa=n$
■ $\mathbb{E}=\mathbb{R}^{m \times n}, \quad\langle A, B\rangle:=\operatorname{tr}\left(A^{T} B\right), \quad \kappa=m n$
Minkowski addition/multiplication: Let $A \subset \mathbb{E}$
■ $A+B:=\{a+b \mid a \in A, b \in B\} \quad(B \subset \mathbb{E})$

The Euclidean setting and Minkowski notation

In what follows \mathbb{E} will be a Euclidean space, i.e. a real-vector space equipped with an inner product $\langle\cdot, \cdot\rangle: \mathbb{E} \times \mathbb{E} \rightarrow \mathbb{R}$ of dimension $\kappa<\infty$.
Examples
■ $\mathbb{E}=\mathbb{R}^{n}, \quad\langle x, y\rangle:=x^{\top} y, \quad \kappa=n$
■ $\mathbb{E}=\mathbb{R}^{m \times n}, \quad\langle A, B\rangle:=\operatorname{tr}\left(A^{T} B\right), \quad \kappa=m n$
Minkowski addition/multiplication: Let $A \subset \mathbb{E}$
$\square A+B:=\{a+b \mid a \in A, b \in B\} \quad(B \subset \mathbb{E})$
■ $A+x:=A+\{x\} \quad(x \in \mathbb{E})$

The Euclidean setting and Minkowski notation

In what follows \mathbb{E} will be a Euclidean space, i.e. a real-vector space equipped with an inner product $\langle\cdot, \cdot\rangle: \mathbb{E} \times \mathbb{E} \rightarrow \mathbb{R}$ of dimension $\kappa<\infty$.
Examples
■ $\mathbb{E}=\mathbb{R}^{n}, \quad\langle x, y\rangle:=x^{\top} y, \quad \kappa=n$
■ $\mathbb{E}=\mathbb{R}^{m \times n}, \quad\langle A, B\rangle:=\operatorname{tr}\left(A^{T} B\right), \quad \kappa=m n$
Minkowski addition/multiplication: Let $A \subset \mathbb{E}$
$\square A+B:=\{a+b \mid a \in A, b \in B\} \quad(B \subset \mathbb{E})$
■ $A+x:=A+\{x\} \quad(x \in \mathbb{E})$
■ $\Lambda \cdot A:=\{\lambda a \mid a \in A, \lambda \in \Lambda\} \quad(\Lambda \subset \mathbb{R})$

The Euclidean setting and Minkowski notation

In what follows \mathbb{E} will be a Euclidean space, i.e. a real-vector space equipped with an inner product $\langle\cdot, \cdot\rangle: \mathbb{E} \times \mathbb{E} \rightarrow \mathbb{R}$ of dimension $\kappa<\infty$.
Examples
■ $\mathbb{E}=\mathbb{R}^{n}, \quad\langle x, y\rangle:=x^{\top} y, \quad \kappa=n$
■ $\mathbb{E}=\mathbb{R}^{m \times n}, \quad\langle A, B\rangle:=\operatorname{tr}\left(A^{T} B\right), \quad \kappa=m n$
Minkowski addition/multiplication: Let $A \subset \mathbb{E}$
$\square A+B:=\{a+b \mid a \in A, b \in B\} \quad(B \subset \mathbb{E})$
■ $A+x:=A+\{x\} \quad(x \in \mathbb{E})$
■ $\Lambda \cdot A:=\{\lambda a \mid a \in A, \lambda \in \Lambda\} \quad(\Lambda \subset \mathbb{R})$
■ $\lambda A:=\{\lambda\} \cdot A(\lambda \in \mathbb{R})$

The Euclidean setting and Minkowski notation

In what follows \mathbb{E} will be a Euclidean space, i.e. a real-vector space equipped with an inner product $\langle\cdot, \cdot\rangle: \mathbb{E} \times \mathbb{E} \rightarrow \mathbb{R}$ of dimension $\kappa<\infty$.
Examples
■ $\mathbb{E}=\mathbb{R}^{n}, \quad\langle x, y\rangle:=x^{\top} y, \quad \kappa=n$
■ $\mathbb{E}=\mathbb{R}^{m \times n}, \quad\langle A, B\rangle:=\operatorname{tr}\left(A^{T} B\right), \quad \kappa=m n$
Minkowski addition/multiplication: Let $A \subset \mathbb{E}$
■ $A+B:=\{a+b \mid a \in A, b \in B\} \quad(B \subset \mathbb{E})$
■ $A+x:=A+\{x\} \quad(x \in \mathbb{E})$
■ $\Lambda \cdot A:=\{\lambda a \mid a \in A, \lambda \in \Lambda\} \quad(\Lambda \subset \mathbb{R})$
■ $\lambda A:=\{\lambda\} \cdot A(\lambda \in \mathbb{R})$
Examples:

- $U, V \subset \mathbb{E}$ subspaces. Then $U+V=\operatorname{span}(U \cup V)$

The Euclidean setting and Minkowski notation

In what follows \mathbb{E} will be a Euclidean space, i.e. a real-vector space equipped with an inner product $\langle\cdot, \cdot\rangle: \mathbb{E} \times \mathbb{E} \rightarrow \mathbb{R}$ of dimension $\kappa<\infty$.
Examples
■ $\mathbb{E}=\mathbb{R}^{n}, \quad\langle x, y\rangle:=x^{\top} y, \quad \kappa=n$
■ $\mathbb{E}=\mathbb{R}^{m \times n}, \quad\langle A, B\rangle:=\operatorname{tr}\left(A^{T} B\right), \quad \kappa=m n$
Minkowski addition/multiplication: Let $A \subset \mathbb{E}$
■ $A+B:=\{a+b \mid a \in A, b \in B\} \quad(B \subset \mathbb{E})$
■ $A+x:=A+\{x\} \quad(x \in \mathbb{E})$
■ $\Lambda \cdot A:=\{\lambda a \mid a \in A, \lambda \in \Lambda\} \quad(\Lambda \subset \mathbb{R})$
$\square \lambda A:=\{\lambda\} \cdot A(\lambda \in \mathbb{R})$
Examples:

- $U, V \subset \mathbb{E}$ subspaces. Then $U+V=\operatorname{span}(U \cup V)$
- $B_{\varepsilon}(x)=x+\varepsilon \mathbb{B}$

The Euclidean setting and Minkowski notation

In what follows \mathbb{E} will be a Euclidean space, i.e. a real-vector space equipped with an inner product $\langle\cdot, \cdot\rangle: \mathbb{E} \times \mathbb{E} \rightarrow \mathbb{R}$ of dimension $\kappa<\infty$.
Examples
■ $\mathbb{E}=\mathbb{R}^{n}, \quad\langle x, y\rangle:=x^{\top} y, \quad \kappa=n$
■ $\mathbb{E}=\mathbb{R}^{m \times n}, \quad\langle A, B\rangle:=\operatorname{tr}\left(A^{T} B\right), \quad \kappa=m n$
Minkowski addition/multiplication: Let $A \subset \mathbb{E}$
■ $A+B:=\{a+b \mid a \in A, b \in B\} \quad(B \subset \mathbb{E})$
■ $A+x:=A+\{x\} \quad(x \in \mathbb{E})$
■ $\Lambda \cdot A:=\{\lambda a \mid a \in A, \lambda \in \Lambda\} \quad(\Lambda \subset \mathbb{R})$
$\square \lambda A:=\{\lambda\} \cdot A(\lambda \in \mathbb{R})$
Examples:

- $U, V \subset \mathbb{E}$ subspaces. Then $U+V=\operatorname{span}(U \cup V)$
- $B_{\varepsilon}(x)=x+\varepsilon \mathbb{B}$

■ $\operatorname{pos} S:=\mathbb{R}_{+} S$ (conical hull)

Convex sets and cones

"The great watershed in optimization is not between linearity and nonlinearity, but convexity and nonconvexity."
(R.T. Rockafellar, *1935)

Convex sets and cones

"The great watershed in optimization is not between linearity and nonlinearity, but convexity and nonconvexity."
$S \subset \mathbb{E}$ is said to be

- convex if $\lambda S+(1-\lambda) S \subset S \quad(\lambda \in(0,1))$;
- a cone if $\lambda S \subset S \quad(\lambda \geq 0)$.

Note that $K \subset \mathbb{E}$ is a convex cone iff $K+K \subset K$.

Figure: Convex set/non-convex cone

The convex hull and the closed convex hull

Definition 1 (Convex hull/closed convex hull).
Let $S \subset \mathbb{E}$ nonempty. Then the convex hull of S is the smallest convex set containing S, i.e.

$$
\operatorname{conv} S:=\bigcap\{C \subset \mathbb{E} \mid S \subset C, C \text { convex }\}
$$

The convex hull and the closed convex hull

Definition 1 (Convex hull/closed convex hull).

Let $S \subset \mathbb{E}$ nonempty. Then the convex hull of S is the smallest convex set containing S, i.e.

$$
\operatorname{conv} S:=\bigcap\{C \subset \mathbb{E} \mid S \subset C, C \text { convex }\}
$$

The closed convex hull of S is the smallest closed, convex set containing S, i.e.

$$
\overline{\text { conv }} S:=\bigcap\{C \subset \mathbb{E} \mid S \subset C, C \text { closed and convex }\}
$$

The convex hull and the closed convex hull

Definition 1 (Convex hull/closed convex hull).

Let $S \subset \mathbb{E}$ nonempty. Then the convex hull of S is the smallest convex set containing S, i.e.

$$
\operatorname{conv} S:=\bigcap\{C \subset \mathbb{E} \mid S \subset C, C \text { convex }\}
$$

The closed convex hull of S is the smallest closed, convex set containing S, i.e.

$$
\overline{\text { conv }} S:=\bigcap\{C \subset \mathbb{E} \mid S \subset C, C \text { closed and convex }\}
$$

■ $\overline{\operatorname{conv}} S=\operatorname{cl}(\operatorname{conv} S)$

The convex hull and the closed convex hull

Definition 1 (Convex hull/closed convex hull).

Let $S \subset \mathbb{E}$ nonempty. Then the convex hull of S is the smallest convex set containing S, i.e.

$$
\operatorname{conv} S:=\bigcap\{C \subset \mathbb{E} \mid S \subset C, C \text { convex }\}
$$

The closed convex hull of S is the smallest closed, convex set containing S, i.e.

$$
\overline{\text { conv }} S:=\bigcap\{C \subset \mathbb{E} \mid S \subset C, C \text { closed and convex }\}
$$

- $\overline{\operatorname{conv}} S=\mathrm{cl}(\operatorname{conv} S)$

■ conv $S=\left\{\sum_{i=1}^{\kappa+1} \lambda_{i} x_{i} \mid x_{i} \in S, \lambda_{i} \geq 0(i=1, \ldots, \kappa+1), \sum_{i=1}^{\kappa+1} \lambda_{i}=1\right\} \quad$ (Carathéodory's Theorem)

The convex hull and the closed convex hull

Definition 1 (Convex hull/closed convex hull).

Let $S \subset \mathbb{E}$ nonempty. Then the convex hull of S is the smallest convex set containing S, i.e.

$$
\operatorname{conv} S:=\bigcap\{C \subset \mathbb{E} \mid S \subset C, C \text { convex }\}
$$

The closed convex hull of S is the smallest closed, convex set containing S, i.e.

$$
\overline{\text { conv }} S:=\bigcap\{C \subset \mathbb{E} \mid S \subset C, C \text { closed and convex }\}
$$

- $\overline{\operatorname{conv}} S=\operatorname{cl}(\operatorname{conv} S)$

■ conv $S=\left\{\sum_{i=1}^{\kappa+1} \lambda_{i} x_{i} \mid x_{i} \in S, \lambda_{i} \geq 0(i=1, \ldots, \kappa+1), \sum_{i=1}^{\kappa+1} \lambda_{i}=1\right\} \quad$ (Carathéodory's Theorem)
■ conv preserves compactness and boundedness, not necessarily closedness

The convex hull and the closed convex hull

Definition 1 (Convex hull/closed convex hull).

Let $S \subset \mathbb{E}$ nonempty. Then the convex hull of S is the smallest convex set containing S, i.e.

$$
\operatorname{conv} S:=\bigcap\{C \subset \mathbb{E} \mid S \subset C, C \text { convex }\}
$$

The closed convex hull of S is the smallest closed, convex set containing S, i.e.

$$
\overline{\text { conv }} S:=\bigcap\{C \subset \mathbb{E} \mid S \subset C, C \text { closed and convex }\}
$$

- $\overline{\operatorname{conv}} S=\operatorname{cl}(\operatorname{conv} S)$

■ conv $S=\left\{\sum_{i=1}^{\kappa+1} \lambda_{i} x_{i} \mid x_{i} \in S, \lambda_{i} \geq 0(i=1, \ldots, \kappa+1), \sum_{i=1}^{\kappa+1} \lambda_{i}=1\right\} \quad$ (Carathéodory's Theorem)

- conv preserves compactness and boundedness, not necessarily closedness

Example: $S:=\left\{\binom{0}{0}\right\} \cup\left\{\left.\binom{a}{1} \right\rvert\, a \geq 0\right\}$, $\binom{1}{1 / k}=\frac{1}{k}\binom{k}{1}+\left(1-\frac{1}{k}\right)\binom{0}{0} \in \operatorname{conv} S$.
But: $\binom{1}{1 / k} \rightarrow\binom{1}{0} \notin \operatorname{conv} S$.

The topology relative to the affine hull

Affine set: A set $S=U+x$ with $x \in \mathbb{E}$ and a subspace $U \subset$ is called affine. This is characterized by

$$
\alpha S+(1-\alpha) S \subset S \quad(\alpha \in \mathbb{R})
$$

The topology relative to the affine hull

Affine set: A set $S=U+x$ with $x \in \mathbb{E}$ and a subspace $U \subset$ is called affine. This is characterized by

$$
\alpha S+(1-\alpha) S \subset S \quad(\alpha \in \mathbb{R})
$$

Affine hull: aff $M:=\bigcap\{S \in \mathbb{E} \mid M \subset S, S$ affine $\}$.

The topology relative to the affine hull

Affine set: A set $S=U+x$ with $x \in \mathbb{E}$ and a subspace $U \subset$ is called affine. This is characterized by

$$
\alpha S+(1-\alpha) S \subset S \quad(\alpha \in \mathbb{R})
$$

Affine hull: aff $M:=\bigcap\{S \in \mathbb{E} \mid M \subset S, S$ affine $\}$.
Relative interior/boundary: $C \subset \mathbb{E}$ convex.

$$
\text { ri } C:=\left\{x \in C \mid \exists \varepsilon>0: B_{\varepsilon}(x) \cap \text { aff } C \subset C\right\} \quad \text { (relative interior) }
$$

The topology relative to the affine hull

Affine set: A set $S=U+x$ with $x \in \mathbb{E}$ and a subspace $U \subset$ is called affine. This is characterized by

$$
\alpha S+(1-\alpha) S \subset S \quad(\alpha \in \mathbb{R})
$$

Affine hull: aff $M:=\bigcap\{S \in \mathbb{E} \mid M \subset S, S$ affine $\}$.
Relative interior/boundary: $C \subset \mathbb{E}$ convex.

$$
\begin{array}{rlll}
\operatorname{ri} C & := & \left\{x \in C \mid \exists \varepsilon>0: B_{\varepsilon}(x) \cap \text { aff } C \subset C\right\} & \\
\operatorname{rbd} C & := & \text { (relative interior) } \\
x \in \operatorname{ri} C & \Leftrightarrow & \operatorname{span} C=\mathbb{R}_{+}(C-x) & \text { (relative boundary) }
\end{array}
$$

The topology relative to the affine hull

Affine set: A set $S=U+x$ with $x \in \mathbb{E}$ and a subspace $U \subset$ is called affine. This is characterized by

$$
\alpha S+(1-\alpha) S \subset S \quad(\alpha \in \mathbb{R})
$$

Affine hull: aff $M:=\bigcap\{S \in \mathbb{E} \mid M \subset S, S$ affine $\}$.
Relative interior/boundary: $C \subset \mathbb{E}$ convex.

$$
\begin{array}{rlll}
\operatorname{ri} C & := & \left\{x \in C \mid \exists \varepsilon>0: B_{\varepsilon}(x) \cap \operatorname{aff} C \subset C\right\} & \\
\operatorname{rbd} C & := & \text { (relative interior) } \\
x \in \operatorname{cl} C \backslash \operatorname{ri} C & \Leftrightarrow & \operatorname{span} C=\mathbb{R}_{+}(C-x) & \text { (relative boundary) }
\end{array}
$$

C	aff C	ri C
$\{x\}$	$\{x\}$	$\{x\}$
$\left[x, x^{\prime}\right]$	$\left\{\lambda x+(1-\lambda) x^{\prime} \mid \lambda \in \mathbb{R}\right\}$	$\left(x, x^{\prime}\right)$
$\bar{B}_{\varepsilon}(x)$	\mathbb{E}	$B_{\varepsilon}(x)$

Table: Examples for relative interiors

The horizon cone

Definition 2 (Horizon cone).

For a nonempty set $S \subset \mathbb{E}$ the set

$$
S^{\infty}:=\left\{v \in \mathbb{E} \mid \exists\left\{x_{k} \in S\right\},\left\{t_{k}\right\} \downarrow 0: t_{k} x_{k} \rightarrow v\right\}
$$

is called the horizon cone of S. We put $\emptyset^{\infty}:=\{0\}$.

The horizon cone

Definition 2 (Horizon cone).

For a nonempty set $S \subset \mathbb{E}$ the set

$$
S^{\infty}:=\left\{v \in \mathbb{E} \mid \exists\left\{x_{k} \in S\right\},\left\{t_{k}\right\} \downarrow 0: t_{k} x_{k} \rightarrow v\right\}
$$

is called the horizon cone of S. We put $\emptyset^{\infty}:=\{0\}$.

Figure: The horizon cone of an unbounded, nonconvex set

Conjugacy of composite functions via K-convexity and inf-convolution 0 00

The horizon cone

Definition 2 (Horizon cone).

For a nonempty set $S \subset \mathbb{E}$ the set

$$
S^{\infty}:=\left\{v \in \mathbb{E} \mid \exists\left\{x_{k} \in S\right\},\left\{t_{k}\right\} \downarrow 0: t_{k} x_{k} \rightarrow v\right\}
$$

is called the horizon cone of S. We put $\emptyset^{\infty}:=\{0\}$.

Figure: The horizon cone of an unbounded, nonconvex set

Proposition 3 (The convex case).

Let $C \subset \mathbb{E}$ be nonempty and convex. Then $C^{\infty}=\{v \mid \forall x \in \operatorname{clC}, \lambda \geq 0: x+\lambda v \in \operatorname{cl} C\}$. In particular, C^{∞} is (a closed and) convex (cone) if C is convex.

Extended real-valued functions: An epigraphical perspective

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{ \pm \infty\}$.

■ epi $f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \leq \alpha\} \quad$ (epigraph)

Extended real-valued functions: An epigraphical perspective

```
Let \(f: \mathbb{E} \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{ \pm \infty\}\).
    - epi \(f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \leq \alpha\} \quad\) (epigraph)
    - epi \({ }_{<} f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x)<\alpha\} \quad\) (strict epigraph)
```


Extended real-valued functions: An epigraphical perspective

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{ \pm \infty\}$.
■ epi $f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \leq \alpha\} \quad$ (epigraph)

- epi ${ }_{<} f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x)<\alpha\} \quad$ (strict epigraph)
$\square \operatorname{dom} f:=\{x \in \mathbb{E} \mid f(x)<\infty\} \quad$ (domain).
$\rightarrow f$ is uniquely determined through epi $f!$

Figure: Epigraph of $f: \mathbb{R} \rightarrow \mathbb{R}$

[^0]
Extended real-valued functions: An epigraphical perspective

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{ \pm \infty\}$.
■ epi $f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \leq \alpha\} \quad$ (epigraph)

- epi ${ }_{<} f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x)<\alpha\} \quad$ (strict epigraph)
$\square \operatorname{dom} f:=\{x \in \mathbb{E} \mid f(x)<\infty\} \quad$ (domain).
$\rightarrow f$ is uniquely determined through epi $f!$
f proper $\quad: \Leftrightarrow \quad-\infty<f \not \equiv+\infty \quad \Leftrightarrow^{1} \quad \operatorname{dom} f \neq \emptyset$

[^1]

Figure: Epigraph of $f: \mathbb{R} \rightarrow \mathbb{R}$

Extended real－valued functions：An epigraphical perspective

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{ \pm \infty\}$ ．
■ epi $f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \leq \alpha\} \quad$（epigraph）
■ epi ${ }_{<} f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x)<\alpha\} \quad$（strict epigraph）
$\square \operatorname{dom} f:=\{x \in \mathbb{E} \mid f(x)<\infty\} \quad$（domain）．
$\rightarrow f$ is uniquely determined through epi $f!$

Figure：Epigraph of $f: \mathbb{R} \rightarrow \mathbb{R}$

f proper	$: \Leftrightarrow$	$-\infty<f \not \equiv+\infty$	\Leftrightarrow^{1}
f convex	$: \Leftrightarrow$	$\operatorname{dom} f \neq \emptyset$	
epi $f /$ epi $_{<} f$ convex	\Leftrightarrow^{1}	$f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)(x, y \in \mathbb{E}, \lambda \in[0,1])$	

[^2]4口•4鸟

Extended real－valued functions：An epigraphical perspective

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{ \pm \infty\}$ ．
■ epi $f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \leq \alpha\} \quad$（epigraph）
■ epi ${ }_{<} f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x)<\alpha\} \quad$（strict epigraph）
$\square \operatorname{dom} f:=\{x \in \mathbb{E} \mid f(x)<\infty\} \quad$（domain）．
$\rightarrow f$ is uniquely determined through epi $f!$

Figure：Epigraph of $f: \mathbb{R} \rightarrow \mathbb{R}$

f proper	$: \Leftrightarrow$	$-\infty<f \not \equiv+\infty$	\Leftrightarrow^{1}
f convex	$: \Leftrightarrow$	$\operatorname{epi} f /$ epi $_{<} f$ convex	\Leftrightarrow^{1}
f pos．hom．	$: \Leftrightarrow^{1}$	epi f cone	\Leftrightarrow

[^3]4ロ・回
4 를
4 를

Extended real－valued functions：An epigraphical perspective

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{ \pm \infty\}$ ．
■ epi $f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \leq \alpha\} \quad$（epigraph）
■ epi ${ }_{<} f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x)<\alpha\} \quad$（strict epigraph）
$\square \operatorname{dom} f:=\{x \in \mathbb{E} \mid f(x)<\infty\} \quad$（domain）．
$\rightarrow f$ is uniquely determined through epi $f!$

Figure：Epigraph of $f: \mathbb{R} \rightarrow \mathbb{R}$

f proper	$: \Leftrightarrow$	$-\infty<f \not \equiv+\infty$	\Leftrightarrow^{1}	$\operatorname{dom} f \neq \emptyset$
f convex	$: \Leftrightarrow$	epi $f /$ epi $_{<} f$ convex	\Leftrightarrow^{1}	$f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)(x, y \in \mathbb{E}, \lambda \in[0,1])$
f pos．hom．	$: \Leftrightarrow^{1}$	epi f cone	\Leftrightarrow	$\alpha f(x)=f(\alpha x) \quad(x \in \mathbb{E}, \alpha \geq 0)$
f sublinear	$: \Leftrightarrow^{1}$	epi f cvx．cone	\Leftrightarrow	$f(\lambda x+\mu y) \leq \lambda f(x)+\mu f(y) \quad(x, y \in \mathbb{E}, \lambda, \mu \geq 0)$.

[^4]4官

Extended real-valued functions: An epigraphical perspective

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{ \pm \infty\}$.
■ epi $f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \leq \alpha\} \quad$ (epigraph)
■ epi ${ }_{<} f:=\{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x)<\alpha\} \quad$ (strict epigraph)
$\square \operatorname{dom} f:=\{x \in \mathbb{E} \mid f(x)<\infty\} \quad$ (domain).
$\rightarrow f$ is uniquely determined through epi $f!$

Figure: Epigraph of $f: \mathbb{R} \rightarrow \mathbb{R}$

f proper	$: \Leftrightarrow$	$-\infty<f \not \equiv+\infty$	\Leftrightarrow^{1}
f convex	$: \Leftrightarrow$	epi $f /$ epi $_{<} f$ convex	\Leftrightarrow^{1}
f pos. hom. $\quad: \Leftrightarrow^{1}$	epi f cone	\Leftrightarrow	$\alpha x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)(x, y \in \mathbb{E}, \lambda \in[0,1])$
f sublinear	$: \Leftrightarrow^{1}$	epi f cvx. cone	\Leftrightarrow
			$f(\lambda x+\mu y) \leq \lambda f(x)+\mu f(y) \quad(x, y \in \mathbb{E}, \lambda, \mu \geq 0)$.
		f convex + positively homogeneous	

[^5]
Lower semicontinuity

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ and $\bar{x} \in \mathbb{E}$.
Lower limit:
$\liminf _{x \rightarrow \bar{x}} f(x):=\inf \left\{\alpha \mid \exists x_{k} \rightarrow \bar{x}: f\left(x_{k}\right) \rightarrow \alpha\right\}$

Lower semicontinuity

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ and $\bar{x} \in \mathbb{E}$.

Lower limit:

$\liminf _{x \rightarrow \bar{x}} f(x):=\inf \left\{\alpha \mid \exists x_{k} \rightarrow \bar{x}: f\left(x_{k}\right) \rightarrow \alpha\right\}$
Lower semicontinuity: f is said to be Isc (or closed) at \bar{x} if

$$
\liminf _{x \rightarrow \bar{x}} f(x) \geq f(\bar{x}) .
$$

Lower semicontinuity

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ and $\bar{x} \in \mathbb{E}$.

Lower limit:

$\liminf _{x \rightarrow \bar{x}} f(x):=\inf \left\{\alpha \mid \exists x_{k} \rightarrow \bar{x}: f\left(x_{k}\right) \rightarrow \alpha\right\}$
Lower semicontinuity: f is said to be Isc (or closed) at \bar{x} if

$$
\liminf _{x \rightarrow \bar{x}} f(x) \geq f(\bar{x}) .
$$

Figure: $f \underline{\text { not }}$ Isc at \bar{x}

Lower semicontinuity

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ and $\bar{x} \in \mathbb{E}$.

Lower limit:

$\liminf _{x \rightarrow \bar{x}} f(x):=\inf \left\{\alpha \mid \exists x_{k} \rightarrow \bar{x}: f\left(x_{k}\right) \rightarrow \alpha\right\}$
Lower semicontinuity: f is said to be Isc (or closed) at \bar{x} if

$$
\liminf _{x \rightarrow \bar{x}} f(x) \geq f(\bar{x}) .
$$

Closure: $\operatorname{cl} f: \mathbb{E} \rightarrow \overline{\mathbb{R}}, \quad(\operatorname{cl} f)(\bar{x}):=\liminf _{x \rightarrow \bar{x}} f(x)$.

Figure: f not Isc at \bar{x}

Facts:

■ f Isc \Longleftrightarrow epi f closed $\Longleftrightarrow f=\operatorname{cl} f \Longleftrightarrow \operatorname{lev}_{r} f$ closed $(r \in \mathbb{R})$

Lower semicontinuity

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ and $\bar{x} \in \mathbb{E}$.

Lower limit:

$\liminf _{x \rightarrow \bar{x}} f(x):=\inf \left\{\alpha \mid \exists x_{k} \rightarrow \bar{x}: f\left(x_{k}\right) \rightarrow \alpha\right\}$
Lower semicontinuity: f is said to be Isc (or closed) at \bar{x} if

$$
\liminf _{x \rightarrow \bar{x}} f(x) \geq f(\bar{x}) .
$$

Closure: $\operatorname{cl} f: \mathbb{E} \rightarrow \overline{\mathbb{R}}, \quad(\operatorname{cl} f)(\bar{x}):=\liminf _{x \rightarrow \bar{x}} f(x)$.

Figure: f not Isc at \bar{x}

Facts:

■ f Isc \Longleftrightarrow epi f closed $\Longleftrightarrow f=\operatorname{cl} f \Longleftrightarrow \operatorname{lev}_{r} f$ closed $(r \in \mathbb{R})$

- $\operatorname{cl} f \leq f$

Lower semicontinuity

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ and $\bar{x} \in \mathbb{E}$.

Lower limit:

$\liminf _{x \rightarrow \bar{x}} f(x):=\inf \left\{\alpha \mid \exists x_{k} \rightarrow \bar{x}: f\left(x_{k}\right) \rightarrow \alpha\right\}$
Lower semicontinuity: f is said to be Isc (or closed) at \bar{x} if

$$
\liminf _{x \rightarrow \bar{x}} f(x) \geq f(\bar{x}) .
$$

Closure: $\operatorname{cl} f: \mathbb{E} \rightarrow \overline{\mathbb{R}}, \quad(\operatorname{cl} f)(\bar{x}):=\liminf _{x \rightarrow \bar{x}} f(x)$.

Figure: f not Isc at \bar{x}

Facts:

■ f Isc \Longleftrightarrow epi f closed $\Longleftrightarrow f=\operatorname{cl} f \Longleftrightarrow \operatorname{lev}_{r} f$ closed $(r \in \mathbb{R})$

- $\operatorname{cl} f \leq f$
- f proper, Isc and coercive (i.e. $\lim _{\|x\| \rightarrow \infty} f(x)=\infty$) then:

$$
\underset{\mathbb{E}}{\operatorname{argmin}} f \neq \emptyset \quad \text { and } \quad \inf _{\mathbb{E}} f \in \mathbb{R}
$$

Lower semicontinuity

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ and $\bar{x} \in \mathbb{E}$.

Lower limit:

$\liminf _{x \rightarrow \bar{x}} f(x):=\inf \left\{\alpha \mid \exists x_{k} \rightarrow \bar{x}: f\left(x_{k}\right) \rightarrow \alpha\right\}$
Lower semicontinuity: f is said to be Isc (or closed) at \bar{x} if

$$
\liminf _{x \rightarrow \bar{x}} f(x) \geq f(\bar{x}) .
$$

Closure: $\operatorname{cl} f: \mathbb{E} \rightarrow \overline{\mathbb{R}}, \quad(\operatorname{cl} f)(\bar{x}):=\liminf _{x \rightarrow \bar{x}} f(x)$.

Facts:

■ f Isc \Longleftrightarrow epi f closed $\Longleftrightarrow f=\operatorname{cl} f \Longleftrightarrow \operatorname{lev}_{r} f$ closed $(r \in \mathbb{R})$

- $\operatorname{cl} f \leq f$

■ f proper, Isc and coercive (i.e. $\lim _{\|x\| \rightarrow \infty} f(x)=\infty$) then:

$$
\underset{\mathbb{E}}{\operatorname{argmin}} f \neq \emptyset \quad \text { and } \quad \inf _{\mathbb{E}} f \in \mathbb{R}
$$

Figure: f not Isc at \bar{x}

Figure: f : $x \mapsto\left\{\begin{array}{rr}\frac{1}{x} & x>0, \\ \pm \infty, & \text { 三else. }\end{array}\right.$

Convexity preserving operations - new from old

1 Set Operations
For $C, C_{i}(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}^{\prime}$ convex, $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ affine the following sets are convex:

Convexity preserving operations - new from old

1 Set Operations
For $C, C_{i}(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}^{\prime}$ convex, $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ affine the following sets are convex:

- $F(C)$ (affine image)

Convexity preserving operations - new from old

1 Set Operations
For $C, C_{i}(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}^{\prime}$ convex, $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ affine the following sets are convex:

- $F(C) \quad$ (affine image)
- $F^{-1}(D) \quad$ (affine pre-image)

Convexity preserving operations - new from old

1 Set Operations
For $C, C_{i}(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}^{\prime}$ convex, $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ affine the following sets are convex:

\circ	$F(C)$	(affine image)
\circ	$F^{-1}(D)$	(affine pre-image)
\circ	$C \times D$	(Cartesian product)

Convexity preserving operations - new from old

1 Set Operations
For $C, C_{i}(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}^{\prime}$ convex, $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ affine the following sets are convex:

\circ	$F(C)$	(affine image)
\circ	$F^{-1}(D)$	(affine pre-image)
\circ	$C \times D$	(Cartesian product)
\circ	$C_{1}+C_{2}$	(Minkowski sum)

Convexity preserving operations - new from old

1 Set Operations
For $C, C_{i}(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}^{\prime}$ convex, $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ affine the following sets are convex:

\circ	$F(C)$	(affine image)
\circ	$F^{-1}(D)$	(affine pre-image)
\circ	$C \times D$	(Cartesian product)
\circ	$C_{1}+C_{2}$	(Minkowski sum)
\circ	$\bigcap_{i \in 1} C_{i}$	(Intersection)

Convexity preserving operations - new from old

1 Set Operations
For $C, C_{i}(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}^{\prime}$ convex, $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ affine the following sets are convex:

\circ	$F(C)$	(affine image)
\circ	$F^{-1}(D)$	(affine pre-image)
\circ	$C \times D$	(Cartesian product)
\circ	$C_{1}+C_{2}$	(Minkowski sum)
\circ	$\bigcap_{i \in 1} C_{i}$	(Intersection)

2 Functional operations
For $f_{i}, g: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ convex and $F: \mathbb{E}^{\prime} \rightarrow \mathbb{E}$ affine the following functions are convex:

Convexity preserving operations - new from old

1 Set Operations
For $C, C_{i}(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}^{\prime}$ convex, $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ affine the following sets are convex:

\circ	$F(C)$	(affine image)
\circ	$F^{-1}(D)$	(affine pre-image)
\circ	$C \times D$	(Cartesian product)
\circ	$C_{1}+C_{2}$	(Minkowski sum)
\circ	$\bigcap_{i \in 1} C_{i}$	(Intersection)

2 Functional operations
For $f_{i}, g: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ convex and $F: \mathbb{E}^{\prime} \rightarrow \mathbb{E}$ affine the following functions are convex:
■ (Affine pre-composition) $\quad f:=g \circ F: \quad$ epi $f=T^{-1}($ epi $g), T:(x, \alpha) \mapsto(T(x), \alpha)$

Convexity preserving operations - new from old

1 Set Operations
For $C, C_{i}(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}^{\prime}$ convex, $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ affine the following sets are convex:

\circ	$F(C)$	(affine image)
\circ	$F^{-1}(D)$	(affine pre-image)
\circ	$C \times D$	(Cartesian product)
\circ	$C_{1}+C_{2}$	(Minkowski sum)
\circ	$\bigcap_{i \in I} C_{i}$	(Intersection)

2 Functional operations
For $f_{i}, g: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ convex and $F: \mathbb{E}^{\prime} \rightarrow \mathbb{E}$ affine the following functions are convex:
■ (Affine pre-composition) $\quad f:=g \circ F: \quad$ epi $f=T^{-1}$ (epi g), $T:(x, \alpha) \mapsto(T(x), \alpha)$
■ (Pointwise supremum) $\quad f:=\sup _{i \in l} f_{i}: \quad$ epi $f=\bigcap_{i \in I}$ epi f_{i}

Convexity preserving operations - new from old

1 Set Operations
For $C, C_{i}(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}^{\prime}$ convex, $F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ affine the following sets are convex:

\circ	$F(C)$	(affine image)
\circ	$F^{-1}(D)$	(affine pre-image)
\circ	$C \times D$	(Cartesian product)
\circ	$C_{1}+C_{2}$	(Minkowski sum)
\circ	$\bigcap_{i \in I} C_{i}$	(Intersection)

2 Functional operations
For $f_{i}, g: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ convex and $F: \mathbb{E}^{\prime} \rightarrow \mathbb{E}$ affine the following functions are convex:
■ (Affine pre-composition) $\quad f:=g \circ F: \quad$ epi $f=T^{-1}$ (epi g), $T:(x, \alpha) \mapsto(T(x), \alpha)$
■ (Pointwise supremum) $f:=\sup _{i \in l} f_{i}: \quad$ epi $f=\bigcap_{i \in I}$ epi f_{i}
■ (Moreau envelope) $\quad f:=e_{\lambda} g: x \mapsto \inf _{u}\left\{g(u)+\frac{1}{2 \lambda}\|x-u\|^{2}\right\}: \quad$ epi $f=\operatorname{epi} g+$ epi $\frac{1}{2}\|\cdot\|^{2}$.

The convex subdifferential

Definition 4.

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$. A vector $v \in \mathbb{E}$ is called a subgradient of v at \bar{x} if

$$
\begin{equation*}
f(x) \geq f(\bar{x})+\langle v, x-\bar{x}\rangle \quad(x \in \mathbb{E}) \tag{1}
\end{equation*}
$$

We denote by $\partial f(\bar{x})$ the set of all subgradients of f at \bar{x} and call it the (convex) subdifferential of f at \bar{x}.
The inequality (1) is referred to as subgradient inequality.

The convex subdifferential

Definition 4.

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$. A vector $v \in \mathbb{E}$ is called a subgradient of v at \bar{x} if

$$
\begin{equation*}
f(x) \geq f(\bar{x})+\langle v, x-\bar{x}\rangle \quad(x \in \mathbb{E}) \tag{1}
\end{equation*}
$$

We denote by $\partial f(\bar{x})$ the set of all subgradients of f at \bar{x} and call it the (convex) subdifferential of f at \bar{x}.
The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at \bar{x} are the slopes of affine minorants of f that coincide with f at \bar{x} ".

The convex subdifferential

Definition 4.

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$. A vector $v \in \mathbb{E}$ is called a subgradient of v at \bar{x} if

$$
\begin{equation*}
f(x) \geq f(\bar{x})+\langle v, x-\bar{x}\rangle \quad(x \in \mathbb{E}) \tag{1}
\end{equation*}
$$

We denote by $\partial f(\bar{x})$ the set of all subgradients of f at \bar{x} and call it the (convex) subdifferential of f at \bar{x}.
The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at \bar{x} are the slopes of affine minorants of f that coincide with f at \bar{x} ".

The subdifferential operator is a set-valued mapping $\partial f: \mathbb{E} \rightrightarrows \mathbb{E}$. Set

$$
\operatorname{dom} \partial f:=\{x \in \mathbb{E} \mid \partial f(x) \neq \emptyset\} .
$$

$\square 0 \in \partial f(x) \quad \Longleftrightarrow \quad x \in \operatorname{argmin}_{\mathbb{E}} f \quad$ (Fermat's rule)

The convex subdifferential

Definition 4.

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$. A vector $v \in \mathbb{E}$ is called a subgradient of v at \bar{x} if

$$
\begin{equation*}
f(x) \geq f(\bar{x})+\langle v, x-\bar{x}\rangle \quad(x \in \mathbb{E}) \tag{1}
\end{equation*}
$$

We denote by $\partial f(\bar{x})$ the set of all subgradients of f at \bar{x} and call it the (convex) subdifferential of f at \bar{x}.
The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at \bar{x} are the slopes of affine minorants of f that coincide with f at \bar{x} ".

The subdifferential operator is a set-valued mapping $\partial f: \mathbb{E} \rightrightarrows \mathbb{E}$. Set

$$
\operatorname{dom} \partial f:=\{x \in \mathbb{E} \mid \partial f(x) \neq \emptyset\} .
$$

$■ 0 \in \partial f(x) \quad \Longleftrightarrow \quad x \in \operatorname{argmin}_{\mathbb{E}} f \quad$ (Fermat's rule)

- $\partial f(x)$ closed and convex $(x \in \mathbb{E})$

The convex subdifferential

Definition 4.

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$. A vector $v \in \mathbb{E}$ is called a subgradient of v at \bar{x} if

$$
\begin{equation*}
f(x) \geq f(\bar{x})+\langle v, x-\bar{x}\rangle \quad(x \in \mathbb{E}) \tag{1}
\end{equation*}
$$

We denote by $\partial f(\bar{x})$ the set of all subgradients of f at \bar{x} and call it the (convex) subdifferential of f at \bar{x}.
The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at \bar{x} are the slopes of affine minorants of f that coincide with f at \bar{x} ".

The subdifferential operator is a set-valued mapping $\partial f: \mathbb{E} \rightrightarrows \mathbb{E}$. Set

$$
\operatorname{dom} \partial f:=\{x \in \mathbb{E} \mid \partial f(x) \neq \emptyset\}
$$

$■ 0 \in \partial f(x) \quad \Longleftrightarrow \quad x \in \operatorname{argmin}_{\mathbb{E}} f \quad$ (Fermat's rule)

- $\partial f(x)$ closed and convex $(x \in \mathbb{E})$

■ $\partial f(x)$ is a singleton $\Longleftrightarrow f$ differentiable at $x \quad \Longleftrightarrow f$ continuously differentiable at x

The convex subdifferential

Definition 4.

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$. A vector $v \in \mathbb{E}$ is called a subgradient of v at \bar{x} if

$$
\begin{equation*}
f(x) \geq f(\bar{x})+\langle v, x-\bar{x}\rangle \quad(x \in \mathbb{E}) \tag{1}
\end{equation*}
$$

We denote by $\partial f(\bar{x})$ the set of all subgradients of f at \bar{x} and call it the (convex) subdifferential of f at \bar{x}.
The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at \bar{x} are the slopes of affine minorants of f that coincide with f at \bar{x} ".

The subdifferential operator is a set-valued mapping $\partial f: \mathbb{E} \rightrightarrows \mathbb{E}$. Set

$$
\operatorname{dom} \partial f:=\{x \in \mathbb{E} \mid \partial f(x) \neq \emptyset\}
$$

$■ 0 \in \partial f(x) \quad \Longleftrightarrow \quad x \in \operatorname{argmin}_{\mathbb{E}} f \quad$ (Fermat's rule)

- $\partial f(x)$ closed and convex $(x \in \mathbb{E})$

■ $\partial f(x)$ is a singleton $\Longleftrightarrow f$ differentiable at $x \quad \Longleftrightarrow \quad f$ continuously differentiable at x

- ri $(\operatorname{dom} f) \subset \operatorname{dom} \partial f \subset \operatorname{dom} f \quad(f$ convex).

Examples of subdifferentiation

- (Indicator function/Normal cone) Let $S \subset \mathbb{E}$.

Indicator function of S :

$$
\delta_{S}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \delta_{S}(x):=\left\{\begin{aligned}
0, & x \in S \\
+\infty, & \text { else } .
\end{aligned}\right.
$$

Subdifferentiation and conjugacy of convex functions

Examples of subdifferentiation

- (Indicator function/Normal cone) Let $S \subset \mathbb{E}$.

Indicator function of S :

$$
\begin{aligned}
& \delta_{S}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \delta_{S}(x):=\left\{\begin{aligned}
0, & x \in S, \\
+\infty, & \text { else }
\end{aligned}\right. \\
& \partial \delta_{S}(\bar{x}) \quad=\quad\left\{v \mid \delta_{C}(x) \geq \delta_{C}(\bar{x})+\langle v, x-\bar{x}\rangle(x \in \mathbb{E})\right\}
\end{aligned}
$$

Subdifferentiation and conjugacy of convex functions

Examples of subdifferentiation

- (Indicator function/Normal cone) Let $S \subset \mathbb{E}$.

Indicator function of S :

$$
\begin{aligned}
& \delta_{S}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \delta_{S}(x):=\left\{\begin{aligned}
0, & x \in S, \\
+\infty, & \text { else. }
\end{aligned}\right. \\
& \begin{aligned}
\partial \delta_{S}(\bar{x}) & =\left\{v \mid \delta_{C}(x) \geq \delta_{C}(\bar{x})+\langle v, x-\bar{x}\rangle(x \in \mathbb{E})\right\} \\
& =\{v \in \mathbb{E} \mid\langle v, x-\bar{x}\rangle \leq 0(x \in S)\}
\end{aligned}
\end{aligned}
$$

Examples of subdifferentiation

- (Indicator function/Normal cone) Let $S \subset \mathbb{E}$.

Indicator function of S :

$$
\begin{aligned}
& \delta_{S}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \delta_{S}(x):=\left\{\begin{aligned}
0, & x \in S, \\
+\infty, & \text { else. }
\end{aligned}\right. \\
& \begin{aligned}
\partial \delta_{S}(\bar{x}) & =\left\{v \mid \delta_{C}(x) \geq \delta_{C}(\bar{x})+\langle v, x-\bar{x}\rangle(x \in \mathbb{E})\right\} \\
& =\{v \in \mathbb{E} \mid\langle v, x-\bar{x}\rangle \leq 0(x \in S)\} \\
& =: \quad N_{S}(\bar{x}) \quad(\bar{x} \in S)
\end{aligned}
\end{aligned}
$$

Figure: Normal cone

Examples of subdifferentiation

- (Indicator function/Normal cone) Let $S \subset \mathbb{E}$.

Indicator function of S :

$$
\begin{aligned}
& \delta_{S}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \delta_{S}(x):=\left\{\begin{aligned}
0, & x \in S, \\
+\infty, & \text { else. }
\end{aligned}\right. \\
& \begin{aligned}
\partial \delta_{S}(\bar{x}) & =\quad\left\{v \mid \delta_{C}(x) \geq \delta_{C}(\bar{x})+\langle v, x-\bar{x}\rangle(x \in \mathbb{E})\right\} \\
& =\{v \in \mathbb{E} \mid\langle v, x-\bar{x}\rangle \leq 0(x \in S)\} \\
= & N_{S}(\bar{x}) \quad(\bar{x} \in S)
\end{aligned}
\end{aligned}
$$

Figure: Normal cone

■ (Euclidean norm) $\|\cdot\|:=\sqrt{\langle\cdot, \cdot\rangle}$. Then

$$
\partial\|\cdot\|(\bar{x})=\left\{\begin{array}{ccc}
\left\{\frac{\bar{x}}{\|\vec{x}\|}\right\} & \text { if } & \bar{x} \neq 0 \\
\mathbb{B} & \text { if } & \bar{x}=0 .
\end{array}\right.
$$

Examples of subdifferentiation

- (Indicator function/Normal cone) Let $S \subset \mathbb{E}$.

Indicator function of S :

$$
\begin{aligned}
& \delta_{S}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \delta_{S}(x):=\left\{\begin{aligned}
0, & x \in S, \\
+\infty, & \text { else. }
\end{aligned}\right. \\
& \begin{aligned}
\partial \delta_{S}(\bar{x}) & =\left\{v \mid \delta_{C}(x) \geq \delta_{C}(\bar{x})+\langle v, x-\bar{x}\rangle(x \in \mathbb{E})\right\} \\
& =\{v \in \mathbb{E} \mid\langle v, x-\bar{x}\rangle \leq 0(x \in S)\} \\
& =: \quad N_{S}(\bar{x}) \quad(\bar{x} \in S)
\end{aligned}
\end{aligned}
$$

Figure: Normal cone

■ (Euclidean norm) $\|\cdot\|:=\sqrt{\langle\cdot, \cdot\rangle}$. Then

$$
\partial\|\cdot\|(\bar{x})=\left\{\begin{array}{cll}
\left\{\frac{\bar{x}}{\|\vec{x}\|}\right\} & \text { if } & \bar{x} \neq 0, \\
\mathbb{B} & \text { if } & \bar{x}=0 .
\end{array}\right.
$$

- (Empty subdifferential)

$$
\begin{gathered}
f: x \in \mathbb{R} \mapsto\left\{\begin{array}{cc}
-\sqrt{x} & \text { if } \quad \\
+\infty & \text { else. }
\end{array}\right. \\
\partial f(x)=\left\{\begin{aligned}
\left\{-\frac{1}{2 \sqrt{x}}\right\}, & x>0 \\
\emptyset, & \text { else. }
\end{aligned}\right.
\end{gathered}
$$

The Fenchel conjugate

For $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ let $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi f :

$$
\text { epi } f^{*} \stackrel{!}{=}\{(v, \beta) \mid\langle v, x\rangle-\beta \leq f(x) \quad(x \in \mathbb{E})\}
$$

The Fenchel conjugate

For $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ let $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi f :

$$
\begin{array}{ll}
& \text { epi } f^{*} \stackrel{!}{=}\{(v, \beta) \mid\langle v, x\rangle-\beta \leq f(x) \quad(x \in \mathbb{E})\} \\
\Longrightarrow & f^{*}(v) \leq \beta \quad \Longleftrightarrow \quad \sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \leq \beta \quad((v, \beta) \in \mathbb{E} \times \mathbb{R})
\end{array}
$$

The Fenchel conjugate

For $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ let $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi f :

$$
\begin{array}{ll}
& \text { epi } f^{*} \stackrel{!}{=}\{(v, \beta) \mid\langle v, x\rangle-\beta \leq f(x) \quad(x \in \mathbb{E})\} \\
\Longrightarrow & f^{*}(v) \leq \beta \Longleftrightarrow \sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \leq \beta \quad((v, \beta) \in \mathbb{E} \times \mathbb{R}) \\
\Longrightarrow & f^{*}(v)=\sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \quad(v \in \mathbb{E}) . \tag{2}
\end{array}
$$

The Fenchel conjugate

For $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ let $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi f :

$$
\begin{array}{ll}
& \text { epi } f^{*} \stackrel{!}{=}\{(v, \beta) \mid\langle v, x\rangle-\beta \leq f(x) \quad(x \in \mathbb{E})\} \\
\Longrightarrow & f^{*}(v) \leq \beta \quad \Longleftrightarrow \quad \sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \leq \beta \quad((v, \beta) \in \mathbb{E} \times \mathbb{R}) \\
\Longrightarrow & \quad f^{*}(v)=\sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \quad(v \in \mathbb{E}) . \tag{2}
\end{array}
$$

Definition 5 (Fenchel conjugate).

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ proper. The function $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ defined through (2) is called the (Fenchel) conjugate of f. The function $\left(f^{* *}\right):=\left(f^{*}\right)^{*}$ is called the biconjugate of f.

The Fenchel conjugate

For $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ let $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi f :

$$
\begin{align*}
& \text { epi } f^{*} \stackrel{!}{=}\{(v, \beta) \mid\langle v, x\rangle-\beta \leq f(x) \quad(x \in \mathbb{E})\} \\
\Longrightarrow & f^{*}(v) \leq \beta \Longleftrightarrow \sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \leq \beta \quad((v, \beta) \in \mathbb{E} \times \mathbb{R}) \\
\Longrightarrow & f^{*}(v)=\sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \quad(v \in \mathbb{E}) . \tag{2}
\end{align*}
$$

Definition 5 (Fenchel conjugate).

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ proper. The function $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ defined through (2) is called the (Fenchel) conjugate of f.
The function $\left(f^{* *}\right):=\left(f^{*}\right)^{*}$ is called the biconjugate of f.
Define $\Gamma:=\{f: \mathbb{E} \rightarrow \overline{\mathbb{R}} \mid f$ convex and proper $\} \quad$ and $\Gamma_{0}:=\{f \in \Gamma \mid f$ closed $\}$.

The Fenchel conjugate

For $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ let $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi f :

$$
\begin{array}{ll}
& \text { epi } f^{*} \stackrel{!}{=}\{(v, \beta) \mid\langle v, x\rangle-\beta \leq f(x) \quad(x \in \mathbb{E})\} \\
\Longrightarrow & f^{*}(v) \leq \beta \quad \Longleftrightarrow \quad \sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \leq \beta \quad((v, \beta) \in \mathbb{E} \times \mathbb{R}) \\
\Longrightarrow & \quad f^{*}(v)=\sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \quad(v \in \mathbb{E}) . \tag{2}
\end{array}
$$

Definition 5 (Fenchel conjugate).

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ proper. The function $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ defined through (2) is called the (Fenchel) conjugate of f.
The function $\left(f^{* *}\right):=\left(f^{*}\right)^{*}$ is called the biconjugate of f.
Define $\Gamma:=\{f: \mathbb{E} \rightarrow \overline{\mathbb{R}} \mid f$ convex and proper $\} \quad$ and $\Gamma_{0}:=\{f \in \Gamma \mid f$ closed $\}$.

- f^{*} closed and convex - proper if $f \not \equiv+\infty$ with an affine minorant

The Fenchel conjugate

For $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ let $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi f :

$$
\begin{array}{ll}
& \text { epi } f^{*} \stackrel{!}{=}\{(v, \beta) \mid\langle v, x\rangle-\beta \leq f(x) \quad(x \in \mathbb{E})\} \\
\Longrightarrow & f^{*}(v) \leq \beta \Longleftrightarrow \sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \leq \beta \quad((v, \beta) \in \mathbb{E} \times \mathbb{R}) \\
\Longrightarrow & f^{*}(v)=\sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \quad(v \in \mathbb{E}) . \tag{2}
\end{array}
$$

Definition 5 (Fenchel conjugate).

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ proper. The function $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ defined through (2) is called the (Fenchel) conjugate of f.
The function $\left(f^{* *}\right):=\left(f^{*}\right)^{*}$ is called the biconjugate of f.
Define $\Gamma:=\{f: \mathbb{E} \rightarrow \overline{\mathbb{R}} \mid f$ convex and proper $\} \quad$ and $\Gamma_{0}:=\{f \in \Gamma \mid f$ closed $\}$.

- f^{*} closed and convex - proper if $f \not \equiv+\infty$ with an affine minorant

■ $f=f^{* *}$ proper $\Longleftrightarrow f \in \Gamma_{0} \quad$ (Fenchel-Moreau)

The Fenchel conjugate

For $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ let $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi f :

$$
\begin{array}{ll}
& \text { epi } f^{*} \stackrel{!}{=}\{(v, \beta) \mid\langle v, x\rangle-\beta \leq f(x) \quad(x \in \mathbb{E})\} \\
\Longrightarrow \quad & f^{*}(v) \leq \beta \quad \Longleftrightarrow \quad \sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \leq \beta \quad((v, \beta) \in \mathbb{E} \times \mathbb{R}) \\
\Longrightarrow & \quad f^{*}(v)=\sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \quad(v \in \mathbb{E}) . \tag{2}
\end{array}
$$

Definition 5 (Fenchel conjugate).

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ proper. The function $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ defined through (2) is called the (Fenchel) conjugate of f.
The function $\left(f^{* *}\right):=\left(f^{*}\right)^{*}$ is called the biconjugate of f.
Define $\Gamma:=\{f: \mathbb{E} \rightarrow \overline{\mathbb{R}} \mid f$ convex and proper $\} \quad$ and $\Gamma_{0}:=\{f \in \Gamma \mid f$ closed $\}$.

- f^{*} closed and convex - proper if $f \not \equiv+\infty$ with an affine minorant

■ $f=f^{* *}$ proper $\Longleftrightarrow f \in \Gamma_{0} \quad$ (Fenchel-Moreau)
■ $f^{*}=(\mathrm{cl} f)^{*} \quad(f \in \Gamma)$

The Fenchel conjugate

For $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ let $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi f :

$$
\begin{array}{ll}
& \text { epi } f^{*} \stackrel{!}{=}\{(v, \beta) \mid\langle v, x\rangle-\beta \leq f(x) \quad(x \in \mathbb{E})\} \\
\Longrightarrow \quad & f^{*}(v) \leq \beta \quad \Longleftrightarrow \quad \sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \leq \beta \quad((v, \beta) \in \mathbb{E} \times \mathbb{R}) \\
\Longrightarrow & \quad f^{*}(v)=\sup _{x \in \mathbb{E}}\{\langle v, x\rangle-f(x)\} \quad(v \in \mathbb{E}) . \tag{2}
\end{array}
$$

Definition 5 (Fenchel conjugate).

Let $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ proper. The function $f^{*}: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ defined through (2) is called the (Fenchel) conjugate of f.
The function $\left(f^{* *}\right):=\left(f^{*}\right)^{*}$ is called the biconjugate of f.
Define $\Gamma:=\{f: \mathbb{E} \rightarrow \overline{\mathbb{R}} \mid f$ convex and proper $\} \quad$ and $\Gamma_{0}:=\{f \in \Gamma \mid f$ closed $\}$.
■ f^{*} closed and convex - proper if $f \not \equiv+\infty$ with an affine minorant
■ $f=f^{* *}$ proper $\Longleftrightarrow f \in \Gamma_{0} \quad$ (Fenchel-Moreau)
■ $f^{*}=(\mathrm{cl} f)^{*} \quad(f \in \Gamma)$
■ $f(x)+f^{*}(y) \geq\langle x, y\rangle \quad(x, y \in \mathbb{E}) \quad$ (Fenchel-Young Inequality)

Interplay of conjugation and subdifferentiation

Theorem 6 (Subdifferential and conjugate function).
Let $f \in \Gamma_{0}$. TFAE:
i) $y \in \partial f(x)$;
ii) $f(x)+f^{*}(y)=\langle x, y\rangle$;
iii) $x \in \partial f^{*}(y)$.

In particular, $\partial f^{*}=(\partial f)^{-1}$.

Interplay of conjugation and subdifferentiation

Theorem 6 (Subdifferential and conjugate function).

Let $f \in \Gamma_{0}$. TFAE:
i) $y \in \partial f(x)$;
ii) $f(x)+f^{*}(y)=\langle x, y\rangle$;
iii) $x \in \partial f^{*}(y)$.

In particular, $\partial f^{*}=(\partial f)^{-1}$.

Proof.

Notice that

$$
y \in \partial f(x) \quad \Longleftrightarrow \quad f(z) \geq f(x)+\langle y, z-x\rangle \quad(z \in \mathbb{E})
$$

Interplay of conjugation and subdifferentiation

Theorem 6 (Subdifferential and conjugate function).

Let $f \in \Gamma_{0}$. TFAE:
i) $y \in \partial f(x)$;
ii) $f(x)+f^{*}(y)=\langle x, y\rangle$;
iii) $x \in \partial f^{*}(y)$.

In particular, $\partial f^{*}=(\partial f)^{-1}$.

Proof.

Notice that

$$
\begin{aligned}
y \in \partial f(x) \quad & \Longleftrightarrow \\
& \Longleftrightarrow \\
& \langle y, x\rangle \geq f(x)+\langle y, z-x\rangle \quad(z \in \mathbb{E}) \\
& \left\langle y(x) \geq \sup _{z}\{\langle y, z\rangle-f(z)\}\right.
\end{aligned}
$$

Interplay of conjugation and subdifferentiation

Theorem 6 (Subdifferential and conjugate function).

Let $f \in \Gamma_{0}$. TFAE:
i) $y \in \partial f(x)$;
ii) $f(x)+f^{*}(y)=\langle x, y\rangle$;
iii) $x \in \partial f^{*}(y)$.

In particular, $\partial f^{*}=(\partial f)^{-1}$.

Proof.

Notice that

$$
\begin{aligned}
& y \in \partial f(x) \quad \Longleftrightarrow \\
& \Longleftrightarrow \\
&\Longleftrightarrow y, x\rangle \geq f(x)+\langle y, z-x\rangle \quad(z \in \mathbb{E}) \\
& \Longleftrightarrow \\
& f(x)+f^{*}(y) \leq\langle x, y\rangle
\end{aligned}
$$

Interplay of conjugation and subdifferentiation

Theorem 6 (Subdifferential and conjugate function).

Let $f \in \Gamma_{0}$. TFAE:
i) $y \in \partial f(x)$;
ii) $f(x)+f^{*}(y)=\langle x, y\rangle$;
iii) $x \in \partial f^{*}(y)$.

In particular, $\partial f^{*}=(\partial f)^{-1}$.

Proof.

Notice that

$$
\begin{array}{rll}
y \in \partial f(x) & \Longleftrightarrow & f(z) \geq f(x)+\langle y, z-x\rangle \quad(z \in \mathbb{E}) \\
& \Longleftrightarrow & \langle y, x\rangle-f(x) \geq \sup _{z}\{\langle y, z\rangle-f(z)\} \\
& \Longleftrightarrow & f(x)+f^{*}(y) \leq\langle x, y\rangle \\
\text { Fenchel-Young } & f(x)+f^{*}(y)=\langle x, y\rangle,
\end{array}
$$

Interplay of conjugation and subdifferentiation

Theorem 6 (Subdifferential and conjugate function).

Let $f \in \Gamma_{0}$. TFAE:
i) $y \in \partial f(x)$;
ii) $f(x)+f^{*}(y)=\langle x, y\rangle$;
iii) $x \in \partial f^{*}(y)$.

In particular, $\partial f^{*}=(\partial f)^{-1}$.

Proof.

Notice that

$$
\begin{array}{rll}
y \in \partial f(x) & \Longleftrightarrow & f(z) \geq f(x)+\langle y, z-x\rangle \quad(z \in \mathbb{E}) \\
& \Longleftrightarrow & \langle y, x\rangle-f(x) \geq \sup _{z}\{\langle y, z\rangle-f(z)\} \\
& \Longleftrightarrow & f(x)+f^{*}(y) \leq\langle x, y\rangle \\
& \Longleftrightarrow \text { Fenchel-Young } & f(x)+f^{*}(y)=\langle x, y\rangle,
\end{array}
$$

Applying the same reasoning to f^{*} and noticing that $f^{* *}=f$ if $f \in \Gamma_{0}$, gives the missing equivalence.

Support functions: A special case of conjugacy

The support function σ_{S} of $S \subset \mathbb{E}$ (nonempty) is defined by

$$
\sigma_{S}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \sigma_{S}(z):=\delta_{S}^{*}(z)=\sup _{x \in S}\langle x, z\rangle
$$

Support functions: A special case of conjugacy

The support function σ_{S} of $S \subset \mathbb{E}$ (nonempty) is defined by

$$
\sigma_{S}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \sigma_{S}(z):=\delta_{S}^{*}(z)=\sup _{x \in S}\langle x, z\rangle
$$

■ σ_{S} is finite-valued if and only if S is bounded (and nonempty)
■ $\sigma_{S}=\sigma_{\text {conv } S}=\sigma_{\overline{\text { conv }} \mathcal{S}}=\sigma_{\mathrm{cl} S}$

Support functions: A special case of conjugacy

The support function σ_{S} of $S \subset \mathbb{E}$ (nonempty) is defined by

$$
\sigma_{S}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \sigma_{S}(z):=\delta_{S}^{*}(z)=\sup _{x \in S}\langle x, z\rangle
$$

■ σ_{S} is finite-valued if and only if S is bounded (and nonempty)
■ $\sigma_{S}=\sigma_{\text {conv } S}=\sigma_{\overline{\text { conv }} \mathcal{S}}=\sigma_{\mathrm{cl} S}$

- $\sigma_{S}^{*}=\delta_{\text {conv }} S$

Support functions: A special case of conjugacy

The support function σ_{S} of $S \subset \mathbb{E}$ (nonempty) is defined by

$$
\sigma_{S}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \sigma_{S}(z):=\delta_{S}^{*}(z)=\sup _{x \in S}\langle x, z\rangle
$$

■ σ_{S} is finite-valued if and only if S is bounded (and nonempty)
■ $\sigma_{S}=\sigma_{\text {conv } S}=\sigma_{\overline{\text { conv }} \mathcal{S}}=\sigma_{\mathrm{cl} S}$

- $\sigma_{S}^{*}=\delta_{\text {conv }} S$
- $\partial \sigma_{S}(x)=\left\{z \in \overline{\operatorname{conv}} S \mid x \in N_{\overline{\text { conv }}} S(z)\right\}$

Support functions: A special case of conjugacy

The support function σ_{S} of $S \subset \mathbb{E}$ (nonempty) is defined by

$$
\sigma_{S}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \sigma_{S}(z):=\delta_{S}^{*}(z)=\sup _{x \in S}\langle x, z\rangle
$$

■ σ_{S} is finite-valued if and only if S is bounded (and nonempty)
■ $\sigma_{S}=\sigma_{\text {conv } S}=\sigma_{\overline{\text { conv }} \mathcal{S}}=\sigma_{\mathrm{cl} S}$

- $\sigma_{S}^{*}=\delta_{\text {conv }} S$
- $\partial \sigma_{S}(x)=\left\{z \in \overline{\operatorname{conv}} S \mid x \in N_{\overline{\text { conv }}} S(z)\right\}$
- epi $\sigma_{S}=\bigcap_{s \in S}$ epi $\langle s, \cdot\rangle$ is a nonempty, closed, convex cone, i.e. σ_{S} is proper, closed and sublinear.

Support functions: A special case of conjugacy

The support function σ_{S} of $S \subset \mathbb{E}$ (nonempty) is defined by

$$
\sigma_{S}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \sigma_{S}(z):=\delta_{S}^{*}(z)=\sup _{x \in S}\langle x, z\rangle
$$

■ σ_{S} is finite-valued if and only if S is bounded (and nonempty)
■ $\sigma_{S}=\sigma_{\text {conv } S}=\sigma_{\overline{\text { conv }} \mathcal{S}}=\sigma_{\mathrm{cl} S}$

- $\sigma_{S}^{*}=\delta_{\text {conv }} S$
- $\partial \sigma_{S}(x)=\left\{z \in \overline{\operatorname{conv}} S \mid x \in N_{\overline{\text { conv }}} S(z)\right\}$
- epi $\sigma_{S}=\bigcap_{s \in S}$ epi $\langle s, \cdot\rangle$ is a nonempty, closed, convex cone, i.e. σ_{S} is proper, closed and sublinear.

Support functions: A special case of conjugacy

The support function σ_{S} of $S \subset \mathbb{E}$ (nonempty) is defined by

$$
\sigma_{S}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \sigma_{S}(z):=\delta_{S}^{*}(z)=\sup _{x \in S}\langle x, z\rangle
$$

■ σ_{S} is finite-valued if and only if S is bounded (and nonempty)
■ $\sigma_{S}=\sigma_{\text {conv } S}=\sigma_{\overline{\text { conv }} \mathcal{S}}=\sigma_{\mathrm{cl} S}$

- $\sigma_{S}^{*}=\delta_{\overline{\text { conv }}} \mathrm{S}$
- $\partial \sigma_{S}(x)=\left\{z \in \overline{\operatorname{conv}} S \mid x \in N_{\overline{\text { conv }}} S(z)\right\}$
- epi $\sigma_{S}=\bigcap_{s \in S}$ epi $\langle s, \cdot\rangle$ is a nonempty, closed, convex cone, i.e. σ_{S} is proper, closed and sublinear.

Here's the complete picture:
Theorem 7 (Hörmander).
A function $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ is proper, closed and sublinear if and only if it is a support function.

Proof.

Blackboard/Notes.

Gauges and polar sets

Definition 8 (Gauge function).

Let $C \subset \mathbb{E}$. The gauge (function) of C is defined by $\gamma_{C}: x \in \mathbb{E} \mapsto \inf \{\lambda \geq 0 \mid x \in \lambda C\}$.

Gauges and polar sets

Definition 8 (Gauge function).

Let $C \subset \mathbb{E}$. The gauge (function) of C is defined by $\gamma_{C}: x \in \mathbb{E} \mapsto \inf \{\lambda \geq 0 \mid x \in \lambda C\}$.

- If $C \subset \mathbb{E}$ be nonempty, closed and convex with $0 \in C$, then γ_{C} is proper, Isc and sublinear.

Conjugacy of composite functions via K-convexity and inf-convolution

Gauges and polar sets

Definition 8 (Gauge function).

Let $C \subset \mathbb{E}$. The gauge (function) of C is defined by $\gamma_{C}: x \in \mathbb{E} \mapsto \inf \{\lambda \geq 0 \mid x \in \lambda C\}$.

■ If $C \subset \mathbb{E}$ be nonempty, closed and convex with $0 \in C$, then γ_{C} is proper, Isc and sublinear.

Definition 9 (Polar sets).

Let $C \subset \mathbb{E}$. Then its polar set is defined by

$$
C^{\circ}:=\{v \in \mathbb{E} \mid\langle v, x\rangle \leq 1(x \in C)\} .
$$

Moreover, we put $C^{\circ \circ}:=\left(C^{\circ}\right)^{\circ}$ and call it the bipolar set of C.

- If K is a cone then $K^{\circ}=\{v \in \mathbb{E} \mid\langle v, x\rangle \leq 0(x \in K)\}$.
- For $C \subset \mathbb{E}$ we have $C^{\circ \circ}=\overline{\operatorname{conv}}(C \cup\{0\})$. (bipolar theorem)

Gauges and polar sets

Definition 8 (Gauge function).

Let $C \subset \mathbb{E}$. The gauge (function) of C is defined by $\gamma_{C}: x \in \mathbb{E} \mapsto \inf \{\lambda \geq 0 \mid x \in \lambda C\}$.

- If $C \subset \mathbb{E}$ be nonempty, closed and convex with $0 \in C$, then γ_{C} is proper, Isc and sublinear.

Definition 9 (Polar sets).

Let $C \subset \mathbb{E}$. Then its polar set is defined by

$$
C^{\circ}:=\{v \in \mathbb{E} \mid\langle v, x\rangle \leq 1(x \in C)\} .
$$

Moreover, we put $C^{\circ \circ}:=\left(C^{\circ}\right)^{\circ}$ and call it the bipolar set of C.

- If K is a cone then $K^{\circ}=\{v \in \mathbb{E} \mid\langle v, x\rangle \leq 0(x \in K)\}$.
- For $C \subset \mathbb{E}$ we have $C^{\circ \circ}=\overline{\operatorname{conv}}(C \cup\{0\})$. (bipolar theorem)

Proposition 10.

Let $C \subset \mathbb{E}$ be closed and convex with $0 \in C$. Then

$$
\gamma_{C}=\sigma_{C^{\circ}} \stackrel{*}{\longleftrightarrow} \delta_{C^{\circ}} \quad \text { and } \quad \gamma_{C^{\circ}}=\sigma_{C} \stackrel{*}{\longleftrightarrow} \delta_{C} .
$$

Infimal projection

Theorem 11 (Infimal projection).

Let $\psi: \mathbb{E}_{1} \times \mathbb{E}_{2} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex. Then the optimal value function

$$
p: \mathbb{E}_{1} \rightarrow \overline{\mathbb{R}}, p(x):=\inf _{y \in \mathbb{E}_{2}} \psi(x, y)
$$

is convex.

Infimal projection

Theorem 11 (Infimal projection).

Let $\psi: \mathbb{E}_{1} \times \mathbb{E}_{2} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex. Then the optimal value function

$$
p: \mathbb{E}_{1} \rightarrow \overline{\mathbb{R}}, p(x):=\inf _{y \in \mathbb{E}_{2}} \psi(x, y)
$$

is convex.

Proof.

Let $L:(x, y, \alpha) \mapsto(x, \alpha)$ and observe that

$$
\mathrm{epi}_{<} p=\left\{(x, \alpha) \mid \inf _{y} \psi(x, y)<\alpha\right\}
$$

Infimal projection

Theorem 11 (Infimal projection).

Let $\psi: \mathbb{E}_{1} \times \mathbb{E}_{2} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex. Then the optimal value function

$$
p: \mathbb{E}_{1} \rightarrow \overline{\mathbb{R}}, p(x):=\inf _{y \in \mathbb{E}_{2}} \psi(x, y)
$$

is convex.

Proof.

Let $L:(x, y, \alpha) \mapsto(x, \alpha)$ and observe that

$$
\begin{aligned}
\operatorname{epi}_{<p} & =\left\{(x, \alpha) \mid \inf _{y} \psi(x, y)<\alpha\right\} \\
& =\{(x, \alpha) \mid \exists y: \psi(x, y)<\alpha\}
\end{aligned}
$$

Infimal projection

Theorem 11 (Infimal projection).

Let $\psi: \mathbb{E}_{1} \times \mathbb{E}_{2} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex. Then the optimal value function

$$
p: \mathbb{E}_{1} \rightarrow \overline{\mathbb{R}}, p(x):=\inf _{y \in \mathbb{E}_{2}} \psi(x, y)
$$

is convex.

Proof.

Let $L:(x, y, \alpha) \mapsto(x, \alpha)$ and observe that

$$
\begin{aligned}
\operatorname{epi}_{<p} & =\left\{(x, \alpha) \mid \inf _{y} \psi(x, y)<\alpha\right\} \\
& =\{(x, \alpha) \mid \exists y: \psi(x, y)<\alpha\} \\
& =L(\text { epi }<\psi) .
\end{aligned}
$$

Infimal projection

Theorem 11 (Infimal projection).

Let $\psi: \mathbb{E}_{1} \times \mathbb{E}_{2} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex. Then the optimal value function

$$
p: \mathbb{E}_{1} \rightarrow \overline{\mathbb{R}}, p(x):=\inf _{y \in \mathbb{E}_{2}} \psi(x, y)
$$

is convex.

Proof.

Let $L:(x, y, \alpha) \mapsto(x, \alpha)$ and observe that

$$
\begin{aligned}
\operatorname{epi}_{<p} & =\left\{(x, \alpha) \mid \inf _{y} \psi(x, y)<\alpha\right\} \\
& =\{(x, \alpha) \mid \exists y: \psi(x, y)<\alpha\} \\
& =L(\text { epi }<\psi) .
\end{aligned}
$$

Hence epi ${ }_{<} p$ is a convex set, and thus p is convex.

Infimal convolution - a special case of infimal projection

Definition 12 (Infimal convolution).
Let $f, g: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$. Then the function

$$
f \# g: \mathbb{E} \rightarrow \overline{\mathbb{R}}, \quad(f \# g)(x):=\inf _{u \in \mathbb{E}}\{f(u)+g(x-u)\}
$$

is called the infimal convolution of f and g. We call the infimal convolution $f \# g$ exact at $x \in \mathbb{E}$ if

$$
\underset{u \in \mathbb{E}}{\operatorname{argmin}}\{f(u)+g(x-u)\} \neq \emptyset .
$$

We simply call $f \# g$ exact if it is exact at every $x \in \operatorname{dom} f \# g$.

Infimal convolution - a special case of infimal projection

Definition 12 (Infimal convolution).

Let $f, g: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$. Then the function

$$
f \# g: \mathbb{E} \rightarrow \overline{\mathbb{R}}, \quad(f \# g)(x):=\inf _{u \in \mathbb{E}}\{f(u)+g(x-u)\}
$$

is called the infimal convolution of f and g. We call the infimal convolution $f \# g$ exact at $x \in \mathbb{E}$ if

$$
\underset{u \in \mathbb{E}}{\operatorname{argmin}}\{f(u)+g(x-u)\} \neq \emptyset .
$$

We simply call $f \# g$ exact if it is exact at every $x \in \operatorname{dom} f \# g$.
We always have:
■ $\operatorname{dom} f \# g=\operatorname{dom} f+\operatorname{dom} g$;

- $f \# g=g \# f$;

■ f, g convex, then $f \# g$ convex (as $(f \# g)(x)=\inf _{y} h(x, y)$ with $h:(x, y) \mapsto f(y)+g(x-y)$ convex).

Infimal convolution - a special case of infimal projection

Definition 12 (Infimal convolution).

Let $f, g: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$. Then the function

$$
f \# g: \mathbb{E} \rightarrow \overline{\mathbb{R}}, \quad(f \# g)(x):=\inf _{u \in \mathbb{E}}\{f(u)+g(x-u)\}
$$

is called the infimal convolution of f and g. We call the infimal convolution $f \# g$ exact at $x \in \mathbb{E}$ if

$$
\underset{u \in \mathbb{E}}{\operatorname{argmin}}\{f(u)+g(x-u)\} \neq \emptyset .
$$

We simply call $f \# g$ exact if it is exact at every $x \in \operatorname{dom} f \# g$.
We always have:
■ $\operatorname{dom} f \# g=\operatorname{dom} f+\operatorname{dom} g$;

- $f \# g=g \# f$;

■ f, g convex, then $f \# g$ convex (as $(f \# g)(x)=\inf _{y} h(x, y)$ with $h:(x, y) \mapsto f(y)+g(x-y)$ convex).

Example 13 (Distance functions).

Let $C \subset \mathbb{E}$. Then $d_{C}:=\delta_{C} \#\|\cdot\|$, i.e.

$$
d_{C}(x)=\inf _{u \in C}\|x-u\|
$$

is the distance function of C, which is hence convex if C is a convex.

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$. Then the following hold:
a) $(f \# g)^{*}=f^{*}+g^{*}$;
b) If $f, g \in \Gamma_{0}$ such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$, then $(f+g)^{*}=\operatorname{cl}\left(f^{*} \# g^{*}\right)$.

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$. Then the following hold:
a) $(f \# g)^{*}=f^{*}+g^{*}$;
b) If $f, g \in \Gamma_{0}$ such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$, then $(f+g)^{*}=\operatorname{cl}\left(f^{*} \# g^{*}\right)$.

Proof.

a) For all $y \in \mathbb{E}$, we have

$$
(f \# g)^{*}(y)=\sup _{x}\left\{\langle x, y\rangle-\inf _{u}\{f(u)+g(x-u)\}\right\}
$$

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$. Then the following hold:
a) $(f \# g)^{*}=f^{*}+g^{*}$;
b) If $f, g \in \Gamma_{0}$ such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$, then $(f+g)^{*}=\operatorname{cl}\left(f^{*} \# g^{*}\right)$.

Proof.

a) For all $y \in \mathbb{E}$, we have

$$
\begin{aligned}
(f \# g)^{*}(y) & =\sup _{x}\left\{\langle x, y\rangle-\inf _{u}\{f(u)+g(x-u)\}\right\} \\
& =\sup _{x, u}\{\langle x, y\rangle-f(u)-g(x-u)\}
\end{aligned}
$$

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$. Then the following hold:
a) $(f \# g)^{*}=f^{*}+g^{*}$;
b) If $f, g \in \Gamma_{0}$ such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$, then $(f+g)^{*}=\operatorname{cl}\left(f^{*} \# g^{*}\right)$.

Proof.

a) For all $y \in \mathbb{E}$, we have

$$
\begin{aligned}
(f \# g)^{*}(y) & =\sup _{x}\left\{\langle x, y\rangle-\inf _{u}\{f(u)+g(x-u)\}\right\} \\
& =\sup _{x, u}\{\langle x, y\rangle-f(u)-g(x-u)\} \\
& =\sup _{x, u}\{(\langle u, y\rangle-f(u))+(\langle x-u, y\rangle-g(x-u))\}
\end{aligned}
$$

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$. Then the following hold:
a) $(f \# g)^{*}=f^{*}+g^{*}$;
b) If $f, g \in \Gamma_{0}$ such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$, then $(f+g)^{*}=\operatorname{cl}\left(f^{*} \# g^{*}\right)$.

Proof.

a) For all $y \in \mathbb{E}$, we have

$$
\begin{aligned}
(f \# g)^{*}(y) & =\sup _{x}\left\{\langle x, y\rangle-\inf _{u}\{f(u)+g(x-u)\}\right\} \\
& =\sup _{x, u}\{\langle x, y\rangle-f(u)-g(x-u)\} \\
& =\sup _{x, u}\{(\langle u, y\rangle-f(u))+(\langle x-u, y\rangle-g(x-u))\} \\
& =f^{*}(y)+g^{*}(y) .
\end{aligned}
$$

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$. Then the following hold:
a) $(f \# g)^{*}=f^{*}+g^{*}$;
b) If $f, g \in \Gamma_{0}$ such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$, then $(f+g)^{*}=\operatorname{cl}\left(f^{*} \# g^{*}\right)$.

Proof.

a) For all $y \in \mathbb{E}$, we have

$$
\begin{aligned}
(f \# g)^{*}(y) & =\sup _{x}\left\{\langle x, y\rangle-\inf _{u}\{f(u)+g(x-u)\}\right\} \\
& =\sup _{x, u}\{\langle x, y\rangle-f(u)-g(x-u)\} \\
& =\sup _{x, u}\{(\langle u, y\rangle-f(u))+(\langle x-u, y\rangle-g(x-u))\} \\
& =f^{*}(y)+g^{*}(y)
\end{aligned}
$$

b) $\left(f^{*} \# g^{*}\right)^{*} \stackrel{\text { a) }}{=} f^{* *}+g^{* *} \stackrel{f, g \in \Gamma_{0}}{=} f+g \stackrel{\text { clear? }}{\epsilon} \Gamma$

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$. Then the following hold:
a) $(f \# g)^{*}=f^{*}+g^{*}$;
b) If $f, g \in \Gamma_{0}$ such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$, then $(f+g)^{*}=\operatorname{cl}\left(f^{*} \# g^{*}\right)$.

Proof.

a) For all $y \in \mathbb{E}$, we have

$$
\begin{aligned}
(f \# g)^{*}(y) & =\sup _{x}\left\{\langle x, y\rangle-\inf _{u}\{f(u)+g(x-u)\}\right\} \\
& =\sup _{x, u}\{\langle x, y\rangle-f(u)-g(x-u)\} \\
& =\sup _{x, u}\{(\langle u, y\rangle-f(u))+(\langle x-u, y\rangle-g(x-u))\} \\
& =f^{*}(y)+g^{*}(y)
\end{aligned}
$$

b) $\left(f^{*} \# g^{*}\right)^{*} \stackrel{\text { a) }}{=} f^{* *}+g^{* *} \stackrel{f, g \in \Gamma_{0}}{=} f+g \stackrel{\text { clear? }}{\epsilon} \Gamma$

$$
\Longrightarrow \quad \operatorname{cl}\left(f^{*} \# g^{*}\right)=\left(f^{*} \# g^{*}\right)^{* *}=(f+g)^{*}
$$

Attouch-Brézis - drop the closure!

Theorem 15 (Attouch-Brézis).

Let $f, g \in \Gamma_{0}$ such that

$$
\text { ri }(\operatorname{dom} f) \cap \operatorname{ri}(\operatorname{dom} g) \neq 0 \quad(C Q) .
$$

Then $(f+g)^{*}=f^{*} \# g^{*}$, and the infimal convolution is exact, i.e. the infimum in the infimal convolution is attained on $\operatorname{dom} f^{*} \# g^{*}$.

Proof.

On blackboard.

Attouch-Brézis - drop the closure!

Theorem 15 (Attouch-Brézis).

Let $f, g \in \Gamma_{0}$ such that

$$
\text { ri }(\operatorname{dom} f) \cap \operatorname{ri}(\operatorname{dom} g) \neq 0 \quad(C Q) .
$$

Then $(f+g)^{*}=f^{*} \# g^{*}$, and the infimal convolution is exact, i.e. the infimum in the infimal convolution is attained on $\operatorname{dom} f^{*} \# g^{*}$.

Proof.

On blackboard.
We note that (CQ) is always satisfied under any of the following:
■ $\operatorname{int}(\operatorname{dom} f) \cap \operatorname{dom} g \neq \emptyset$,

- $\operatorname{dom} f=\mathbb{E}$,
and is equivalent to saying that

$$
0 \in \operatorname{ri}(\operatorname{dom} f-\operatorname{dom} g)
$$

Excursion: Moreau envelope and proximal operator ${ }^{1}$

Let $f \in \Gamma_{0}$ and $\lambda>0$. Then

$$
e_{\lambda} f:=f \# \frac{1}{2 \lambda}\|\cdot\|^{2}
$$

is called the Moreau envelope of f.

Excursion: Moreau envelope and proximal operator ${ }^{1}$

Let $f \in \Gamma_{0}$ and $\lambda>0$. Then

$$
e_{\lambda} f:=f \# \frac{1}{2 \lambda}\|\cdot\|^{2}
$$

is called the Moreau envelope of f. The map $P_{\lambda} f: \mathbb{E} \rightarrow \mathbb{E}$ given by

$$
P_{\lambda} f(x):=\underset{u}{\operatorname{argmin}}\left\{f(u)+\frac{1}{2 \lambda}\|x-u\|^{2}\right\} .
$$

We have

- $P_{\lambda} f$ is 1-Lipschitz (in fact, firmly non-expansive)

[^6]
Excursion: Moreau envelope and proximal operator ${ }^{1}$

Let $f \in \Gamma_{0}$ and $\lambda>0$. Then

$$
e_{\lambda} f:=f \# \frac{1}{2 \lambda}\|\cdot\|^{2}
$$

is called the Moreau envelope of f. The map $P_{\lambda} f: \mathbb{E} \rightarrow \mathbb{E}$ given by

$$
P_{\lambda} f(x):=\underset{u}{\operatorname{argmin}}\left\{f(u)+\frac{1}{2 \lambda}\|x-u\|^{2}\right\} .
$$

We have

- $P_{\lambda} f$ is 1-Lipschitz (in fact, firmly non-expansive)
- $e_{\lambda} f \in C^{1,1} \cap \Gamma_{0}$

[^7]
Excursion: Moreau envelope and proximal operator ${ }^{1}$

Let $f \in \Gamma_{0}$ and $\lambda>0$. Then

$$
e_{\lambda} f:=f \# \frac{1}{2 \lambda}\|\cdot\|^{2}
$$

is called the Moreau envelope of f. The map $P_{\lambda} f: \mathbb{E} \rightarrow \mathbb{E}$ given by

$$
P_{\lambda} f(x):=\underset{u}{\operatorname{argmin}}\left\{f(u)+\frac{1}{2 \lambda}\|x-u\|^{2}\right\} .
$$

We have

- $P_{\lambda} f$ is 1-Lipschitz (in fact, firmly non-expansive)
- $e_{\lambda} f \in C^{1,1} \cap \Gamma_{0}$
- $\nabla e_{\lambda} f=\frac{1}{\lambda}\left(\mathrm{id}-P_{\lambda} f\right)$

[^8]
Excursion：Moreau envelope and proximal operator ${ }^{1}$

Let $f \in \Gamma_{0}$ and $\lambda>0$ ．Then

$$
e_{\lambda} f:=f \# \frac{1}{2 \lambda}\|\cdot\|^{2}
$$

is called the Moreau envelope of f ．The map $P_{\lambda} f: \mathbb{E} \rightarrow \mathbb{E}$ given by

$$
P_{\lambda} f(x):=\underset{u}{\operatorname{argmin}}\left\{f(u)+\frac{1}{2 \lambda}\|x-u\|^{2}\right\} .
$$

We have
－$P_{\lambda} f$ is 1 －Lipschitz（in fact，firmly non－expansive）
－$e_{\lambda} f \in C^{1,1} \cap \Gamma_{0}$
－$\nabla e_{\lambda} f=\frac{1}{\lambda}\left(\mathrm{id}-P_{\lambda} f\right)$
■ $x \in \operatorname{argmin} f \Longleftrightarrow x \in \operatorname{argmin} e_{\lambda} f \Longleftrightarrow x=P_{\lambda} f(x)(\rightarrow$ proximal point／gradient method）

[^9]
Excursion: Moreau envelope and proximal operator ${ }^{1}$

Let $f \in \Gamma_{0}$ and $\lambda>0$. Then

$$
e_{\lambda} f:=f \# \frac{1}{2 \lambda}\|\cdot\|^{2}
$$

is called the Moreau envelope of f. The map $P_{\lambda} f: \mathbb{E} \rightarrow \mathbb{E}$ given by

$$
P_{\lambda} f(x):=\underset{u}{\operatorname{argmin}}\left\{f(u)+\frac{1}{2 \lambda}\|x-u\|^{2}\right\} .
$$

We have

- $P_{\lambda} f$ is 1 -Lipschitz (in fact, firmly non-expansive)
- $e_{\lambda} f \in C^{1,1} \cap \Gamma_{0}$
- $\nabla e_{\lambda} f=\frac{1}{\lambda}\left(\mathrm{id}-P_{\lambda} f\right)$

■ $x \in \operatorname{argmin} f \Longleftrightarrow x \in \operatorname{argmin} e_{\lambda} f \Longleftrightarrow x=P_{\lambda} f(x)(\rightarrow$ proximal point/gradient method)
■ $e_{\lambda} f \uparrow f(\lambda \downarrow 0)$ (monotone pointwise convergence)

[^10]
Excursion：Moreau envelope and proximal operator ${ }^{1}$

Let $f \in \Gamma_{0}$ and $\lambda>0$ ．Then

$$
e_{\lambda} f:=f \# \frac{1}{2 \lambda}\|\cdot\|^{2}
$$

is called the Moreau envelope of f ．The map $P_{\lambda} f: \mathbb{E} \rightarrow \mathbb{E}$ given by

$$
P_{\lambda} f(x):=\underset{u}{\operatorname{argmin}}\left\{f(u)+\frac{1}{2 \lambda}\|x-u\|^{2}\right\} .
$$

We have
－$P_{\lambda} f$ is 1 －Lipschitz（in fact，firmly non－expansive）
－$e_{\lambda} f \in C^{1,1} \cap \Gamma_{0}$
－$\nabla e_{\lambda} f=\frac{1}{\lambda}\left(\mathrm{id}-P_{\lambda} f\right)$
■ $x \in \operatorname{argmin} f \Longleftrightarrow x \in \operatorname{argmin} e_{\lambda} f \Longleftrightarrow x=P_{\lambda} f(x)(\rightarrow$ proximal point／gradient method）
－$e_{\lambda} f \uparrow f(\lambda \downarrow 0)$（monotone pointwise convergence）
$■$ epi $e_{\lambda} f \rightarrow \operatorname{epi} f \quad(\lambda \downarrow 0)$（epi－convergence）

[^11]
Conjugacy for convex-linear composites

Let $f \in \Gamma$ and $L \in \mathcal{L}\left(\mathbb{E}, \mathbb{E}^{\prime}\right)$. Then

$$
L f: \mathbb{E}^{\prime} \rightarrow \overline{\mathbb{R}}, \quad(L f)(y):=\inf \{f(x) \mid L(x)=y\}
$$

is convex ${ }^{2}$.

[^12]
Conjugacy for convex-linear composites

Let $f \in \Gamma$ and $L \in \mathcal{L}\left(\mathbb{E}, \mathbb{E}^{\prime}\right)$. Then

$$
L f: \mathbb{E}^{\prime} \rightarrow \overline{\mathbb{R}}, \quad(L f)(y):=\inf \{f(x) \mid L(x)=y\}
$$

is convex ${ }^{2}$.

Proposition 16.

Let $g: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ be proper and $L \in \mathcal{L}\left(\mathbb{E}, \mathbb{E}^{\prime}\right)$ and $T \in \mathcal{L}\left(\mathbb{E}^{\prime}, \mathbb{E}\right)$. Then the following hold:
a) $(L g)^{*}=g^{*} \circ L^{*}$.
b) $(g \circ T)^{*}=\operatorname{cl}\left(T^{*} g^{*}\right)$ if $g \in \Gamma$.
c) The closure in b) can be dropped and the infimum is attained when finite if $g \in \Gamma_{0}$ and

$$
\begin{equation*}
\text { ri }(\operatorname{rge} T) \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset \tag{3}
\end{equation*}
$$

Proof.
Notes and Part 2.

[^13]Conjugacy of composite functions via K-convexity and inf-convolution

Infimal projection revisited

Theorem 17 (Infimal projection II).

Let $\psi \in \Gamma_{0}\left(\mathbb{E}_{1} \times \mathbb{E}_{2}\right)$ and define $p: \mathbb{E}_{1} \rightarrow \overline{\mathbb{R}}$ by

$$
\begin{equation*}
p(x):=\inf _{v} \psi(x, v) . \tag{4}
\end{equation*}
$$

Then the following hold:
a) p is convex.
b) $p^{*}=\psi^{*}(\cdot, 0)$ which is closed and convex.
c) The condition

$$
\begin{equation*}
\operatorname{dom} \psi^{*}(\cdot, 0) \neq 0 \tag{5}
\end{equation*}
$$

is equivalent to having $p^{*} \in \Gamma_{0}$.
d) If (5) holds then $p \in \Gamma_{0}$ and the infimum in its definition is attained when finite.

Proof.

Blackboard/Notes.

2. Conjugacy of composite functions via K-convexity and inf-convolution

Cone－induced ordering

Given a cone $K \subset \mathbb{E}$ ，the relation

$$
x \leq_{K} y \quad: \Longleftrightarrow \quad y-x \in K \quad(x, y \in \mathbb{E})
$$

induces an ordering on \mathbb{E} which is a partial ordering if K is convex and pointed ${ }^{3}$ ．

Cone-induced ordering

Given a cone $K \subset \mathbb{E}$, the relation

$$
x \leq_{K} y \quad: \Longleftrightarrow \quad y-x \in K \quad(x, y \in \mathbb{E})
$$

induces an ordering on \mathbb{E} which is a partial ordering if K is convex and pointed ${ }^{3}$.
■ Attach to \mathbb{E} a largest element $+_{\infty}$. w.r.t. \leq_{K} which satisfies $x \leq_{K}+_{\infty} \quad(x \in \mathbb{E})$.

Cone-induced ordering

Given a cone $K \subset \mathbb{E}$, the relation

$$
x \leq_{K} y \quad: \Longleftrightarrow \quad y-x \in K \quad(x, y \in \mathbb{E})
$$

induces an ordering on \mathbb{E} which is a partial ordering if K is convex and pointed ${ }^{3}$.
■ Attach to \mathbb{E} a largest element $+_{\infty}$. w.r.t. \leq_{K} which satisfies $x \leq_{K}+_{\infty} \quad(x \in \mathbb{E})$.

- Set $\mathbb{E}^{\bullet}:=\mathbb{E} \cup\{+\infty$ • $\}$.

■ For $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{*}$ define

$$
\begin{aligned}
\operatorname{dom} F & :=\left\{x \in \mathbb{E}_{1} \mid F(x) \in \mathbb{E}_{2}\right\} \quad \text { (domain) }, \\
\operatorname{gph} F & :=\left\{(x, F(x)) \in \mathbb{E}_{1} \times \mathbb{E}_{2} \mid x \in \operatorname{dom} F\right\} \quad \text { (graph) }, \\
\operatorname{rge} F & :=\left\{F(x) \in \mathbb{E}_{2} \mid x \in \operatorname{dom} F\right\} \quad \text { (range). } .
\end{aligned}
$$

[^14]Conjugacy of composite functions via K-convexity and inf-convolution

A new class of matrix support functionals

K-convexity

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_{2}$ be a cone and $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{e}$. Then we call $F K$-convex if

$$
K \text {-epi } F:=\left\{(x, v) \in \mathbb{E}_{1} \times \mathbb{E}_{2} \mid F(x) \leq_{K} v\right\} \quad \text { (K-epigraph) }
$$

is convex (in $\mathbb{E}_{1} \times \mathbb{E}_{2}$).

K-convexity

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_{2}$ be a cone and $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{e}$. Then we call $F K$-convex if

$$
K \text {-epi } F:=\left\{(x, v) \in \mathbb{E}_{1} \times \mathbb{E}_{2} \mid F(x) \leq_{K} v\right\} \quad \text { (K-epigraph) }
$$

is convex (in $\mathbb{E}_{1} \times \mathbb{E}_{2}$).

■ F is K-convex $\Longleftrightarrow F(\lambda x+(1-\lambda) y) \leq_{K} \lambda F(x)+(1-\lambda) F(y) \quad\left(x, y \in \mathbb{E}_{1}, \lambda \in[0,1]\right)$

K-convexity

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_{2}$ be a cone and $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{e}$. Then we call $F K$-convex if

$$
K \text {-epi } F:=\left\{(x, v) \in \mathbb{E}_{1} \times \mathbb{E}_{2} \mid F(x) \leq_{K} v\right\} \quad \text { (K-epigraph) }
$$

is convex (in $\mathbb{E}_{1} \times \mathbb{E}_{2}$).

■ F is K-convex $\Longleftrightarrow F(\lambda x+(1-\lambda) y) \leq_{K} \lambda F(x)+(1-\lambda) F(y) \quad\left(x, y \in \mathbb{E}_{1}, \lambda \in[0,1]\right)$

- F K-convex, then $\operatorname{ri}(K$-epi $F)=\left\{(x, v) \mid x \in \operatorname{ri}(\operatorname{dom} F), F(x) \leq_{\text {ri }}(K) v\right\}$

K-convexity

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_{2}$ be a cone and $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{e}$. Then we call $F K$-convex if

$$
K \text {-epi } F:=\left\{(x, v) \in \mathbb{E}_{1} \times \mathbb{E}_{2} \mid F(x) \leq_{K} v\right\} \quad \text { (K-epigraph) }
$$

is convex (in $\mathbb{E}_{1} \times \mathbb{E}_{2}$).

■ F is K-convex $\Longleftrightarrow F(\lambda x+(1-\lambda) y) \leq_{K} \lambda F(x)+(1-\lambda) F(y) \quad\left(x, y \in \mathbb{E}_{1}, \lambda \in[0,1]\right)$
■ $F K$-convex, then $\operatorname{ri}(K$-epi $F)=\left\{(x, v) \mid x \in \operatorname{ri}(\operatorname{dom} F), F(x) \leq_{\text {ri }}(K) v\right\}$
■ $K \subset L$ cones: $F K$-convex $\Rightarrow L$-convex

K-convexity

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_{2}$ be a cone and $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{e}$. Then we call $F K$-convex if

$$
K \text {-epi } F:=\left\{(x, v) \in \mathbb{E}_{1} \times \mathbb{E}_{2} \mid F(x) \leq_{K} v\right\} \quad \text { (K-epigraph) }
$$

is convex (in $\mathbb{E}_{1} \times \mathbb{E}_{2}$).

■ F is K-convex $\Longleftrightarrow F(\lambda x+(1-\lambda) y) \leq_{K} \lambda F(x)+(1-\lambda) F(y) \quad\left(x, y \in \mathbb{E}_{1}, \lambda \in[0,1]\right)$
■ $F K$-convex, then $\operatorname{ri}(K$-epi $F)=\left\{(x, v) \mid x \in \operatorname{ri}(\operatorname{dom} F), F(x) \leq_{\text {ri }}(K) v\right\}$

- $K \subset L$ cones: $F K$-convex $\Rightarrow L$-convex

Examples:

■ $K=\mathbb{R}_{+}^{m}$ and $F: \mathbb{R}^{n} \rightarrow\left(\mathbb{R}^{m}\right)^{\bullet}$ with $F_{i} \in \Gamma(i=1, \ldots, m)$

K-convexity

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_{2}$ be a cone and $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{e}$. Then we call $F K$-convex if

$$
K \text {-epi } F:=\left\{(x, v) \in \mathbb{E}_{1} \times \mathbb{E}_{2} \mid F(x) \leq_{K} v\right\} \quad \text { (K-epigraph) }
$$

is convex (in $\mathbb{E}_{1} \times \mathbb{E}_{2}$).

■ F is K-convex $\Longleftrightarrow F(\lambda x+(1-\lambda) y) \leq_{K} \lambda F(x)+(1-\lambda) F(y) \quad\left(x, y \in \mathbb{E}_{1}, \lambda \in[0,1]\right)$

- F K-convex, then $\operatorname{ri}(K$-epi $F)=\left\{(x, v) \mid x \in \operatorname{ri}(\operatorname{dom} F), F(x) \leq_{\text {ri }}(K) v\right\}$
- $K \subset L$ cones: $F K$-convex $\Rightarrow L$-convex

Examples:

$\square K=\mathbb{R}_{+}^{m}$ and $F: \mathbb{R}^{n} \rightarrow\left(\mathbb{R}^{m}\right)^{\bullet}$ with $F_{i} \in \Gamma(i=1, \ldots, m)$
■ $K=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \mid\|x\| \leq t\right\}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \times \mathbb{R}, F(x)=(x,\|x\|)$

K-convexity

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_{2}$ be a cone and $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{e}$. Then we call $F K$-convex if

$$
K \text {-epi } F:=\left\{(x, v) \in \mathbb{E}_{1} \times \mathbb{E}_{2} \mid F(x) \leq_{K} v\right\} \quad \text { (K-epigraph) }
$$

is convex (in $\mathbb{E}_{1} \times \mathbb{E}_{2}$).

■ F is K-convex $\Longleftrightarrow F(\lambda x+(1-\lambda) y) \leq_{K} \lambda F(x)+(1-\lambda) F(y) \quad\left(x, y \in \mathbb{E}_{1}, \lambda \in[0,1]\right)$
■ $F K$-convex, then $\operatorname{ri}(K$-epi $F)=\left\{(x, v) \mid x \in \operatorname{ri}(\operatorname{dom} F), F(x) \leq_{\text {ri }}(K) v\right\}$
■ $K \subset L$ cones: $F K$-convex $\Rightarrow L$-convex

Examples:

■ $K=\mathbb{R}_{+}^{m}$ and $F: \mathbb{R}^{n} \rightarrow\left(\mathbb{R}^{m}\right)^{\bullet}$ with $F_{i} \in \Gamma(i=1, \ldots, m)$
■ $K=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \mid\|x\| \leq t\right\}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \times \mathbb{R}, F(x)=(x,\|x\|)$
■ $K=\mathbb{S}_{+}^{n}$ and $F: \mathbb{S}^{n} \rightarrow\left(\mathbb{S}^{n}\right)^{\bullet}, F(X)=\left\{\begin{array}{cl}X^{-1}, & X>0, \\ +\infty_{\bullet}, & \text { else }\end{array}\right.$

K-convexity

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_{2}$ be a cone and $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{\bullet}$. Then we call $F K$-convex if

$$
K \text {-epi } F:=\left\{(x, v) \in \mathbb{E}_{1} \times \mathbb{E}_{2} \mid F(x) \leq_{K} v\right\} \quad \text { (K-epigraph) }
$$

is convex (in $\mathbb{E}_{1} \times \mathbb{E}_{2}$).

■ F is K-convex $\Longleftrightarrow F(\lambda x+(1-\lambda) y) \leq_{K} \lambda F(x)+(1-\lambda) F(y) \quad\left(x, y \in \mathbb{E}_{1}, \lambda \in[0,1]\right)$
■ $F K$-convex, then $\operatorname{ri}(K$-epi $F)=\left\{(x, v) \mid x \in \operatorname{ri}(\operatorname{dom} F), F(x) \leq_{\text {ri }}(K) v\right\}$
■ $K \subset L$ cones: $F K$-convex $\Rightarrow L$-convex

Examples:

■ $K=\mathbb{R}_{+}^{m}$ and $F: \mathbb{R}^{n} \rightarrow\left(\mathbb{R}^{m}\right)^{\bullet}$ with $F_{i} \in \Gamma(i=1, \ldots, m)$
■ $K=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \mid\|x\| \leq t\right\}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \times \mathbb{R}, F(x)=(x,\|x\|)$
■ $K=\mathbb{S}_{+}^{n}$ and $F: \mathbb{S}^{n} \rightarrow\left(\mathbb{S}^{n}\right)^{\bullet}, F(X)=\left\{\begin{aligned} X^{-1}, & X>0, \\ +\infty_{\bullet}, & \text { else }\end{aligned}\right.$
■ $K=\mathbb{S}_{+}^{n}$ and $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{S}^{n}, F(X)=X X^{T}$

K-convexity

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_{2}$ be a cone and $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{\bullet}$. Then we call $F K$-convex if

$$
K \text {-epi } F:=\left\{(x, v) \in \mathbb{E}_{1} \times \mathbb{E}_{2} \mid F(x) \leq_{K} v\right\} \quad \text { (K-epigraph) }
$$

is convex (in $\mathbb{E}_{1} \times \mathbb{E}_{2}$).

■ F is K-convex $\Longleftrightarrow F(\lambda x+(1-\lambda) y) \leq_{K} \lambda F(x)+(1-\lambda) F(y) \quad\left(x, y \in \mathbb{E}_{1}, \lambda \in[0,1]\right)$
■ $F K$-convex, then $\operatorname{ri}(K$-epi $F)=\left\{(x, v) \mid x \in \operatorname{ri}(\operatorname{dom} F), F(x) \leq_{\text {ri }}(K) v\right\}$
■ $K \subset L$ cones: $F K$-convex $\Rightarrow L$-convex
Examples:
■ $K=\mathbb{R}_{+}^{m}$ and $F: \mathbb{R}^{n} \rightarrow\left(\mathbb{R}^{m}\right)^{\bullet}$ with $F_{i} \in \Gamma(i=1, \ldots, m)$
■ $K=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \mid\|x\| \leq t\right\}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \times \mathbb{R}, F(x)=(x,\|x\|)$
■ $K=\mathbb{S}_{+}^{n}$ and $F: \mathbb{S}^{n} \rightarrow\left(\mathbb{S}^{n}\right)^{\bullet}, F(X)=\left\{\begin{aligned} X^{-1}, & X>0, \\ +\infty_{\bullet}, & \text { else }\end{aligned}\right.$
■ $K=\mathbb{S}_{+}^{n}$ and $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{S}^{n}, F(X)=X X^{T}$

- K arbitrary, F affine.

Convexity of composite functions

For $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{\bullet}$ and $g: \mathbb{E}_{2} \rightarrow \mathbb{R} \cup\{+\infty\}$ we define

$$
(g \circ F)(x):=\left\{\begin{array}{rc}
g(F(x)) & \text { if } \quad x \in \operatorname{dom} F \\
+\infty & \text { else. }
\end{array}\right.
$$

Convexity of composite functions

For $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{\bullet}$ and $g: \mathbb{E}_{2} \rightarrow \mathbb{R} \cup\{+\infty\}$ we define

$$
(g \circ F)(x):=\left\{\begin{array}{rc}
g(F(x)) & \text { if } \\
+\infty & \text { else. }
\end{array} \quad x \in \operatorname{dom} F\right.
$$

Proposition 19.

Let $K \subset \mathbb{E}_{2}$ be a convex cone, $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{0} K$-convex and $g \in \Gamma\left(\mathbb{E}_{2}\right)$ such that rge $F \cap \operatorname{dom} g \neq \emptyset$. If

$$
\begin{equation*}
g(F(x)) \leq g(y) \quad((x, y) \in K \text {-epi } F) \tag{6}
\end{equation*}
$$

then the following hold:
a) $g \circ F$ is convex and proper.
b) If g is Isc and F is continuous then $g \circ F$ is lower semicontinuous.

Convexity of composite functions

For $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{\bullet}$ and $g: \mathbb{E}_{2} \rightarrow \mathbb{R} \cup\{+\infty\}$ we define

$$
(g \circ F)(x):=\left\{\begin{array}{rc}
g(F(x)) & \text { if } \\
+\infty & \text { else. }
\end{array} \quad x \in \operatorname{dom} F\right.
$$

Proposition 19.

Let $K \subset \mathbb{E}_{2}$ be a convex cone, $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{0} K$-convex and $g \in \Gamma\left(\mathbb{E}_{2}\right)$ such that rge $F \cap \operatorname{dom} g \neq \emptyset$. If

$$
\begin{equation*}
g(F(x)) \leq g(y) \quad((x, y) \in K \text {-epi } F) \tag{6}
\end{equation*}
$$

then the following hold:
a) $g \circ F$ is convex and proper.
b) If g is Isc and F is continuous then $g \circ F$ is lower semicontinuous.

Condition (6) holds if g is K-increasing, i.e.

$$
x \leq_{k} y \quad \Longrightarrow \quad g(x) \leq g(y)
$$

Scalarization

Given $v \in \mathbb{E}_{2}$ and the linear form $\langle v, \cdot\rangle: \mathbb{E}_{2} \rightarrow \mathbb{R}$, we set $\langle v, F\rangle:=\langle v, \cdot\rangle \circ F$, i.e.

$$
\langle v, F\rangle(x)=\left\{\begin{array}{rc}
\langle v, F(x)\rangle & \text { if } \quad x \in \operatorname{dom} F \\
+\infty & \text { else. }
\end{array}\right.
$$

Scalarization

Given $v \in \mathbb{E}_{2}$ and the linear form $\langle v, \cdot\rangle: \mathbb{E}_{2} \rightarrow \mathbb{R}$, we set $\langle v, F\rangle:=\langle v, \cdot\rangle \circ F$, i.e.

$$
\langle v, F\rangle(x)=\left\{\begin{array}{rc}
\langle v, F(x)\rangle & \text { if } \\
+\infty & \text { else. }
\end{array} \quad x \in \operatorname{dom} F\right.
$$

For K a closed, convex cone we have:
$\square F$ is K-convex $\Longleftrightarrow\langle v, F\rangle$ is convex $\left(v \in-K^{\circ}\right)$

- $\sigma_{\text {gph } F}(u,-v)=\langle v, F\rangle^{*}(u)$.
- $\sigma_{K-\text { epi } F}(u, v)=\sigma_{\text {gph } F}(u, v)+\delta_{K^{\circ}}(v)$

Scalarization

Given $v \in \mathbb{E}_{2}$ and the linear form $\langle v, \cdot\rangle: \mathbb{E}_{2} \rightarrow \mathbb{R}$, we set $\langle v, F\rangle:=\langle v, \cdot\rangle \circ F$, i.e.

$$
\langle v, F\rangle(x)=\left\{\begin{array}{rc}
\langle v, F(x)\rangle & \text { if } \quad x \in \operatorname{dom} F \\
+\infty & \text { else. }
\end{array}\right.
$$

For K a closed, convex cone we have:
$\square F$ is K-convex $\Longleftrightarrow\langle v, F\rangle$ is convex $\left(v \in-K^{\circ}\right)$

- $\sigma_{\text {gph } F}(u,-v)=\langle v, F\rangle^{*}(u)$.

■ $\sigma_{K \text {-epi } F}(u, v)=\sigma_{\text {gph } F}(u, v)+\delta_{K^{\circ}}(v)$

Lemma 20 (Pennanen, JCA 1999).

Let $f: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{\bullet}$ with a convex domain and let $K \subset \mathbb{E}_{2}$ be the smallest closed convex cone with respect to which F is convex. Then

$$
(-K)^{\circ}=\left\{v \in \mathbb{E}_{2} \mid\langle v, F\rangle \text { is convex }\right\}
$$

The main result

Theorem 21 (Conjugacy for composite function, H./Nguyen '19, Bot et. al '11).

Let $K \subset \mathbb{E}_{2}$ be a closed convex cone, $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{*} K$-convex such that K-epi F is closed and $g_{0} \in \Gamma\left(\mathbb{E}_{2}\right)$ such that (6) is satisfied, i.e.

$$
x \leq k y \quad \Longrightarrow \quad g(x) \leq g(y)
$$

Under the CQ

$$
\begin{equation*}
F(\operatorname{ri}(\operatorname{dom} F)) \cap \text { ri }(\operatorname{dom} g-K) \neq \emptyset \tag{7}
\end{equation*}
$$

we have

$$
(g \circ F)^{*}(p)=\min _{v \in-K^{\circ}} g^{*}(v)+\langle v, F\rangle^{*}(p)
$$

with $\operatorname{dom}(g \circ F)^{*}=\left\{p \in \mathbb{E}_{1} \mid \exists v \in \operatorname{dom} g^{*} \cap\left(-K^{\circ}\right):\langle v, F\rangle^{*}(p)<+\infty\right\}$.

Proof.

Blackboard/Notes.

The main result

Theorem 21 (Conjugacy for composite function, H./Nguyen '19, Bot et. al '11).

Let $K \subset \mathbb{E}_{2}$ be a closed convex cone, $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{*} K$-convex such that K-epi F is closed and $g_{0} \in \Gamma\left(\mathbb{E}_{2}\right)$ such that (6) is satisfied, i.e.

$$
x \leq \kappa y \quad \Longrightarrow \quad g(x) \leq g(y)
$$

Under the CQ

$$
\begin{equation*}
F(\operatorname{ri}(\operatorname{dom} F)) \cap \text { ri }(\operatorname{dom} g-K) \neq \emptyset \tag{7}
\end{equation*}
$$

we have

$$
(g \circ F)^{*}(p)=\min _{v \in-K^{\circ}} g^{*}(v)+\langle v, F\rangle^{*}(p)
$$

with $\operatorname{dom}(g \circ F)^{*}=\left\{p \in \mathbb{E}_{1} \mid \exists v \in \operatorname{dom} g^{*} \cap\left(-K^{\circ}\right):\langle v, F\rangle^{*}(p)<+\infty\right\}$.

Proof.

Blackboard/Notes.
Remark:

- The CQ (7) is trivially satisfied if g is finite-valued.

The main result

Theorem 21 (Conjugacy for composite function, H./Nguyen '19, Bot et. al '11).

Let $K \subset \mathbb{E}_{2}$ be a closed convex cone, $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{*} K$-convex such that K-epi F is closed and $g_{0} \in \Gamma\left(\mathbb{E}_{2}\right)$ such that (6) is satisfied, i.e.

$$
x \leq \kappa y \quad \Longrightarrow \quad g(x) \leq g(y)
$$

Under the CQ

$$
\begin{equation*}
F(\operatorname{ri}(\operatorname{dom} F)) \cap \operatorname{ri}(\operatorname{dom} g-K) \neq \emptyset \tag{7}
\end{equation*}
$$

we have

$$
(g \circ F)^{*}(p)=\min _{v \in-K^{\circ}} g^{*}(v)+\langle v, F\rangle^{*}(p)
$$

with $\operatorname{dom}(g \circ F)^{*}=\left\{p \in \mathbb{E}_{1} \mid \exists v \in \operatorname{dom} g^{*} \cap\left(-K^{\circ}\right):\langle v, F\rangle^{*}(p)<+\infty\right\}$.

Proof.

Blackboard/Notes.

Remark:

- The CQ (7) is trivially satisfied if g is finite-valued.
- Condition (6) can be replaced by the stronger condition that g be K-increasing.

The main result

Theorem 21 (Conjugacy for composite function, H./Nguyen '19, Bot et. al '11).

Let $K \subset \mathbb{E}_{2}$ be a closed convex cone, $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{*} K$-convex such that K-epi F is closed and $g_{0} \in \Gamma\left(\mathbb{E}_{2}\right)$ such that (6) is satisfied, i.e.

$$
x \leq \kappa y \quad \Longrightarrow \quad g(x) \leq g(y)
$$

Under the CQ

$$
\begin{equation*}
F(\operatorname{ri}(\operatorname{dom} F)) \cap \text { ri }(\operatorname{dom} g-K) \neq \emptyset \tag{7}
\end{equation*}
$$

we have

$$
(g \circ F)^{*}(p)=\min _{v \in-K^{\circ}} g^{*}(v)+\langle v, F\rangle^{*}(p)
$$

with $\operatorname{dom}(g \circ F)^{*}=\left\{p \in \mathbb{E}_{1} \mid \exists v \in \operatorname{dom} g^{*} \cap\left(-K^{\circ}\right):\langle v, F\rangle^{*}(p)<+\infty\right\}$.

Proof.

Blackboard/Notes.

Remark:

- The CQ (7) is trivially satisfied if g is finite-valued.
- Condition (6) can be replaced by the stronger condition that g be K-increasing.
- K-epi F is closed if F is continuous.

Extension to the additive composite setting

Corollary 22 (Conjugate of additive composite functions, H./Nguyen '19).
Under the assumptions of Theorem 21 let $f \in \Gamma_{0}$ such that

$$
\begin{equation*}
F(\text { ri }(\operatorname{dom} f \cap \operatorname{dom} F)) \cap \operatorname{ri}(\operatorname{dom} g-K) \neq \emptyset . \tag{8}
\end{equation*}
$$

Then

$$
(f+g \circ F)^{*}(p)=\min _{\substack{v \in-K^{\circ} \\ y \in \mathbb{E}_{1},}} g^{*}(v)+f^{*}(y)+\langle v, F\rangle^{*}(p-y)
$$

Extension to the additive composite setting

Corollary 22 (Conjugate of additive composite functions, H./Nguyen '19).
Under the assumptions of Theorem 21 let $f \in \Gamma_{0}$ such that

$$
\begin{equation*}
F(\operatorname{ri}(\operatorname{dom} f \cap \operatorname{dom} F)) \cap \operatorname{ri}(\operatorname{dom} g-K) \neq \emptyset . \tag{8}
\end{equation*}
$$

Then

$$
(f+g \circ F)^{*}(p)=\min _{\substack{v \in-K^{\circ} \\ y \in \mathbb{E}_{1},}} g^{*}(v)+f^{*}(y)+\langle v, F\rangle^{*}(p-y)
$$

Proof.

(Sketch) Apply Theorem 21 to $\tilde{g}:(s, y) \in \mathbb{R} \times \mathbb{E}_{2} \mapsto s+g(y), \tilde{F}: x \in \mathbb{E}_{1} \rightarrow(f(x), x)$ and $\tilde{K}:=\mathbb{R}_{+} \times K$.

The case $K=-$ hzn g

For $g \in \Gamma_{0}$ its horizon function g^{∞} is given via

$$
\text { epi } g^{\infty}=(\text { epi } g)^{\infty}
$$

The horizon cone of g is

$$
\text { hzn } g:=\left\{x \mid g^{\infty}(x) \leq 0\right\}^{\infty}
$$

The case $K=-$ hzn g

For $g \in \Gamma_{0}$ its horizon function g^{∞} is given via

$$
\text { epi } g^{\infty}=(\text { epi } g)^{\infty}
$$

The horizon cone of g is

$$
\text { hzn } g:=\left\{x \mid g^{\infty}(x) \leq 0\right\}^{\infty}
$$

■ hzn $g=\left(\operatorname{cone}\left(\operatorname{dom} g^{*}\right)\right)^{\circ}$

The case $K=-$ hzn g

For $g \in \Gamma_{0}$ its horizon function g^{∞} is given via

$$
\text { epi } g^{\infty}=(\text { epi } g)^{\infty}
$$

The horizon cone of g is

$$
\text { hzn } g:=\left\{x \mid g^{\infty}(x) \leq 0\right\}^{\infty}
$$

■ hzn $g=\left(\operatorname{cone}\left(\operatorname{dom} g^{*}\right)\right)^{\circ}$

- g is K-increasing for $K=-$ hzn g :

The case $K=-$ hzn g

For $g \in \Gamma_{0}$ its horizon function g^{∞} is given via

$$
\text { epi } g^{\infty}=(\text { epi } g)^{\infty}
$$

The horizon cone of g is

$$
\text { hzn } g:=\left\{x \mid g^{\infty}(x) \leq 0\right\}^{\infty}
$$

■ hzn $g=\left(\operatorname{cone}\left(\operatorname{dom} g^{*}\right)\right)^{\circ}$
■ g is K-increasing for $K=-$ hzn g : Let $x \leq_{K} y$, i.e. $y=x+b$ for some $b \in K$. Then

$$
g(x)=\sup _{z \in \operatorname{dom} g^{*}}\left\{\langle x, z\rangle-g^{*}(z)\right\}=\sup _{z \in \operatorname{dom} g^{*}}\left\{\langle y, z\rangle-\langle b, z\rangle-g^{*}(z)\right\} \leq \sup _{z \in \operatorname{dom} g^{*}}\left\{\langle y, z\rangle-g^{*}(z)\right\}=g(y),
$$

The case $K=-$ hzn g

For $g \in \Gamma_{0}$ its horizon function g^{∞} is given via

$$
\text { epi } g^{\infty}=(\text { epi } g)^{\infty}
$$

The horizon cone of g is

$$
\text { hzn } g:=\left\{x \mid g^{\infty}(x) \leq 0\right\}^{\infty}
$$

■ hzn $g=\left(\operatorname{cone}\left(\operatorname{dom} g^{*}\right)\right)^{\circ}$
■ g is K-increasing for $K=-$ hzn g : Let $x \leq_{K} y$, i.e. $y=x+b$ for some $b \in K$. Then

$$
g(x)=\sup _{z \in \operatorname{dom} g^{*}}\left\{\langle x, z\rangle-g^{*}(z)\right\}=\sup _{z \in \operatorname{dom} g^{*}}\left\{\langle y, z\rangle-\langle b, z\rangle-g^{*}(z)\right\} \leq \sup _{z \in \operatorname{dom} g^{*}}\left\{\langle y, z\rangle-g^{*}(z)\right\}=g(y),
$$

Corollary 23 (Burke '91, H./Nguyen '19).

Let $g \in \Gamma_{0}\left(\mathbb{E}_{2}\right)$ and let $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}^{\cdot}$ be (-hzn $\left.g\right)$-convex with -hzn g-epi F closed such that

$$
F(\text { ri }(\operatorname{dom} F)) \cap \text { ri }(\operatorname{dom} g+\operatorname{hzn} g) \neq \emptyset
$$

Then

$$
(g \circ F)^{*}(p)=\min _{v \in \mathbb{E}_{2}} g^{*}(v)+\langle v, F\rangle^{*}(p) .
$$

The linear case

Corollary 24 (The linear case).
Let $g \in \Gamma\left(\mathbb{E}_{2}\right)$ and $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}$ linear such that

$$
\operatorname{rge} F \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset
$$

Then

$$
(g \circ F)^{*}(p)=\min _{v \in \mathbb{E}_{2}}\left\{g^{*}(v) \mid F^{*}(v)=p\right\}
$$

with $\operatorname{dom}(g \circ F)=\left(F^{*}\right)^{-1}\left(\operatorname{dom} g^{*}\right)$.

The linear case

Corollary 24 (The linear case).

Let $g \in \Gamma\left(\mathbb{E}_{2}\right)$ and $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}$ linear such that

$$
\operatorname{rge} F \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset
$$

Then

$$
(g \circ F)^{*}(p)=\min _{v \in \mathbb{E}_{2}}\left\{g^{*}(v) \mid F^{*}(v)=p\right\}
$$

with $\operatorname{dom}(g \circ F)=\left(F^{*}\right)^{-1}\left(\operatorname{dom} g^{*}\right)$.

Proof.

We notice that F is $\{0\}$-convex. Hence we can apply Theorem 21 with $K=\{0\}$. Condition (7) then reads $\operatorname{rge} F \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset$, which is our assumption. Hence we obtain

$$
(g \circ F)^{*}(p)=\min _{v \in-K^{\circ}} g^{*}(v)+\langle v, F\rangle^{*}(p)=\min _{v \in \mathbb{E}_{2}} g^{*}(v)+\delta_{\left\{F^{*}(v)\right\}}(p)
$$

Applications

Conic programming duality

Consider the general conic program

$$
\min f(x) \quad \text { s.t. } \quad F(x) \in-K
$$

or equivalently

Conic programming duality

Consider the general conic program

$$
\begin{equation*}
\min f(x) \quad \text { s.t. } \quad F(x) \in-K \tag{9}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\min _{x \in \mathbb{E}_{1}} f(x)+\left(\delta_{-K} \circ F\right)(x) \tag{10}
\end{equation*}
$$

where $f: \mathbb{E}_{1} \rightarrow \mathbb{R}$ is convex, $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}$ is K-convex and $K \subset \mathbb{E}_{2}$ is a closed, convex cone.

Conic programming duality

Consider the general conic program

$$
\begin{equation*}
\min f(x) \quad \text { s.t. } \quad F(x) \in-K \tag{9}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\min _{x \in \mathbb{E}_{1}} f(x)+\left(\delta_{-K} \circ F\right)(x) \tag{10}
\end{equation*}
$$

where $f: \mathbb{E}_{1} \rightarrow \mathbb{R}$ is convex, $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}$ is K-convex and $K \subset \mathbb{E}_{2}$ is a closed, convex cone. The qualification condition (7) turns into a generalized Slater condition

$$
\begin{equation*}
\operatorname{rge} F \cap \operatorname{ri}(-K) \neq \emptyset \tag{11}
\end{equation*}
$$

Conic programming duality

Consider the general conic program

$$
\begin{equation*}
\min f(x) \quad \text { s.t. } \quad F(x) \in-K \tag{9}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\min _{x \in \mathbb{E}_{1}} f(x)+\left(\delta_{-K} \circ F\right)(x) \tag{10}
\end{equation*}
$$

where $f: \mathbb{E}_{1} \rightarrow \mathbb{R}$ is convex, $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}$ is K-convex and $K \subset \mathbb{E}_{2}$ is a closed, convex cone. The qualification condition (7) turns into a generalized Slater condition

$$
\begin{equation*}
\operatorname{rge} F \cap \operatorname{ri}(-K) \neq \emptyset \tag{11}
\end{equation*}
$$

Conic programming duality

Consider the general conic program

$$
\begin{equation*}
\min f(x) \quad \text { s.t. } \quad F(x) \in-K \tag{9}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\min _{x \in \mathbb{B}_{1}} f(x)+\left(\delta_{-K} \circ F\right)(x) \tag{10}
\end{equation*}
$$

where $f: \mathbb{E}_{1} \rightarrow \mathbb{R}$ is convex, $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}$ is K-convex and $K \subset \mathbb{E}_{2}$ is a closed, convex cone. The qualification condition (7) turns into a generalized Slater condition

$$
\begin{equation*}
\operatorname{rge} F \cap \operatorname{ri}(-K) \neq \emptyset \tag{11}
\end{equation*}
$$

Theorem 25 (Strong duality and dual attainment for conic programming).

Let $f: \mathbb{E}_{1} \rightarrow \mathbb{R}$ is convex, $K \subset \mathbb{E}_{2}$ a closed, convex cone, and let $F: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}$ be K-convex with closed K-epigraph. If (11) holds then

$$
\inf _{x \in \mathbb{B}_{1}} f(x)+\left(\delta_{-K} \circ F\right)(x)=\max _{v \in-K^{\circ}}-f^{*}(y)-\left(\delta_{-K} \circ F\right)^{*}(-y)=\max _{v \in-K^{\circ}} \inf _{x \in \mathbb{B}_{1}} f(x)+\langle v, F(x)\rangle .
$$

Conjugate of pointwise maximum of convex functions

Proposition 26.

For $f_{1}, \ldots, f_{m} \in \Gamma_{0}(\mathbb{E})$ define $f:=\max _{i=1, \ldots, m} f_{i}$. Then $f \in \Gamma_{0}(\mathbb{E})$ with

$$
f^{*}(x)=\min _{v \in \Delta m}\left(\sum_{i=1}^{m} v_{i} f_{i}\right)^{*}(x)
$$

[^15]
Conjugate of pointwise maximum of convex functions

Proposition 26.

For $f_{1}, \ldots, f_{m} \in \Gamma_{0}(\mathbb{E})$ define $f:=\max _{i=1, \ldots, m} f_{i}$. Then $f \in \Gamma_{0}(\mathbb{E})$ with

$$
f^{*}(x)=\min _{v \in \Delta m}\left(\sum_{i=1}^{m} v_{i} f_{i}\right)^{*}(x)
$$

Proof.

We have $f=g \circ F$ for

$$
F: x \mapsto\left\{\begin{array}{ll}
\left(f_{1}(x), \ldots, f_{m}(x)\right) & \text { if } x \in \bigcap_{i=1}^{m} \operatorname{dom} f_{i}, \\
+\infty . & \text { otherwise, }
\end{array} \quad \text { and } \quad g: y \mapsto \max _{i=1, \ldots, m} x_{i}\right.
$$

$$
{ }^{4} \Delta_{m}=\left\{\lambda \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i} \geq 0(i 1, \ldots, m)\right\}
$$

Conjugate of pointwise maximum of convex functions

Proposition 26.

For $f_{1}, \ldots, f_{m} \in \Gamma_{0}(\mathbb{E})$ define $f:=\max _{i=1, \ldots, m} f_{i}$. Then $f \in \Gamma_{0}(\mathbb{E})$ with

$$
f^{*}(x)=\min _{v \in \Delta m}\left(\sum_{i=1}^{m} v_{i} f_{i}\right)^{*}(x)
$$

Proof.

We have $f=g \circ F$ for

$$
F: x \mapsto\left\{\begin{array}{ll}
\left(f_{1}(x), \ldots, f_{m}(x)\right) & \text { if } x \in \bigcap_{i=1}^{m} \operatorname{dom} f_{i}, \\
+\infty . & \text { otherwise, }
\end{array} \quad \text { and } \quad g: y \mapsto \max _{i=1, \ldots, m} x_{i}\right.
$$

Then F is \mathbb{R}_{+}^{m}-convex and g is \mathbb{R}_{+}^{m}-increasing with $\operatorname{dom} g=\mathbb{R}^{m}$, and $g^{*}=\delta_{\Delta_{m}}{ }^{4}$.

$$
{ }^{4} \Delta_{m}=\left\{\lambda \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i} \geq 0(i 1, \ldots, m)\right\}
$$

—
\square

Conjugate of pointwise maximum of convex functions

Proposition 26.

For $f_{1}, \ldots, f_{m} \in \Gamma_{0}(\mathbb{E})$ define $f:=\max _{i=1, \ldots, m} f_{i}$. Then $f \in \Gamma_{0}(\mathbb{E})$ with

$$
f^{*}(x)=\min _{v \in \Delta m}\left(\sum_{i=1}^{m} v_{i} f_{i}\right)^{*}(x)
$$

Proof.

We have $f=g \circ F$ for

$$
F: x \mapsto\left\{\begin{array}{ll}
\left(f_{1}(x), \ldots, f_{m}(x)\right) & \text { if } x \in \bigcap_{i=1}^{m} \operatorname{dom} f_{i}, \\
+\infty . & \text { otherwise, }
\end{array} \quad \text { and } \quad g: y \mapsto \max _{i=1, \ldots, m} x_{i}\right.
$$

Then F is \mathbb{R}_{+}^{m}-convex and g is \mathbb{R}_{+}^{m}-increasing with $\operatorname{dom} g=\mathbb{R}^{m}$, and $g^{*}=\delta_{\Delta_{m}}{ }^{4}$. Hence

$$
(g \circ F)^{*}(x)
$$

$$
{ }^{4} \Delta_{m}=\left\{\lambda \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i} \geq 0(i 1, \ldots, m)\right\}
$$

Conjugate of pointwise maximum of convex functions

Proposition 26.

For $f_{1}, \ldots, f_{m} \in \Gamma_{0}(\mathbb{E})$ define $f:=\max _{i=1, \ldots, m} f_{i}$. Then $f \in \Gamma_{0}(\mathbb{E})$ with

$$
f^{*}(x)=\min _{v \in \Delta m}\left(\sum_{i=1}^{m} v_{i} f_{i}\right)^{*}(x)
$$

Proof.

We have $f=g \circ F$ for

$$
F: x \mapsto\left\{\begin{array}{ll}
\left(f_{1}(x), \ldots, f_{m}(x)\right) & \text { if } x \in \bigcap_{i=1}^{m} \operatorname{dom} f_{i}, \\
+\infty . & \text { otherwise, }
\end{array} \quad \text { and } \quad g: y \mapsto \max _{i=1, \ldots, m} x_{i}\right.
$$

Then F is \mathbb{R}_{+}^{m}-convex and g is \mathbb{R}_{+}^{m}-increasing with $\operatorname{dom} g=\mathbb{R}^{m}$, and $g^{*}=\delta_{\Delta_{m}}{ }^{4}$. Hence

$$
(g \circ F)^{*}(x)=\min _{v \in \mathbb{R}_{+}^{m}} g^{*}(v)+\langle v, F\rangle^{*}(x)
$$

$$
{ }^{4} \Delta_{m}=\left\{\lambda \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i} \geq 0(i 1, \ldots, m)\right\}
$$

-

Conjugate of pointwise maximum of convex functions

Proposition 26.

For $f_{1}, \ldots, f_{m} \in \Gamma_{0}(\mathbb{E})$ define $f:=\max _{i=1, \ldots, m} f_{i}$. Then $f \in \Gamma_{0}(\mathbb{E})$ with

$$
f^{*}(x)=\min _{v \in \Delta m}\left(\sum_{i=1}^{m} v_{i} f_{i}\right)^{*}(x)
$$

Proof.

We have $f=g \circ F$ for

$$
F: x \mapsto\left\{\begin{array}{ll}
\left(f_{1}(x), \ldots, f_{m}(x)\right) & \text { if } x \in \bigcap_{i=1}^{m} \operatorname{dom} f_{i}, \\
+\infty . & \text { otherwise, }
\end{array} \quad \text { and } \quad g: y \mapsto \max _{i=1, \ldots, m} x_{i}\right.
$$

Then F is \mathbb{R}_{+}^{m}-convex and g is \mathbb{R}_{+}^{m}-increasing with dom $g=\mathbb{R}^{m}$, and $g^{*}=\delta_{\Delta_{m}}{ }^{4}$. Hence

$$
(g \circ F)^{*}(x)=\min _{v \in \mathbb{R}_{+}^{m}} g^{*}(v)+\langle v, F\rangle^{*}(x)=\min _{v \in \mathbb{R}_{+}^{m}} \delta_{\Delta_{m}}(v)+\langle v, F\rangle^{*}(x)
$$

$$
{ }^{4} \Delta_{m}=\left\{\lambda \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i} \geq 0(i 1, \ldots, m)\right\}
$$

[^16]
Conjugate of pointwise maximum of convex functions

Proposition 26.

For $f_{1}, \ldots, f_{m} \in \Gamma_{0}(\mathbb{E})$ define $f:=\max _{i=1, \ldots, m} f_{i}$. Then $f \in \Gamma_{0}(\mathbb{E})$ with

$$
f^{*}(x)=\min _{v \in \Delta m}\left(\sum_{i=1}^{m} v_{i} f_{i}\right)^{*}(x)
$$

Proof.

We have $f=g \circ F$ for

$$
F: x \mapsto\left\{\begin{array}{ll}
\left(f_{1}(x), \ldots, f_{m}(x)\right) & \text { if } x \in \bigcap_{i=1}^{m} \operatorname{dom} f_{i}, \\
+\infty . & \text { otherwise, }
\end{array} \quad \text { and } \quad g: y \mapsto \max _{i=1, \ldots, m} x_{i}\right.
$$

Then F is \mathbb{R}_{+}^{m}-convex and g is \mathbb{R}_{+}^{m}-increasing with $\operatorname{dom} g=\mathbb{R}^{m}$, and $g^{*}=\delta_{\Delta_{m}}{ }^{4}$. Hence

$$
(g \circ F)^{*}(x)=\min _{v \in \mathbb{R}_{+}^{m}} g^{*}(v)+\langle v, F\rangle^{*}(x)=\min _{v \in \mathbb{R}_{+}^{m}} \delta_{\Delta_{m}}(v)+\langle v, F\rangle^{*}(x)=\min _{v \in \Delta_{m}}\left(\sum_{i=1}^{m} v_{i} f_{i}\right)^{*}(x)
$$

[^17]-

3. A new class of matrix support functionals

Motivation I: Nuclear norm minimization/smoothing

Rank minimization (\rightarrow Netflix recommender problem)

$$
\begin{equation*}
\min _{X \in \mathbb{R}^{n \times m}} \operatorname{rank} X \quad \text { s.t. } \quad M X=B \quad\left(M \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}\right) \tag{12}
\end{equation*}
$$

[^18]
Motivation I: Nuclear norm minimization/smoothing

Rank minimization (\rightarrow Netflix recommender problem)

$$
\begin{equation*}
\min _{X \in \mathbb{R}^{n \times m}} \operatorname{rank} X \quad \text { s.t. } \quad M X=B \quad\left(M \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}\right) \tag{12}
\end{equation*}
$$

- Approximating the rank function (\rightarrow combinatorial)

$$
\operatorname{rank} X=\|\sigma(X)\|_{0} \stackrel{\text { Convex approx. }}{\sim}\|\sigma(X)\|_{1}=:\|X\|_{*} \quad(\text { nuclear norm })^{5}
$$

[^19]
Motivation I: Nuclear norm minimization/smoothing

Rank minimization (\rightarrow Netflix recommender problem)

$$
\begin{equation*}
\min _{X \in \mathbb{R}^{n \times m}} \operatorname{rank} X \quad \text { s.t. } \quad M X=B \quad\left(M \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}\right) \tag{12}
\end{equation*}
$$

- Approximating the rank function (\rightarrow combinatorial)

$$
\operatorname{rank} X=\|\sigma(X)\|_{0} \stackrel{\text { Convex approx. }}{\sim}\|\sigma(X)\|_{1}=:\|X\|_{*} \quad(\text { nuclear norm })^{5}
$$

- Convex approximation of (12)

$$
\min _{X \in \mathbb{R}^{n \times m}}\|X\|_{*} \quad \text { s.t. } \quad M X=B
$$

[^20]
Motivation I：Nuclear norm minimization／smoothing

Rank minimization（ \rightarrow Netflix recommender problem）

$$
\begin{equation*}
\min _{X \in \mathbb{R}^{n \times m}} \operatorname{rank} X \quad \text { s.t. } \quad M X=B \quad\left(M \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}\right) \tag{12}
\end{equation*}
$$

－Approximating the rank function（ \rightarrow combinatorial）

$$
\operatorname{rank} X=\|\sigma(X)\|_{0} \stackrel{\text { Convex approx. }}{\sim}\|\sigma(X)\|_{1}=:\|X\|_{*} \quad(\text { nuclear norm })^{5}
$$

－Convex approximation of（12）

$$
\min _{X \in \mathbb{R}^{n \times m}}\|X\|_{*} \quad \text { s.t. } \quad M X=B
$$

■ Hsieh／Olsen＇14：$\|X\|_{*}=\min _{V \in \mathbb{S}_{++}^{n}} \frac{1}{2} \operatorname{tr}(V)+\frac{1}{2} \operatorname{tr}\left(X^{\top} V^{-1} X\right) \quad\left(X \in \mathbb{R}^{n \times m}\right)$

[^21]
Motivation I: Nuclear norm minimization/smoothing

Rank minimization (\rightarrow Netflix recommender problem)

$$
\begin{equation*}
\min _{X \in \mathbb{R}^{n \times m}} \operatorname{rank} X \quad \text { s.t. } \quad M X=B \quad\left(M \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}\right) \tag{12}
\end{equation*}
$$

- Approximating the rank function (\rightarrow combinatorial)

$$
\operatorname{rank} X=\|\sigma(X)\|_{0} \stackrel{\text { Convex approx. }}{\sim}\|\sigma(X)\|_{1}=:\|X\|_{*} \quad(\text { nuclear norm })^{5}
$$

- Convex approximation of (12)

$$
\min _{X \in \mathbb{R}^{n \times m}}\|X\|_{*} \quad \text { s.t. } \quad M X=B
$$

■ Hsieh/Olsen '14: $\|X\|_{*}=\min _{V \in \mathbb{S}_{++}^{n}} \frac{1}{2} \operatorname{tr}(V)+\frac{1}{2} \operatorname{tr}\left(X^{\top} V^{-1} X\right) \quad\left(X \in \mathbb{R}^{n \times m}\right)$

- Smooth approximation of (12)

$$
\min _{(X, V) \in \mathbb{R}^{n \times n} \times \mathbb{S}_{++}^{n}} \frac{1}{2} \operatorname{tr}(V)+\frac{1}{2} \operatorname{tr}\left(X^{T} V^{-1} X\right) \quad \text { s.t. } \quad M X=B
$$

[^22]
Motivation II: Maximum likelihood estimation

Let $y_{i} \in \mathbb{R}^{n}(i=1, \ldots, N)$ be measurements of

$$
y \sim N(\mu, \Sigma) \quad\left(\mu \in \mathbb{R}^{n}, \Sigma \in \mathbb{S}_{++}^{n} \rightarrow \text { unknown }\right)
$$

Motivation II: Maximum likelihood estimation

Let $y_{i} \in \mathbb{R}^{n}(i=1, \ldots, N)$ be measurements of

$$
y \sim N(\mu, \Sigma) \quad\left(\mu \in \mathbb{R}^{n}, \Sigma \in \mathbb{S}_{++}^{n} \rightarrow \text { unknown }\right)
$$

- Likelihood function:

$$
\ell(\mu, \Sigma):=\frac{1}{(2 \pi)^{n / 2}} \prod_{i=1}^{N} \frac{1}{(\operatorname{det} \Sigma)^{1 / 2}} \exp \left(-\frac{1}{2}\left(y_{i}-\mu\right)^{T} \Sigma^{-1}\left(y_{i}-\mu\right)\right)
$$

Motivation II: Maximum likelihood estimation

Let $y_{i} \in \mathbb{R}^{n}(i=1, \ldots, N)$ be measurements of

$$
y \sim N(\mu, \Sigma) \quad\left(\mu \in \mathbb{R}^{n}, \Sigma \in \mathbb{S}_{++}^{n} \rightarrow \text { unknown }\right)
$$

- Likelihood function:

$$
\ell(\mu, \Sigma):=\frac{1}{(2 \pi)^{n / 2}} \prod_{i=1}^{N} \frac{1}{(\operatorname{det} \Sigma)^{1 / 2}} \exp \left(-\frac{1}{2}\left(y_{i}-\mu\right)^{T} \Sigma^{-1}\left(y_{i}-\mu\right)\right)
$$

- log-likelihood function

$$
\log \ell(\mu, \Sigma)=-\frac{N}{2} \log (\operatorname{det} \Sigma)-\frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-\mu\right)^{T} \Sigma^{-1}\left(y_{i}-\mu\right)-\frac{n}{2} \log (2 \pi)
$$

Motivation II: Maximum likelihood estimation

Let $y_{i} \in \mathbb{R}^{n}(i=1, \ldots, N)$ be measurements of

$$
y \sim N(\mu, \Sigma) \quad\left(\mu \in \mathbb{R}^{n}, \Sigma \in \mathbb{S}_{++}^{n} \rightarrow \text { unknown }\right)
$$

- Likelihood function:

$$
\ell(\mu, \Sigma):=\frac{1}{(2 \pi)^{n / 2}} \prod_{i=1}^{N} \frac{1}{(\operatorname{det} \Sigma)^{1 / 2}} \exp \left(-\frac{1}{2}\left(y_{i}-\mu\right)^{T} \Sigma^{-1}\left(y_{i}-\mu\right)\right)
$$

- log-likelihood function

$$
\log \ell(\mu, \Sigma)=-\frac{N}{2} \log (\operatorname{det} \Sigma)-\frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-\mu\right)^{T} \Sigma^{-1}\left(y_{i}-\mu\right)-\frac{n}{2} \log (2 \pi)
$$

■ Maximum likelihood estimation

$$
\begin{array}{rll}
\max _{(\mu, \Sigma)} \ell(\mu, \Sigma) & \Leftrightarrow & \min _{(\mu, \Sigma)}-\log \ell(\mu, \Sigma) \\
& \stackrel{x_{i}:=y_{i}-\mu}{\Leftrightarrow} & \min _{(X, \Sigma) \in \mathbb{R}^{n \times N} N_{\times \mathbb{S}_{++}^{n}}} \frac{1}{2} \operatorname{tr}\left(X^{\top} \Sigma^{-1} X\right)+\frac{N}{2} \log (\operatorname{det} \Sigma)
\end{array}
$$

The Moore-Penrose pseudoinverse

Theorem 27 (Moore-Penrose pseudoinverse).

Let $A \in R^{m \times n}$ with rank $A=r$ and the singular value decomposition

$$
A=U \Sigma V^{\top} \quad \text { with } \quad \Sigma=\operatorname{diag}\left(\sigma_{i}\right), \quad U, V \text { orthogonal. }
$$

The Moore-Penrose pseudoinverse

Theorem 27 (Moore-Penrose pseudoinverse).

Let $A \in R^{m \times n}$ with rank $A=r$ and the singular value decomposition

$$
A=U \Sigma V^{T} \quad \text { with } \quad \Sigma=\operatorname{diag}\left(\sigma_{i}\right), \quad U, V \text { orthogonal. }
$$

The matrix

$$
A^{\dagger}:=V \Sigma^{\dagger} U^{\top} \quad \text { with } \quad \Sigma^{\dagger}:=\left(\begin{array}{ccccc}
\sigma_{1}^{-1} & & & & \\
& \ddots & & & \\
& & & \\
& & \sigma_{r}^{-1} & & \\
& & & 0 & \\
& & & \ddots & \\
& & & & 0
\end{array}\right)
$$

called the (Moore-Penrose) pseudoinverse of A is the unique matrix with the following properties.

The Moore-Penrose pseudoinverse

Theorem 27 (Moore-Penrose pseudoinverse).

Let $A \in R^{m \times n}$ with rank $A=r$ and the singular value decomposition

$$
A=U \Sigma V^{T} \quad \text { with } \quad \Sigma=\operatorname{diag}\left(\sigma_{i}\right), \quad U, V \text { orthogonal. }
$$

The matrix

$$
A^{\dagger}:=V \Sigma^{\dagger} U^{T} \quad \text { with } \quad \Sigma^{\dagger}:=\left(\begin{array}{ccccc}
\sigma_{1}^{-1} & & & & \\
& \ddots & & & \\
& & \sigma_{r}^{-1} & & \\
& & & 0 & \\
& & & \ddots & \\
& & & & { }_{0}
\end{array}\right)
$$

called the (Moore-Penrose) pseudoinverse of A is the unique matrix with the following properties.
a) $A A^{\dagger} A=A$ and $A^{\dagger} A A^{\dagger}=A^{\dagger}$
b) $\left(A A^{\dagger}\right)^{\top}=A A^{\dagger}$ and $\left(A^{\dagger} A\right)^{\top}=A^{\dagger} A s$

The Moore-Penrose pseudoinverse

Theorem 27 (Moore-Penrose pseudoinverse).

Let $A \in R^{m \times n}$ with rank $A=r$ and the singular value decomposition

$$
A=U \Sigma V^{T} \quad \text { with } \quad \Sigma=\operatorname{diag}\left(\sigma_{i}\right), \quad U, V \text { orthogonal. }
$$

The matrix

$$
A^{\dagger}:=V \Sigma^{\dagger} U^{T} \quad \text { with } \quad \Sigma^{\dagger}:=\left(\begin{array}{ccccc}
\sigma_{1}^{-1} & & & & \\
& \ddots & & & \\
& & \sigma_{r}^{-1} & & \\
& & & 0 & \\
& & & \ddots & \\
& & & & { }_{0}
\end{array}\right)
$$

called the (Moore-Penrose) pseudoinverse of A is the unique matrix with the following properties.
a) $A A^{\dagger} A=A$ and $A^{\dagger} A A^{\dagger}=A^{\dagger}$
b) $\left(A A^{\dagger}\right)^{\top}=A A^{\dagger}$ and $\left(A^{\dagger} A\right)^{\top}=A^{\dagger} A s$

Moreover:
c) A invertible $\Rightarrow A^{\dagger}=A^{-1}$
d) $A>0 \quad \Rightarrow \quad A^{\dagger}>0$

The closure of the matrix-fractional function

$$
\begin{aligned}
& \text { Put } \mathbb{E}:=\mathbb{R}^{n \times m} \times \mathbb{S}^{n} \text {. } \\
& \phi:(X, V) \in \mathbb{E} \mapsto\left\{\begin{array}{r}
\frac{1}{2} \operatorname{tr}\left(X^{\top} V^{-1} X\right) \\
+\infty
\end{array} \quad \text { if } \quad \text { else. } \quad V>0, \quad\right. \text { (matrix-fractional function) }
\end{aligned}
$$

The closure of the matrix-fractional function

Put $\mathbb{E}:=\mathbb{R}^{n \times m} \times \mathbb{S}^{n}$.
$\phi:(X, V) \in \mathbb{E} \mapsto\left\{\begin{array}{rc}\frac{1}{2} \operatorname{tr}\left(X^{\top} V^{-1} X\right) & \text { if } \\ +\infty & \text { else. }\end{array} \quad V>0, \quad\right.$ (matrix-fractional function)
$\stackrel{\text { Schur }}{\Rightarrow} \quad$ epi $\phi=\left\{(X, V, \alpha) \mid \exists Y \in \mathbb{S}^{m}:\left(\begin{array}{cc}V & X \\ X^{T} & Y\end{array}\right) \geq 0, V>0, \frac{1}{2} \operatorname{tr}(Y) \leq \alpha\right\}$

The closure of the matrix-fractional function

$$
\begin{aligned}
\text { Put } \mathbb{E}:= & \mathbb{R}^{n \times m} \times \mathbb{S}^{n} . \\
& \phi:(X, V) \in \mathbb{E} \mapsto\left\{\begin{array}{r}
\frac{1}{2} \operatorname{tr}\left(X^{T} V^{-1} X\right) \\
+\infty
\end{array} \quad \text { if } \quad \text { else. } \quad V>0, \quad\right. \text { (matrix-fractional function) } \\
& \stackrel{\text { Schur }}{\Rightarrow} \quad \text { epi } \phi=\left\{(X, V, \alpha) \mid \exists Y \in \mathbb{S}^{m}:\left(\begin{array}{cc}
V & X \\
X^{T} & Y
\end{array}\right) \geq 0, V>0, \frac{1}{2} \operatorname{tr}(Y) \leq \alpha\right\} \\
& \Rightarrow \quad \phi \text { proper, sublinear and not Isc. }
\end{aligned}
$$

The closure of the matrix-fractional function

Put $\mathbb{E}:=\mathbb{R}^{n \times m} \times \mathbb{S}^{n}$.
$\phi:(X, V) \in \mathbb{E} \mapsto\left\{\begin{array}{rc}\frac{1}{2} \operatorname{tr}\left(X^{\top} V^{-1} X\right) & \text { if } \\ +\infty & \text { else. }\end{array} \quad V>0, \quad\right.$ (matrix-fractional function)
$\stackrel{\text { Schur }}{\Rightarrow} \quad$ epi $\phi=\left\{(X, V, \alpha) \mid \exists Y \in \mathbb{S}^{m}:\left(\begin{array}{cc}V & X \\ X^{T} & Y\end{array}\right) \geq 0, V>0, \frac{1}{2} \operatorname{tr}(Y) \leq \alpha\right\}$
$\Rightarrow \quad \phi$ proper, sublinear and not Isc.
$\Rightarrow \quad \begin{aligned} & \operatorname{cl} \phi:(X, V) \in \mathbb{E} \mapsto\left\{\begin{array}{r}\frac{1}{2} \operatorname{tr}\left(X^{\top} V^{\dagger} X\right) \\ +\infty\end{array} \quad \text { if } \quad V \geq 0, \operatorname{rge} X \in \operatorname{rge} V,\right. \\ & \text { is proper, Isc and sublinear } \quad\end{aligned}$
is proper, Isc and sublinear

The closure of the matrix-fractional function

$$
\begin{aligned}
& \text { Put } \mathbb{E}:=\mathbb{R}^{n \times m} \times \mathbb{S}^{n} \text {. } \\
& \phi:(X, V) \in \mathbb{E} \mapsto\left\{\begin{array}{rc}
\frac{1}{2} \operatorname{tr}\left(X^{\top} V^{-1} X\right) & \text { if } \\
+\infty & \text { else. }
\end{array} \quad V>0, \quad\right. \text { (matrix-fractional function) } \\
& \stackrel{\text { Schur }}{\Rightarrow} \quad \text { epi } \phi=\left\{(X, V, \alpha) \mid \exists Y \in \mathbb{S}^{m}:\left(\begin{array}{cc}
V & X \\
X^{\top} & Y
\end{array}\right) \geq 0, V>0, \frac{1}{2} \operatorname{tr}(Y) \leq \alpha\right\} \\
& \Rightarrow \quad \phi \text { proper, sublinear and not Isc. } \\
& \Rightarrow \quad \operatorname{cl} \phi:(X, V) \in \mathbb{E} \mapsto\left\{\begin{array}{r}
\frac{1}{2} \operatorname{tr}\left(X^{\top} V^{\dagger} X\right) \\
+\infty
\end{array} \quad \text { if } \quad V \geq 0, \operatorname{rge} X \in \operatorname{rge} V,\right. \\
& \text { Hörmander's Theorem } \\
& \operatorname{cl} \phi \text { is a support function }
\end{aligned}
$$

Motivation III: Quadratic programming

For $A \in \mathbb{R}^{p \times n}$ and $V \in \mathbb{S}^{n}$ put

$$
M(V):=\left(\begin{array}{cc}
V & A^{T} \\
A & 0
\end{array}\right) \quad \text { and } \quad \mathcal{K}_{A}:=\left\{V \in \mathbb{S}^{n} \mid u^{T} V u \geq 0(u \in \operatorname{ker} A)\right\} .
$$

Motivation III: Quadratic programming

For $A \in \mathbb{R}^{p \times n}$ and $V \in \mathbb{S}^{n}$ put

$$
M(V):=\left(\begin{array}{cc}
V & A^{T} \\
A & 0
\end{array}\right) \quad \text { and } \quad \mathcal{K}_{A}:=\left\{V \in \mathbb{S}^{n} \mid u^{T} V u \geq 0(u \in \operatorname{ker} A)\right\} .
$$

Theorem 28 (Burke, H. '15).

For $b \in \operatorname{rge} A$, we have

$$
\inf _{u \in \mathbb{R}^{n}}\left\{\left.\frac{1}{2} u^{\top} V u-x^{T} u \right\rvert\, A u=b\right\}=\left\{\begin{array}{cc}
-\frac{1}{2}\binom{x}{b}^{T} M(V)^{\dagger}\binom{x}{b} \quad \begin{array}{c}
\text { if } \\
-\infty \\
\text { else. }
\end{array} \quad x \in \operatorname{rge}\left[V A^{T}\right], V \in \mathcal{K}_{A},
\end{array}\right.
$$

Motivation III: Quadratic programming

For $A \in \mathbb{R}^{p \times n}$ and $V \in \mathbb{S}^{n}$ put

$$
M(V):=\left(\begin{array}{cc}
V & A^{T} \\
A & 0
\end{array}\right) \quad \text { and } \quad \mathcal{K}_{A}:=\left\{V \in \mathbb{S}^{n} \mid u^{T} V u \geq 0(u \in \operatorname{ker} A)\right\} .
$$

Theorem 28 (Burke, H. '15).

For $b \in \operatorname{rge} A$, we have

$$
\inf _{u \in \mathbb{R}^{n}}\left\{\left.\frac{1}{2} u^{\top} V u-x^{T} u \right\rvert\, A u=b\right\}=\left\{\begin{array}{cc}
-\frac{1}{2}\binom{x}{b}^{T} M(V)^{\dagger}\binom{x}{b} \quad \begin{array}{c}
\text { if } \\
-\infty
\end{array} \quad x \in \operatorname{rge}\left[V A^{T}\right], V \in \mathcal{K}_{A}, \\
\text { else. }
\end{array}\right.
$$

Question: For $A \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}$, is

$$
\varphi_{A, B}:(X, V) \in \mathbb{E} \mapsto \begin{cases}\frac{1}{2} \operatorname{tr}\left(\binom{X}{B}^{\top} M(V)^{\dagger}\binom{X}{B}\right) & \text { if } \operatorname{rge}\binom{X}{B} \subset \operatorname{rge} M(V), V \in \mathcal{K}_{A}, \\ +\infty & \text { else }\end{cases}
$$

a support function?

A new class of matrix support functions

Define

$$
\mathcal{D}(A, B):=\left\{\left.\left(Y,-\frac{1}{2} Y Y^{T}\right) \in \mathbb{E} \right\rvert\, Y \in \mathbb{R}^{n \times m}: A Y=B\right\} \quad\left(A \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}\right)
$$

A new class of matrix support functions

Define

$$
\mathcal{D}(A, B):=\left\{\left.\left(Y,-\frac{1}{2} Y Y^{T}\right) \in \mathbb{E} \right\rvert\, Y \in \mathbb{R}^{n \times m}: A Y=B\right\} \quad\left(A \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}\right)
$$

Theorem 29 (Burke, H. '15).

For rge $B \subset \operatorname{rge} A$

$$
\sigma_{\mathcal{D}(A, B)}(X, V)= \begin{cases}\frac{1}{2} \operatorname{tr}\left(\binom{X}{B}^{T} M(V)^{\dagger}\binom{X}{B}\right) & \text { if } \operatorname{rge}\binom{X}{B} \subset \operatorname{rge} M(V), V \in \mathcal{K}_{A}, \quad((X, V) \in \mathbb{E}) \\ +\infty & \text { else }\end{cases}
$$

with

$$
\operatorname{int}\left(\operatorname{dom} \sigma_{D(A, B)}\right)=\left\{(X, V) \in \mathbb{E} \mid V \in \operatorname{int} \mathcal{K}_{A}\right\}
$$

A new class of matrix support functions

Define

$$
\mathcal{D}(A, B):=\left\{\left.\left(Y,-\frac{1}{2} Y Y^{T}\right) \in \mathbb{E} \right\rvert\, Y \in \mathbb{R}^{n \times m}: A Y=B\right\} \quad\left(A \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}\right)
$$

Theorem 29 (Burke, H. '15).

For rge $B \subset \operatorname{rge} A$

$$
\sigma_{\mathcal{D}(A, B)}(X, V)= \begin{cases}\frac{1}{2} \operatorname{tr}\left(\binom{X}{B}^{T} M(V)^{\dagger}\binom{X}{B}\right) & \text { if } \operatorname{rge}\binom{X}{B} \subset \operatorname{rge} M(V), V \in \mathcal{K}_{A}, \quad((X, V) \in \mathbb{E}) \\ +\infty & \text { else }\end{cases}
$$

with

$$
\operatorname{int}\left(\operatorname{dom} \sigma_{D(A, B)}\right)=\left\{(X, V) \in \mathbb{E} \mid V \in \operatorname{int} \mathcal{K}_{A}\right\}
$$

In particular,

$$
\sigma_{\mathcal{D}(0,0)}(X, V)=\left\{\begin{array}{rc}
\frac{1}{2} \operatorname{tr}\left(X^{\top} V^{\dagger} X\right) & \text { if } \quad V \geq 0, \operatorname{rge} X \subset \operatorname{rge} V, \\
+\infty & \text { else }
\end{array} \quad=\operatorname{cl} \phi(X, V) .\right.
$$

Proof.

Blackboard/Notes.

Closed convex hull of $\mathcal{D}(A, B)$: Carathéodory-based description

Recall

$$
\partial \sigma_{\mathcal{D}(A, B)}(X, V)=\left\{(Y, W) \in \overline{\operatorname{conv}} \mathcal{D}(A, B) \mid(X, V) \in N_{\overline{\text { conv }} \mathcal{D}(A, B)}(Y, W)\right\} \quad \text { and } \quad \sigma_{\mathcal{D}(A, B)}=\delta_{\overline{c o n v}}^{*} \mathcal{D}(A, B)
$$

where

$$
\mathcal{D}(A, B):=\left\{\left.\left(Y,-\frac{1}{2} Y Y^{\top}\right) \in \mathbb{E} \right\rvert\, Y \in \mathbb{R}^{n \times m}: A Y=B\right\} .
$$

[^23]
Closed convex hull of $\mathcal{D}(A, B)$: Carathéodory-based description

Recall

$$
\partial \sigma_{\mathcal{D}(A, B)}(X, V)=\left\{(Y, W) \in \overline{\operatorname{conv}} \mathcal{D}(A, B) \mid(X, V) \in N_{\overline{\text { conv }} \mathcal{D}(A, B)}(Y, W)\right\} \quad \text { and } \quad \sigma_{\mathcal{D}(A, B)}=\delta_{\overline{c o n v}}^{*} \mathcal{D}(A, B)
$$

where

$$
\mathcal{D}(A, B):=\left\{\left.\left(Y,-\frac{1}{2} Y Y^{\top}\right) \in \mathbb{E} \right\rvert\, Y \in \mathbb{R}^{n \times m}: A Y=B\right\} .
$$

Proposition 30 (Burke, H. '15).

$$
\overline{\operatorname{conv}} \mathcal{D}(A, B)=\left\{\left.\left(Z\left(d \otimes I_{m}\right),-\frac{1}{2} Z Z^{T}\right) \right\rvert\,(d, Z) \in \mathcal{F}(A, B)\right\} .
$$

where

$$
\mathcal{F}(A, B):=\left\{(d, Z) \in \mathbb{R}^{\kappa+1} \times \mathbb{R}^{n \times m(\kappa+1)} \left\lvert\, \begin{array}{l}
d \geq 0,\|d\|=1, \\
A Z_{i}=d_{i} B(i=1, \ldots, \kappa+1)
\end{array} .^{7}\right.\right.
$$

$$
\begin{aligned}
& { }^{6} d \otimes I_{m}=\left(d_{i} I_{m}\right) \in \mathbb{R}^{m(\kappa+1)} \\
& { }^{7} \kappa:=\operatorname{dim} \mathbb{E}
\end{aligned}
$$

Closed convex hull of $\mathcal{D}(A, B)$: A new description
 Define

$$
\begin{equation*}
\Omega(A, B):=\left\{(Y, W) \in \mathbb{E} \mid A Y=B \text { and } \frac{1}{2} Y Y^{T}+W \in \mathcal{K}_{A}^{\circ}\right\} \tag{13}
\end{equation*}
$$

and observe that

$$
\mathcal{K}_{A}^{\circ}=\mathbb{R}_{+} \operatorname{conv}\left\{-v v^{\top} \mid v \in \operatorname{ker} A\right\} .
$$

Closed convex hull of $\mathcal{D}(A, B)$: A new description

Define

$$
\begin{equation*}
\Omega(A, B):=\left\{(Y, W) \in \mathbb{E} \mid A Y=B \text { and } \frac{1}{2} Y Y^{T}+W \in \mathcal{K}_{A}^{\circ}\right\} \tag{13}
\end{equation*}
$$

and observe that

$$
\mathcal{K}_{A}^{\circ}=\mathbb{R}_{+} \operatorname{conv}\left\{-v v^{\top} \mid v \in \operatorname{ker} A\right\}
$$

Theorem 31 (Burke, Gao, H. '17).
We have

$$
\overline{\operatorname{conv}} \mathcal{D}(A, B)=\Omega(A, B)
$$

In particular,

$$
\overline{\operatorname{conv}} \mathcal{D}(0,0)=\left\{(Y, W) \in \mathbb{E} \mid A Y=B \text { and } \frac{1}{2} Y Y^{\top}+W \leq 0\right\}
$$

Proof.

Notes.

Closed convex hull of $\mathcal{D}(A, B)$: A new description
 Define

$$
\begin{equation*}
\Omega(A, B):=\left\{(Y, W) \in \mathbb{E} \mid A Y=B \text { and } \frac{1}{2} Y Y^{T}+W \in \mathcal{K}_{A}^{\circ}\right\} \tag{13}
\end{equation*}
$$

and observe that

$$
\mathcal{K}_{A}^{\circ}=\mathbb{R}_{+} \operatorname{conv}\left\{-v v^{\top} \mid v \in \operatorname{ker} A\right\} .
$$

Theorem 31 (Burke, Gao, H. '17).
We have

$$
\overline{\operatorname{conv}} \mathcal{D}(A, B)=\Omega(A, B)
$$

In particular,

$$
\overline{\operatorname{conv}} \mathcal{D}(0,0)=\left\{(Y, W) \in \mathbb{E} \mid A Y=B \text { and } \frac{1}{2} Y Y^{T}+W \leq 0\right\}
$$

Proof.

Notes.

Corollary 32 (Conjugate of GMF).

We have

$$
\sigma_{\mathcal{D}(A, B)}^{*}=\delta_{\Omega(A, B)} .
$$

Convex geometry of $\Omega(A, B)$

Recall that $\Omega(A, B):=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{\top}+W \in \mathcal{K}_{A}^{\circ}\right\}$

Convex geometry of $\Omega(A, B)$

Recall that $\Omega(A, B):=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{\top}+W \in \mathcal{K}_{A}^{\circ}\right\}$
Proposition 33 (Burke, Gao, H. '17).
Let $\Omega(A, B)$ be given as above. Then:
a) $\operatorname{ri} \Omega(A, B)=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{\top}+W \in \operatorname{ri}\left(\mathcal{K}_{A}^{\circ}\right)\right\}$.

Convex geometry of $\Omega(A, B)$

Recall that $\Omega(A, B):=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{\top}+W \in \mathcal{K}_{A}^{\circ}\right\}$

Proposition 33 (Burke, Gao, H. '17).

Let $\Omega(A, B)$ be given as above. Then:
a) $\operatorname{ri} \Omega(A, B)=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{\top}+W \in \operatorname{ri}\left(\mathcal{K}_{A}^{\circ}\right)\right\}$.
b) $\operatorname{aff} \Omega(A, B)=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{\top}+W \in \operatorname{span} \mathcal{K}_{A}^{\circ}\right\}$.

Convex geometry of $\Omega(A, B)$

Recall that $\Omega(A, B):=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{\top}+W \in \mathcal{K}_{A}^{\circ}\right\}$

Proposition 33 (Burke, Gao, H. '17).

Let $\Omega(A, B)$ be given as above. Then:
a) $\operatorname{ri} \Omega(A, B)=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{\top}+W \in \operatorname{ri}\left(\mathcal{K}_{A}^{\circ}\right)\right\}$.
b) aff $\Omega(A, B)=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{T}+W \in \operatorname{span} \mathcal{K}_{A}^{\circ}\right\}$.

Convex geometry of $\Omega(A, B)$

Recall that $\Omega(A, B):=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{\top}+W \in \mathcal{K}_{A}^{\circ}\right\}$

Proposition 33 (Burke, Gao, H. '17).

Let $\Omega(A, B)$ be given as above. Then:
a) $\operatorname{ri} \Omega(A, B)=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{\top}+W \in \operatorname{ri}\left(\mathcal{K}_{A}^{\circ}\right)\right\}$.
b) aff $\Omega(A, B)=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{T}+W \in \operatorname{span} \mathcal{K}_{A}^{\circ}\right\}$.

d) $\Omega(A, B)^{\infty}=\left\{0_{n \times m}\right\} \times \mathcal{K}_{A}^{\circ}$.

Convex geometry of $\Omega(A, B)$

Recall that $\Omega(A, B):=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{T}+W \in \mathcal{K}_{A}^{\circ}\right\}$

Proposition 33 (Burke, Gao, H. '17).

Let $\Omega(A, B)$ be given as above. Then:
a) $\operatorname{ri} \Omega(A, B)=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{\top}+W \in \operatorname{ri}\left(\mathcal{K}_{A}^{\circ}\right)\right\}$.
b) aff $\Omega(A, B)=\left\{(Y, W) \in \mathbb{E} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{\top}+W \in \operatorname{span} \mathcal{K}_{A}^{\circ}\right\}$.
c) $\Omega(A, B)^{\circ}=\left\{(X, V) \left\lvert\, \operatorname{rge}\binom{X}{B} \subset \operatorname{rge} M(V)\right., V \in \mathcal{K}_{A}, \frac{1}{2} \operatorname{tr}\left(\binom{X}{B}^{\top} M(V)^{\dagger}\binom{X}{B}\right) \leq 1\right\}$.
d) $\Omega(A, B)^{\infty}=\left\{0_{n \times m}\right\} \times \mathcal{K}_{A}^{\circ}$.

Proposition 34 (Burke, Gao, H. '17).

Let $\Omega(A, B)$ be given as above and let $(Y, W) \in \Omega(A, B)$. Then

$$
N_{\Omega(A, B)}(Y, W)=\left\{\begin{array}{l|l}
(X, V) \in \mathbb{E} & \begin{array}{l}
V \in \mathcal{K}_{A},\left\langle V, \frac{1}{2} Y Y^{\top}+W\right\rangle=0 \\
\text { and } \operatorname{rge}(X-V Y) \subset(\operatorname{ker} A)^{\perp}
\end{array}
\end{array}\right\}
$$

Subdifferentiation of the GMF

For any set C recall that

$$
\begin{equation*}
\partial \sigma_{C}(x)=\left\{z \in \overline{\operatorname{conv}} C \mid x \in N_{\overline{\text { conv }}} C(z)\right\} \tag{14}
\end{equation*}
$$

Subdifferentiation of the GMF

For any set C recall that

$$
\begin{equation*}
\partial \sigma_{C}(x)=\left\{z \in \overline{\operatorname{conv}} C \mid x \in N_{\overline{\text { conv }}} C(z)\right\} \tag{14}
\end{equation*}
$$

Corollary 35 (The subdifferential of $\left.\sigma_{\mathcal{D}(A, B)}\right)$.

For all $(X, V) \in \operatorname{dom} \sigma_{\mathcal{D}(A, B)}$, we have

$$
\partial \sigma_{\mathcal{D}(A, B)}=\left\{\begin{array}{l|l}
(Y, W) \in \Omega(A, B) & \begin{array}{l}
\exists Z \in \mathbb{R}^{p \times m}: X=V Y+A^{\top} Z \\
\left\langle V, \frac{1}{2} Y Y^{\top}+W\right\rangle=0
\end{array}
\end{array}\right\}
$$

Subdifferentiation of the GMF

For any set C recall that

$$
\begin{equation*}
\partial \sigma_{C}(x)=\left\{z \in \overline{\operatorname{conv}} C \mid x \in N_{\overline{\text { conv }} C}(z)\right\} \tag{14}
\end{equation*}
$$

Corollary 35 (The subdifferential of $\left.\sigma_{\mathcal{D}(A, B)}\right)$.

For all $(X, V) \in \operatorname{dom} \sigma_{\mathcal{D}(A, B)}$, we have

$$
\partial \sigma_{\mathcal{D}(A, B)}=\left\{\begin{array}{l|l}
(Y, W) \in \Omega(A, B) & \begin{array}{l}
\exists Z \in \mathbb{R}^{p \times m}: X=V Y+A^{T} Z \\
\left\langle V, \frac{1}{2} Y Y^{T}+W\right\rangle=0
\end{array}
\end{array}\right\}
$$

Corollary 36.

The GMF $\sigma_{\mathcal{D}(A, B)}$ is (continuously) differentiable on the interior of its domain with

$$
\nabla \sigma_{\mathcal{D}(A, B)}(X, V)=\left(Y,-\frac{1}{2} Y Y^{T}\right) \quad\left((X, V) \in \operatorname{int}\left(\operatorname{dom} \sigma_{\mathcal{D}(A, B)}\right)\right)
$$

where $Y:=A^{\dagger} B+\left(P\left(P^{\top} V P\right)^{-1} P^{\top}\right)\left(X-A^{\dagger} X\right), P \in \mathbb{R}^{n \times(n-p)}$ is any matrix whose columns form an orthonormal basis of $\operatorname{ker} A$ and $p:=\operatorname{rank} A$.

Conjugate of variational Gram functions

For $M \subset \mathbb{S}_{+}^{n}$ (w.lo.g.) closed, convex, the associated variational Gram function (VGF) is given by

$$
\Omega_{M}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \Omega_{M}(X)=\frac{1}{2} \sigma_{M}\left(X X^{\top}\right)
$$

With

$$
\begin{equation*}
F: \mathbb{R}^{n \times m} \rightarrow \mathbb{S}^{n}, \quad F(X)=\frac{1}{2} X X^{T} \tag{15}
\end{equation*}
$$

$\Omega_{M}=\sigma_{M} \circ F$ fits the composite scheme studied in Section 2.

Conjugate of variational Gram functions

For $M \subset \mathbb{S}_{+}^{n}$ (w.lo.g.) closed, convex, the associated variational Gram function (VGF) is given by

$$
\Omega_{M}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \Omega_{M}(X)=\frac{1}{2} \sigma_{M}\left(X X^{T}\right)
$$

With

$$
\begin{equation*}
F: \mathbb{R}^{n \times m} \rightarrow \mathbb{S}^{n}, \quad F(X)=\frac{1}{2} X X^{\top} \tag{15}
\end{equation*}
$$

$\Omega_{M}=\sigma_{M} \circ F$ fits the composite scheme studied in Section 2.
$■ \mathbb{S}_{+}^{n}$ is the smallest closed convex cone in \mathbb{S}^{n} with respect to which F is convex;
■ $-\mathrm{hzn} \sigma_{M} \supset \mathbb{S}_{+}^{n}$. In particular, F is $\left(-\operatorname{hzn} \sigma_{M}\right)$-convex.

Conjugate of variational Gram functions

For $M \subset \mathbb{S}_{+}^{n}$ (w.lo.g.) closed, convex, the associated variational Gram function (VGF) is given by

$$
\Omega_{M}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \Omega_{M}(X)=\frac{1}{2} \sigma_{M}\left(X X^{\top}\right)
$$

With

$$
\begin{equation*}
F: \mathbb{R}^{n \times m} \rightarrow \mathbb{S}^{n}, \quad F(X)=\frac{1}{2} X X^{\top} \tag{15}
\end{equation*}
$$

$\Omega_{M}=\sigma_{M} \circ F$ fits the composite scheme studied in Section 2.
■ \mathbb{S}_{+}^{n} is the smallest closed convex cone in \mathbb{S}^{n} with respect to which F is convex;
■ $-\mathrm{hzn} \sigma_{M} \supset \mathbb{S}_{+}^{n}$. In particular, F is $\left(-\operatorname{hzn} \sigma_{M}\right)$-convex.

Theorem 37 (Jalali et al. '17/ Burke, Gao, H. '19).

Let $M \subset \mathbb{S}_{+}^{n}$ be nonempty, convex and compact. Then Ω_{M}^{*} is finite-valued and given by

$$
\Omega^{*}(X)=\frac{1}{2} \min _{V \in M}\left\{\operatorname{tr}\left(X^{\top} V^{\dagger} X\right) \mid \operatorname{rge} X \subset \operatorname{rge} V\right\}
$$

Proof.

Blackboard/Notes.

Nuclear norm smoothing

For $A \in \mathbb{R}^{p \times n}$ set

Ker $A:=\left\{V \in \mathbb{R}^{n \times n} \mid A V=0\right\} \quad$ and $\quad \operatorname{Rge} A:=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rge} W \subset \operatorname{rge} A\right\}$.

Nuclear norm smoothing
 For $A \in \mathbb{R}^{p \times n}$ set

$$
\text { Ker } A:=\left\{V \in \mathbb{R}^{n \times n} \mid A V=0\right\} \quad \text { and } \quad \text { Rge } A:=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rge} W \subset \operatorname{rge} A\right\} .
$$

Theorem 38.

Let $p: \mathbb{R}^{n \times m} \rightarrow \overline{\mathbb{R}}$ be defined by

$$
p(X)=\inf _{V \in \mathbb{S}^{n}} \sigma_{\Omega(A, 0)}(X, V)+\langle\bar{U}, V\rangle
$$

for some $\bar{U} \in \mathbb{S}_{+}^{n} \cap \operatorname{Ker} A$ and set $C(\bar{U}):=\left\{Y \left\lvert\, \frac{1}{2} Y Y^{T} \leq \bar{U}\right.\right\}$. Then we have:
a) $p^{*}=\delta_{C(\bar{U}) \cap K e r ~}^{A}$ is closed, proper, convex.
b) $p=\sigma_{C(\bar{U}) \cap \operatorname{Ker} A}=\gamma_{C(\bar{U})^{\circ}+\text { Rge } A^{T}}$ is sublinear, finite-valued, nonnegative and symmetric (i.e. a seminorm).
c) If $\bar{U}>0$ with $2 \bar{U}=L L^{T}\left(L \in \mathbb{R}^{n \times n}\right)$ and $A=0$ then $p=\sigma_{C(\bar{U})}=\left\|L^{T}(\cdot)\right\|_{*}$, i.e. p is a norm with $C(\bar{U})^{\circ}$ as its unit ball and $\gamma_{C(\bar{U})}$ as its dual norm.

Proof.

Blackboard/Notes.

Current and future directions

■ K-convexity

- When is $\overline{\text { conv }}(\mathrm{gph} F)=K$-epi F for $F K$-convex?

Current and future directions

■ K-convexity
■ When is $\overline{\text { conv }}($ gph $F)=K$-epi F for $F K$-convex?

- Subdifferential analysis for convex convex-composites, unification with the nonconvex convex-composite case (BCQ etc.)

Current and future directions

■ K-convexity

- When is $\overline{\operatorname{conv}}($ gph $F)=K$-epi F for $F K$-convex?
- Subdifferential analysis for convex convex-composites, unification with the nonconvex convex-composite case (BCQ etc.)
■ Learn more about existing literature!

Current and future directions

■ K-convexity

- When is $\overline{\operatorname{conv}}($ gph $F)=K$-epi F for $F K$-convex?
- Subdifferential analysis for convex convex-composites, unification with the nonconvex convex-composite case (BCQ etc.)
■ Learn more about existing literature!
- Generalized matrix-fractional function

■ Systematic study of (partial) infimal projections

$$
p(X)=\inf _{V \in \mathbb{S}^{n}} \sigma_{\Omega(A, B)}(X, V)+h(V)
$$

for $h \in \Gamma_{0}\left(\mathbb{S}^{n}\right) . \rightarrow$ SIOPT article to appear.

Current and future directions

- K-convexity
- When is $\overline{\operatorname{conv}}($ gph $F)=K$-epi F for $F K$-convex?
- Subdifferential analysis for convex convex-composites, unification with the nonconvex convex-composite case (BCQ etc.)
■ Learn more about existing literature!
- Generalized matrix-fractional function

■ Systematic study of (partial) infimal projections

$$
p(X)=\inf _{V \in \mathbb{S}^{n}} \sigma_{\Omega(A, B)}(X, V)+h(V)
$$

for $h \in \Gamma_{0}\left(\mathbb{S}^{n}\right) . \rightarrow$ SIOPT article to appear.

- Numerical methods based on GMF.

Current and future directions

- K-convexity

■ When is $\overline{\text { conv }}($ gph $F)=K$-epi F for $F K$-convex?

- Subdifferential analysis for convex convex-composites, unification with the nonconvex convex-composite case (BCQ etc.)
■ Learn more about existing literature!
- Generalized matrix-fractional function

■ Systematic study of (partial) infimal projections

$$
p(X)=\inf _{V \in \mathbb{S}^{n}} \sigma_{\Omega(A, B)}(X, V)+h(V)
$$

for $h \in \Gamma_{0}\left(\mathbb{S}^{n}\right) . \rightarrow$ SIOPT article to appear.

- Numerical methods based on GMF.
- Compute (analytically/numerically) the projection onto $\Omega(A, B)$ (\rightarrow projection/proximal-based algorithms).

Current and future directions

- K-convexity

■ When is $\overline{\text { conv }}($ gph $F)=K$-epi F for $F K$-convex?

- Subdifferential analysis for convex convex-composites, unification with the nonconvex convex-composite case (BCQ etc.)
■ Learn more about existing literature!
- Generalized matrix-fractional function

■ Systematic study of (partial) infimal projections

$$
p(X)=\inf _{V \in \mathbb{S}^{n}} \sigma_{\Omega(A, B)}(X, V)+h(V)
$$

for $h \in \Gamma_{0}\left(\mathbb{S}^{n}\right) . \rightarrow$ SIOPT article to appear.

- Numerical methods based on GMF.
- Compute (analytically/numerically) the projection onto $\Omega(A, B)$ (\rightarrow projection/proximal-based algorithms).

References

H. Attouch and H. Brézis: Duality for the Sum of Convex Functions in General Banach Spaces. In Aspects of Mathematics and its Applications, Eds. I.A. Barroso, North Holland, Amsterdam, 1986, pp.125-133.

H.H. Bauschke and P.L. Combettes: Convex analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics, Springer-Verlag, New York, 2011.
J.V. Burke and T. Hoheisel: Matrix support functionals for inverse problems, regularization, and learning. SIAM Journal on Optimization 25(2), 2015, pp. 1135-1159.

J.V. Burke, T. Hoheisel, and Y. Gao: Convex geometry of the generalized matrix-fractional function. SIAM Journal on Optimization 28(3), 2018, pp. 2189-2200.

J.V. Burke, T. Hoheisel, and Y. Gao: Variational properties of matrix functions via the generalized matrix-fractional function. SIAM Journal on Optimization, to appear.

J.V. Burke, T. Hoheisel, and Q.V. Nguyen: A note on the Fenchel conjugate of composite functions via infimal convolution. Working paper, McGill University, 2019.
M. Fazel, H. Hindi, and S. Boyd: A Rank Minimization Heuristic with Application to Minimum Order System Approximation. Proceedings of the American Control Conference, Arlington, Virginia, June 2001.
L. Hörmander: Sur la fonction d'appui des ensembles convexes dans un espace localement convexe. Arkiv för Matematik 21(3), 1955, pp. 181-186.

C.-J. Hsieh and P. Olsen: Nuclear norm minimization via active subspace selection. Proceedings of the 31st International Conference on Machine Learning (ICML-14), 2014, pp. 575-583.

A. Jalali, M. Fazel, and L. Xiao: Variational Gram functions: Convex analysis and optimization. SIAM Journal on Optimimization 27(4), 2017, pp. 2634-2661.

Teemu Pennanen: Graph-Convex Mappings and K-Convex Functions. Journal of Convex Analysis 6(2), 1999, pp. 235-266.

R.T. Rockafellar: Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.

R.T. Rockafellar and R.J.-B. Wets: Variational Analysis. A Series of Comprehensive Studies in Mathematics, Vol. 317, Springer, Berlin, Heidelberg, 1998.

J.F. Toland: A duality principle for non-convex optimisation and the calculus of variations. Archive for Rational Mechanics and Analysis 71(1), 1979, pp. 41-61.

[^0]: ${ }^{1}$ Only for $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$

[^1]: ${ }^{1}$ Only for $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$

[^2]: ${ }^{1}$ Only for $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$

[^3]: ${ }^{1}$ Only for $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$

[^4]: ${ }^{1}$ Only for $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$

[^5]: ${ }^{1}$ Only for $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$

[^6]: ${ }^{1}$ Not in lecture notes!

[^7]: ${ }^{1}$ Not in lecture notes!

[^8]: ${ }^{1}$ Not in lecture notes!

[^9]: ${ }^{1}$ Not in lecture notes！

[^10]: ${ }^{1}$ Not in lecture notes!

[^11]: ${ }^{1}$ Not in lecture notes！

[^12]: ${ }^{2}$ Show that epi $<L f=T($ epi $<f)$ for $T:(x, y) \mapsto(T x, y)$.

[^13]: ${ }^{2}$ Show that epi $<L f=T($ epi $<f)$ for $T:(x, y) \mapsto(T x, y)$.

[^14]: $3_{\text {i.e. }} K \cap(-K)=\{0\}$

[^15]: ${ }^{4} \Delta_{m}=\left\{\lambda \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i} \geq 0(i 1, \ldots, m)\right\}$

[^16]: -

[^17]: $$
 { }^{4} \Delta_{m}=\left\{\lambda \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i} \geq 0(i 1, \ldots, m)\right\}
 $$

[^18]: ${ }^{5} \sigma(X)=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is the vector of positive singular values of X.

[^19]: ${ }^{5} \sigma(X)=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is the vector of positive singular values of X.

[^20]: ${ }^{5} \sigma(X)=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is the vector of positive singular values of X.

[^21]: ${ }^{5} \sigma(X)=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is the vector of positive singular values of X ．

[^22]: ${ }^{5} \sigma(X)=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is the vector of positive singular values of X.

[^23]: ${ }^{6} d \otimes I_{m}=\left(d_{i} I_{m}\right) \in \mathbb{R}^{m(\kappa+1)}$
 $7_{K}:=\operatorname{dim} \mathbb{E}$

