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The Euclidean setting and Minkowski notation

In what follows E will be a Euclidean space, i.e. a real-vector space equipped with an inner product
(-, -y : EXE — R of dimension « < co.
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Convex sets and functions

The Euclidean setting and Minkowski notation

In what follows E will be a Euclidean space, i.e. a real-vector space equipped with an inner product
(-, -y : EXE — R of dimension « < co.

Examples
mE=R", (x,y):=xTy, k=n
m E=R™" (A B):=t(ATB), xk=mn
Minkowski addition/multiplication: Let A c E
m A+B:={a+blacA beB} (BCE)
mA+x:=A+({x} (x€E)
mA-A:={1alacA, 1N} (ACR)
m 1A :={1}-A(1€R)
Examples:
m U,V c E subspaces. Then U+ V = span (UU V)
m B(x)=x+¢B
m pos S:=R;S (conical hull)
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Convex sets and cones

"The great watershed in optimization is not between linearity and nonlinearity, but convexity and
nonconvexity.” (R.T. Rockafellar, *1935)
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Convex sets and functions

Convex sets and cones

"The great watershed in optimization is not between linearity and nonlinearity, but convexity and
nonconvexity.” (R.T. Rockafellar, *1935)

S c E is said to be
m convexif AS+(1-12)ScS (1€(0,1));
m aconeif AScS (120).

Note that K c E is a convex cone iff K + K c K.

Figure: Convex set/non-convex cone
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The convex hull and the closed convex hull

Definition 1 (Convex hull/closed convex hull).

Let S c E nonempty. Then the convex hull of S is the smallest convex set containing S, i.e.

convS := ﬂ{C CcE|ScC, Cconvex}.
The closed convex hull of S is the smallest closed, convex set containing S, i.e.

convS = m {CcE|ScC, Cclosed and convex}.

m conv S = cl(conv S)

convS = {Zf;‘ Axi | % €8, 420(i=1,. k+1), 35 2 =1 } (Carathéodory’s Theorem)

B conv preserves compactness and boundedness, not necessarily closedness
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Convex sets and functions

The convex hull and the closed convex hull

De n 1 (Convex hull/closed convex hull).
Let S c E nonempty. Then the convex hull of S is the smallest convex set containing S, i.e.

convS := ﬂ{C CcE|ScC, Cconvex}.
The closed convex hull of S is the smallest closed, convex set containing S, i.e.

convS = m {CcE|ScC, Cclosed and convex}.

m conv S = cl(conv S)

convS = {Zf;‘ Axi | % €8, 420(i=1,. k+1), 35 2 =1 } (Carathéodory’s Theorem)

B conv preserves compactness and boundedness, not necessarily closedness

Example: S := {(J)} U{(?) | a >0}, ]

()= 2(5)+(1-1)(3) € comvs.
But: (Jk) — ((1)) ¢ conv S.
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The topology relative to the affine hull

Affine set: A set S = U + x with x € E and a subspace U c is called affine. This is characterized by

aS+(1-a)ScS (aeR).
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The topology relative to the affine hull

Affine set: A set S = U + x with x € E and a subspace U c is called affine. This is characterized by
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Affine hull: aff M := N{S€E |Mc S, S affine}.

Relative interior/boundary: C c E convex.
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Convex sets and functions

The topology relative to the affine hull
Affine set: A set S = U + x with x € E and a subspace U c is called affine. This is characterized by
aS+(1-a)ScS (aeR).

Affine hull: aff M := N{S€E |Mc S, S affine}.

Relative interior/boundary: C c E convex.
iC = [xeC|3>0: B(x)naffCc C} (relative interior)

bdC = clC\riC
xeriC & spanC=R;(C-x)

(relative boundary)
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Convex sets and functions

The topology relative to the affine hull
Affine set: A set S = U + x with x € E and a subspace U c is called affine. This is characterized by
aS+(1-a)ScS (aeR).
Affine hull: aff M := N{S€E |Mc S, S affine}.

Relative interior/boundary: C c E convex.

iC = [xeC|3>0: B(x)naffCc C} (relative interior)
bdC = clC\r1iC (relative boundary)
xeriC & spanC=R;(C-x)
ic Cc ] A c [ ic )
aff C {x} {x} {x}
DXl | (x+(1-)x" [AeR} | (x,x)
B:(x) E Bs(x)

Table: Examples for relative interiors
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Convex sets and functions

The horizon cone

Definition 2 (Horizon cone).

For a nonempty set S c E the set
S®:={veE|Ixk €S} {tk} L 0: tyxx = v}

is called the horizon cone of S. We put 0* := {0}.
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The horizon cone

Definition 2 (Horizon cone).

For a nonempty set S c E the set
S®:={veE|Ixk €S} {tk} L 0: tyxx = v}

is called the horizon cone of S. We put 0* := {0}.

Figure: The horizon cone of an unbounded, nonconvex set




Fundamentals from Convex Analysis Conjugacy of composite functions via K-convexity and inf-convolution

00000000

Convex sets and functions

The horizon cone

Definition 2 (Horizon cone).

For a nonempty set S c E the set
S®:={veE|Ixk €S} {tk} L 0: tyxx = v}

is called the horizon cone of S. We put 0* := {0}.

Figure: The horizon cone of an unbounded, nonconvex set

Proposition 3 (The convex case).

Let C c E be nonempty and convex. Then C® ={v |¥x eclC,A4>0: x+ Av eclC}. In particular, C*
is (a closed and) convex (cone) if C is convex.
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Convex sets and functions

Extended real-valued functions: An epigraphical perspective

Letf:E — R:=RU {+co)}.

W oepif:= {(x,a) eExR|f(x) < a} (epigraph)

1Onlyforf :E > RU {+oo}
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Extended real-valued functions: An epigraphical perspective
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1 X
— fis uniquely determined through epi f! )
Figure: Epigraph of f : R —» R

1Only for f : E — R U {40}
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Convex sets and functions

Extended real-valued functions: An epigraphical perspective

Letf:E — R:=RU {+co)}. £(x)
W oepif:= {(x,a) eExR|f(x) < a} (epigraph) epif
m epi.f:= {(x,a) €eExR | f(x) < a'} (strict epigraph) gphf

m domf:= {x eB|f(x) < oo} (domain).

X
I

— fis uniquely determined through epi f! )
Figure: Epigraph of f : R —» R

f proper =Y —c0 < f # 400 o' domf#0
f convex e epif/epi<fconvex o'  f(Ax+ (1 -2)y) < Af(x)+ (1 - Df(y) (x,y €B, 1€[0,1])
fpos. hom. o'  epifcone o af(x) = f(ax) (x€E, a>0)

1

f sublinear & epi f cvx. cone o f(Ax +py) < Af(x) + puf(y) (x,y €E, 4,u>0).

& f convex + positively homogeneous

1Only for f : E — R U {40}
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Lower semicontinuity

Letf:E—>RandX €E.

Lower limit:
liminfy_x f(x) := inf{a | Axc > X f(xe) » ar}
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Convex sets and functions

Lower semicontinuity

Letf:E—>RandX €E.

Lower limit:
liminfy_x f(x) := inf{a | Axc > X f(xe) » ar}

Lower semicontinuity: f is said to be Isc (or closed) at X if

lim inf f(x) > £(%).
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Convex sets and functions

Lower semicontinuity

Letf:E—RandX €E. f(x)

Lower limit:
liminfy_x f(x) := inf{a | Axc > X f(xe) » ar}

Lower semicontinuity: f is said to be Isc (or closed) at X if O/
liminf f(x) > f(X). .
X=X )L(

Closure: clf : E— R, (clf)(X) := liminfy_ g f(x).

Figure: f notlsc at X
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Convex sets and functions

Lower semicontinuity

Letf:E—RandX €E. f(x)

Lower limit:

liminfy_x f(x) := inf{a | Axc > X f(xe) » ar}

Lower semicontinuity: f is said to be Isc (or closed) at X if O/

liminf f(x) > f(%). «
X=X

XI+

Closure: clf: E - R, (cIf)(X) := liminfx_z f(x). Figure: f notIsc at X

Facts:

m flsc < epifclosed & f=clf & lev,f
closed (r €R)
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Convex sets and functions

Lower semicontinuity

Letf:E—RandX €E. f(x)

Lower limit:

liminfy_x f(x) := inf{a | Axc > X f(xe) » ar}

Lower semicontinuity: f is said to be Isc (or closed) at X if O/

liminf f(x) > f(%). «
X=X

XI+

Closure: clf: E - R, (cIf)(X) := liminfx_z f(x). Figure: f notIsc at X

Facts:

m flsc < epifclosed & f=clf & lev,f
closed (r €R)

mclf<f
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Convex sets and functions

Lower semicontinuity

Letf:E—RandX €E. f(x)
Lower limit:
liminfy_x f(x) := inf{a | Axc > X f(xe) » ar}
Lower semicontinuity: f is said to be Isc (or closed) at X if O/
liminf f(x) > f(X). ) X
X=X | -
X
Closure: clf: E - R, (cIf)(X) := liminfx_z f(x). Figure: f not lsc at X

Facts:

m flsc < epifclosed & f=clf & lev,f
closed (r €R)

mclf<f

m f proper, Isc and coercive (i.e. limj-« f(X) = o) then:

argminf #0 and inffeR
B E
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Convex sets and functions

Lower semicontinuity

Letf:E—RandX €E. f(x)
Lower limit:
liminfy_x f(x) := inf{a | Axc > X f(xe) » ar}
Lower semicontinuity: f is said to be Isc (or closed) at X if O/
liminf f(x) > f(X). ) X
X=X | )L(
Closure: clf: E - R, (cIf)(X) := liminfx_z f(x). Figure: f notIsc at X
Facts: fx)
m flsc < epifclosed & f=clf & lev,f i f
closed (r €R) ep!
mclf<f
m f proper, Isc and coercive (i.e. limj-« f(X) = o) then: X
argminf#(0 and inffeR 1
gE E Figure: f: x { +o§ gl;o’
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Convexity preserving operations - new from old

Set Operations

For C,Ci (iel)cE, D c E' convex, F : E — E’ affine the following sets are convex:
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Convexity preserving operations - new from old

Set Operations

For C,Ci (iel)cE, D c E' convex, F : E — E’ affine the following sets are convex:

o  F(C) (affine image)
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o F(D) (affine pre-image)
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Convexity preserving operations - new from old

Set Operations

For C,Ci (iel)cE, D c E' convex, F : E — E’ affine the following sets are convex:
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o F(D) (affine pre-image)
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Convex sets and functions

Convexity preserving operations - new from old

Set Operations

For C,Ci (iel)cE, D c E' convex, F : E — E’ affine the following sets are convex:

F(C) (affine image)
F~'(D) affine pre-image)

o o o o

(
CxD (Cartesian product)
(Minkowski sum)

Ci+C2




Fundamentals from Convex Analysis

0000000

Convex sets and functions

Convexity preserving operations - new from old

Set Operations

For C,Ci (iel)cE, D c E' convex, F : E — E’ affine the following sets are convex:

F(C) (affine image)
F~'(D) affine pre-image)

Ci+C2
Nier Gi

Minkowski sum)
Intersection)

o o o o o

(

CxD (Cartesian product)
(
(
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Convex sets and functions

Convexity preserving operations - new from old

Set Operations

For C,Ci (iel)cE, D c E' convex, F : E — E’ affine the following sets are convex:

F(C) (affine image)
F'(D) (affine pre-image)
CxD (Cartesian product)
Ci+C>  (Minkowski sum)
Nier Ci (Intersection)

o o o o o

Functional operations
For fi,g: E — R convex and F : E’ — E affine the following functions are convex:
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Convex sets and functions

Convexity preserving operations - new from old

Set Operations

For C,Ci (iel)cE, D c E' convex, F : E — E’ affine the following sets are convex:

F(C) (affine image)
F'(D) (affine pre-image)
CxD (Cartesian product)
Ci+C>  (Minkowski sum)
Nier Ci (Intersection)

o o o o o

Functional operations
For fi,g: E — R convex and F : E’ — E affine the following functions are convex:

m (Affine pre-composition) f:=goF: epif= T '(epig), T: (x,a)~ (T(x),a)
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Convex sets and functions

Convexity preserving operations - new from old

Set Operations

For C,Ci (iel)cE, D c E' convex, F : E — E’ affine the following sets are convex:

F(C) (affine image)
F'(D) (affine pre-image)
CxD (Cartesian product)
Ci+C>  (Minkowski sum)
Nier Ci (Intersection)

o o o o o

Functional operations
For fi,g: E — R convex and F : E’ — E affine the following functions are convex:

m (Affine pre-composition) f:=goF: epif =T '(epig), T: (x,a) ~ (T(x),a)
m (Pointwise supremum) f:=sup;, fi: epif = i epif;
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Convex sets and functions

Convexity preserving operations - new from old

Set Operations

For C,Ci (iel)cE, D c E' convex, F : E — E’ affine the following sets are convex:

F(C) (affine image)
F'(D) (affine pre-image)
CxD (Cartesian product)
Ci+C>  (Minkowski sum)
Nier Ci (Intersection)

o o o o o

Functional operations
For fi,g: E — R convex and F : E’ — E affine the following functions are convex:

m (Affine pre-composition) f:=goF: epif =T '(epig), T: (x,a) ~ (T(x),a)
m (Pointwise supremum) f:=sup;, fi: epif = i epif;

m (Moreau envelope) f:=e,g: x — inf, {g(u) + Allx - u||2}: epif = epig + epi 1 - II2.
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Subdifferentiation and conjugacy of convex functions

The convex subdifferential

De
Let f: E — R. A vector v € E is called a subgradient of v at X if

f(X) > f()_() + (v, x — X) (X € ]E). (1)

We denote by f(x) the set of all subgradients of f at X and call it the (convex) subdifferential of f at X.

The inequality (1) is referred to as subgradient inequality.
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Subdifferentiation and conjugacy of convex functions

The convex subdifferential

De
Let f: E — R. A vector v € E is called a subgradient of v at X if

f(X) > f()_() + (v, x — X) (X € ]E). (1)

We denote by f(x) the set of all subgradients of f at X and call it the (convex) subdifferential of f at X.

The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at X are the slopes of affine minorants of f that coincide with f at X”.
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Subdifferentiation and conjugacy of convex functions

The convex subdifferential

Let f: E — R. A vector v € E is called a subgradient of v at X if
f(x) > f(X) + (v, x=X) (x €E). (1)

We denote by f(x) the set of all subgradients of f at X and call it the (convex) subdifferential of f at X.

The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at X are the slopes of affine minorants of f that coincide with f at X”.

The subdifferential operator is a set-valued mapping df : E =3 E. Set
domdf := {x € B | 3(x) #0}.

m 0e€df(x) & xecargmingf (Fermat’srule)
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m 9f(x) closed and convex (x € E)
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The convex subdifferential

Let f: E — R. A vector v € E is called a subgradient of v at X if
f(x) > f(X) + (v, x=X) (x €E). (1)

We denote by f(x) the set of all subgradients of f at X and call it the (convex) subdifferential of f at X.

The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at X are the slopes of affine minorants of f that coincide with f at X”.

The subdifferential operator is a set-valued mapping df : E =3 E. Set
domdf := {x € B | 3(x) #0}.

m 0e€df(x) & xecargmingf (Fermat’srule)

m 9f(x) closed and convex (x € E)
m df(x)isasingleton <= fdifferentiable atx <= f continuously differentiable at x
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Subdifferentiation and conjugacy of convex functions

The convex subdifferential

Let f: E — R. A vector v € E is called a subgradient of v at X if
f(x) > f(X) + (v, x=X) (x €E). (1)

We denote by f(x) the set of all subgradients of f at X and call it the (convex) subdifferential of f at X.

The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at X are the slopes of affine minorants of f that coincide with f at X”.

The subdifferential operator is a set-valued mapping df : E =3 E. Set
domdf := {x € B | 3(x) #0}.

m 0e€df(x) & xecargmingf (Fermat’srule)

m 9f(x) closed and convex (x € E)

m df(x)isasingleton <= fdifferentiable atx <= f continuously differentiable at x
m ri(domf) c domdf c domf (f convex).
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Subdifferentiation and conjugacy of convex functions

Examples of subdifferentiation
m (Indicator function/Normal cone) Let S c E.

Indicator function of S:

0, xe€8S,
oo, else.

6s :E—> RU({+c0)}, 6§s(x) ::{ 4
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Subdifferentiation and conjugacy of convex functions

Examples of subdifferentiation
m (Indicator function/Normal cone) Let S c E.
Indicator function of S:

0, xe€8S,

0s : E - RU {400}, 65()() = { +o0 else.

a6s(x) = {v|oc(x)26c(X)+ (v, x-%) (x€E)|
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Subdifferentiation and conjugacy of convex functions

Examples of subdifferentiation
m (Indicator function/Normal cone) Let S c E.
Indicator function of S:

0, xe€8S,

0s : E - RU {400}, 65()() = { +o0 else.

355 (X)

{v]8c(x) 2 6c(%) +(v. x - %) (er)}
= |veB|(v.x-%)20(xe9)]
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Subdifferentiation and conjugacy of convex functions

Examples of subdifferentiation
m (Indicator function/Normal cone) Let S c E.

Indicator function of S:

0, xeS,
0s : E - RU {400}, 65()() ::{ +o0 else.

Ns(0)

a6s(x) = {v|oc(x)26c(X)+ (v, x-%) (x€E)|
= |veB|(v.x-%)20(xe9)]
= Ns(X) (XeS)

Figure: Normal cone
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Subdifferentiation and conjugacy of convex functions

Examples of subdifferentiation
m (Indicator function/Normal cone) Let S c E.

Indicator function of S:

0, xeS,
0s : E - RU {400}, 65()() ::{ +o0 else.

#s(%) = |v|6c(x)260(X) +(v.x-%) (xeE)) Ns(0)
= |veB|(v.x-%)20(xe9)]

= Ng(¥X) (xeS)

Figure: Normal cone

+
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m (Euclidean norm) || - || :== V¢, -). Then
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Subdifferentiation and conjugacy of convex functions

Examples of subdifferentiation
m (Indicator function/Normal cone) Let S c E.

Indicator function of S:

0, xeS,
0s : E - RU {400}, 65()() ::{ +o0 else.

#s(%) = |v|6c(x)260(X) +(v.x-%) (xeE)) Ns(0)
= |veB|(v.x-%)20(xe9)]

= Ng(¥X) (xeS)

Figure: Normal cone

m (Euclidean norm) || - || := -, ). Then

Al I {{%} iy

I X
It
o o

m (Empty subdifferential)
—x if x>0,

f:XERl—){ Lo else.
a1
of(x) = {‘m}’ x>0, :
0, else.
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Subdifferentiation and conjugacy of convex functions

The Fenchel conjugate

For f : E —» RU{+oco} let f* : E — R be the function whose epigraph encodes the affine minorants of epi f:

epif' = {(v.5) [(v. )~ <f(x) (xeE))
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Subdifferentiation and conjugacy of convex functions

The Fenchel conjugate

For f : E —» RU{+oco} let f* : E — R be the function whose epigraph encodes the affine minorants of epi f:

epif' = {(v.5) [(v. )~ <f(x) (xeE))
= f(v)<B <= sup{(v,x)-f(x)}<B ((v.B) €eExXR)
xeE
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Subdifferentiation and conjugacy of convex functions

The Fenchel conjugate

For f : E —» RU{+oco} let f* : E — R be the function whose epigraph encodes the affine minorants of epi f:

epif' = {(v.5) [(v. )~ <f(x) (xeE))
ff(v)<B = sup{(v,x)—f(x)}<B ((v.8) €ExR)
xeE

*(v) =sup (v, x) = f(x)} (veE). @

I

I
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Subdifferentiation and conjugacy of convex functions

The Fenchel conjugate
For f : E —» RU{+oco} let f* : E — R be the function whose epigraph encodes the affine minorants of epi f:

epif' = {(v.5) [(v. )~ <f(x) (xeE))
= f(v)<B <= sup{(v,x)-f(x)}<B ((v.B) €eExXR)
xeE

— P =suplv. 0 - (X)) (veE). @
XxeE

Definition 5 (Fenchel conjugate).

Let f : E — R proper. The function f* : E — R defined through (2) is called the (Fenchel) conjugate of f.
The function (f**) := (f*)* is called the biconjugate of f.
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Subdifferentiation and conjugacy of convex functions

The Fenchel conjugate
For f : E —» RU{+oco} let f* : E — R be the function whose epigraph encodes the affine minorants of epi f:

epif' = {(v.5) [(v. )~ <f(x) (xeE))
= f(v)<B <= sup{(v,x)-f(x)}<B ((v.B) €eExXR)
xeE

— P =suplv. 0 - (X)) (veE). @
XxeE

Definition 5 (Fenchel conjugate).

Let f : E — R proper. The function f* : E — R defined through (2) is called the (Fenchel) conjugate of f.
The function (f**) := (f*)* is called the biconjugate of f.

Define I' := {f :E - R | f convex and proper} and [p:={fel |fclosed}.
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Subdifferentiation and conjugacy of convex functions

The Fenchel conjugate
For f : E —» RU{+oco} let f* : E — R be the function whose epigraph encodes the affine minorants of epi f:

epif' = {(v.5) [(v. )~ <f(x) (xeE))
= f(v)<B <= sup{(v,x)-f(x)}<B ((v.B) €eExXR)
xeE

— P =suplv. 0 - (X)) (veE). @
XxeE

Definition 5 (Fenchel conjugate).

Let f : E — R proper. The function f* : E — R defined through (2) is called the (Fenchel) conjugate of f.
The function (f**) := (f*)* is called the biconjugate of f.

Define I' := {f :E - R | f convex and proper} and [p:={fel |fclosed}.
m f* closed and convex - proper if f £ +oco with an affine minorant
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Subdifferentiation and conjugacy of convex functions

The Fenchel conjugate
For f : E —» RU{+oco} let f* : E — R be the function whose epigraph encodes the affine minorants of epi f:

epif' = {(v.5) [(v. )~ <f(x) (xeE))
= f(v)<B <= sup{(v,x)-f(x)}<B ((v.B) €eExXR)
xeE

— P =suplv. 0 - (X)) (veE). @
XxeE

Definition 5 (Fenchel conjugate).

Let f : E — R proper. The function f* : E — R defined through (2) is called the (Fenchel) conjugate of f.
The function (f**) := (f*)* is called the biconjugate of f.

Define I' := {f :E - R | f convex and proper} and [p:={fel |fclosed}.
m f* closed and convex - proper if f £ +oco with an affine minorant
m f=f"proper <= fely (Fenchel-Moreau)
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Subdifferentiation and conjugacy of convex functions

The Fenchel conjugate
For f : E —» RU{+oco} let f* : E — R be the function whose epigraph encodes the affine minorants of epi f:
epif' = {(v.5) [(v. )~ <f(x) (xeE))
= f(v)<B <= sup{(v,x)-f(x)}<B ((v.B) €eExXR)
x€E

— P =suplv. 0 - (X)) (veE). @
XxeE

Definition 5 (Fenchel conjugate).

Let f : E — R proper. The function f* : E — R defined through (2) is called the (Fenchel) conjugate of f.
The function (f**) := (f*)* is called the biconjugate of f.

Define I' := {f :E - R | f convex and proper} and [p:={fel |fclosed}.
m f* closed and convex - proper if f £ +oco with an affine minorant
m f=f"proper <= fely (Fenchel-Moreau)
m = (clf)" (fel)
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Subdifferentiation and conjugacy of convex functions

The Fenchel conjugate
For f : E —» RU{+oco} let f* : E — R be the function whose epigraph encodes the affine minorants of epi f:
epif' = {(v.5) [(v. )~ <f(x) (xeE))
= f(v)<B <= sup{(v,x)-f(x)}<B ((v.B) €eExXR)
x€E

— P =suplv. 0 - (X)) (veE). @
XxeE

Definition 5 (Fenchel conjugate).

Let f : E — R proper. The function f* : E — R defined through (2) is called the (Fenchel) conjugate of f.
The function (f**) := (f*)* is called the biconjugate of f.

Define I' := {f :E - R | f convex and proper} and [p:={fel |fclosed}.
m f* closed and convex - proper if f £ +oco with an affine minorant
m f=f"proper <= fely (Fenchel-Moreau)
m = (clf)" (fel)
m f(x)+f(y)=(x, ¥y (x,y€E) (Fenchel-Young Inequality)
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Subdifferentiation and conjugacy of convex functions

Interplay of conjugation and subdifferentiation

Theorem 6 (Subdifferential and ¢ ate function).
LetfeTly. TFAE:

i) yeaf(x);
i) f(x) +1*(y) = % y);
iiiy x € aF* ().
In particular, 3f* = (af)~".
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LetfeTly. TFAE:
i) yeoaf(x);
i) f(x) + " (y) = (x, y);
iii) x € 3 (y).
In particular, 3f* = (af)~".

Proof.
Notice that

y € 0f(x) = f(z) > f(x) +(y, z—x) (z€E)
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LetfeTly. TFAE:
i) yeoaf(x);
i) f(x) + " (y) = (x, y);
iii) x € 3 (y).
In particular, 3f* = (af)~".

Notice that
y € 0f(x) = f(z) > f(x) +(y, z—x) (z€E)
— (y, xy—f(x) = Sl;p{(y, z) —f(z)}
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LetfeTly. TFAE:
i) yeoaf(x);
i) f(x) + " (y) = (x, y);
iii) x € 3 (y).
In particular, 3f* = (af)~".

Notice that
y € 0f(x) = f(z) > f(x) +(y, z—x) (z€E)
— (y, xy—f(x) = Sl;p{(y, z) —f(z)}
= )+ (y) <x y)
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LetfeTly. TFAE:
i) yeoaf(x);
i) f(x) + " (y) = (x, y);
iii) x € 3 (y).

In particular, 3f* = (af)~".

Proof.
Notice that

y € 0f(x) f(z) > f(x) +(y, z—x) (z€E)
(v, x) = f(x) > sup{(y, z) - f(2)}
f(x) +1(y) <(x, y)

)+ (y) = »),

117

Fenchel-Young

|
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LetfeTly. TFAE:
i) yeoaf(x);
i) f(x) + " (y) = (x, y);
iii) x € 3 (y).

In particular, 3f* = (af)~".

Notice that
y € 0f(x) = f(z) > f(x) +(y, z—x) (z€E)
— (y, xy—f(x) = Sl;p{(y, z) —f(z)}
= )+ (y) <x y)
FenchelYoung )+ F (1) = 0 9).

Applying the same reasoning to f* and noticing that f** = f if f € 'y, gives the missing equivalence. u]
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Subdifferentiation and conjugacy of convex functions

Support functions: A special case of conjugacy
The support function os of S c E (nonempty) is defined by

os:E—RU{+0}, 05(2):=6g(2) =sup(x, z).
xeS
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Subdifferentiation and conjugacy of convex functions

Support functions: A special case of conjugacy
The support function os of S c E (nonempty) is defined by

os:E—RU{+0}, 05(2):=6g(2) =sup(x, z).
xeS

m o is finite-valued if and only if S is bounded (and nonempty)

B 05 = 0covS = Oovs = Tl S
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Subdifferentiation and conjugacy of convex functions

Support functions: A special case of conjugacy
The support function os of S c E (nonempty) is defined by

os:E—RU{+0}, 05(2):=6g(2) =sup(x, z).
xeS

m o is finite-valued if and only if S is bounded (and nonempty)

B 05 = 0covS = Oovs = Tl S

B 0y = 0mmws




Fundamentals from Convex Analysis

0000e0

Subdifferentiation and conjugacy of convex functions

Support functions: A special case of conjugacy
The support function os of S c E (nonempty) is defined by

os:E—RU{+0}, 05(2):=6g(2) =sup(x, z).
xeS

m o is finite-valued if and only if S is bounded (and nonempty)
B 05 =0cowS = OcomvS = TclS
u O'*S = ﬁms

dos(x) =z eV S | x € Nes(2) }
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Subdifferentiation and conjugacy of convex functions

Support functions: A special case of conjugacy
The support function os of S c E (nonempty) is defined by

os:E—RU{+0}, 05(2):=6g(2) =sup(x, z).
xeS

m o is finite-valued if and only if S is bounded (and nonempty)
B 05 =0cowS = OcomvS = TclS

B 0y = 0mmws

B Jos(x) ={ze TS | x € Nows(2) |

m epios = (\ses epi (S, -) is @a nonempty, closed, convex cone, i.e. os is proper, closed and
sublinear.
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Subdifferentiation and conjugacy of convex functions

Support functions: A special case of conjugacy
The support function os of S c E (nonempty) is defined by

os:E—RU{+0}, 05(2):=6g(2) =sup(x, z).
xeS

m o is finite-valued if and only if S is bounded (and nonempty)
B 05 =0cowS = OcomvS = TclS

B 0y = 0mmws

B Jos(x) ={ze TS | x € Nows(2) |

m epios = (\ses epi (S, -) is @a nonempty, closed, convex cone, i.e. os is proper, closed and
sublinear.
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Subdifferentiation and conjugacy of convex functions

Support functions: A special case of conjugacy
The support function os of S c E (nonempty) is defined by

os:E—RU{+0}, 05(2):=6g(2) =sup(x, z).
xeS

m o is finite-valued if and only if S is bounded (and nonempty)
B 05 =0cowS = OcomvS = TclS

B 0y = 0mmws

B Jos(x) ={ze TS | x € Nows(2) |

m epios = (\ses epi (S, -) is @a nonempty, closed, convex cone, i.e. os is proper, closed and
sublinear.

Here’s the complete picture:

Theorem 7 (Hérmander).

A function f : E — R is proper, closed and sublinear if and only if it is a support function.

Blackboard/Notes. u}
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Subdifferentiation and conjugacy of convex functions

Gauges and polar sets

Definition 8 (Gauge function).

Let C c E. The gauge (function) of C is defined by yc : x e E+> inf{1>0|x e AC}.
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Subdifferentiation and conjugacy of convex functions

Gauges and polar sets

Definition 8 (Gauge function).

Let C c E. The gauge (function) of C is defined by yc : x e E+> inf{1>0|x e AC}.

m If C c E be nonempty, closed and convex with 0 € C, then y( is proper, Isc and sublinear.
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Subdifferentiation and conjugacy of convex functiol

Gauges and polar sets

Definition 8 (Gauge function).

Let C c E. The gauge (function) of C is defined by yc : x e E+> inf{1>0|x e AC}.

m If C c E be nonempty, closed and convex with 0 € C, then y( is proper, Isc and sublinear.
Definition 9 (Polar sets).
Let C c E. Then its polar set is defined by
C={veE|(v. x)<1(xeC)}.
Moreover, we put C*° := (C°)° and call it the bipolar set of C.

] IfKisaconethenK°:{ve]E|<v,x>§O(xeK)}.

m For C c E we have C°° =conv (C U{0}). (bipolar theorem)
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Subdifferentiation and conjugacy of convex functions

Gauges and polar sets

Definition 8 (Gauge function).

Let C c E. The gauge (function) of C is defined by yc : x e E+> inf{1>0|x e AC}.

m If C c E be nonempty, closed and convex with 0 € C, then y( is proper, Isc and sublinear.
Definition 9 (Polar sets).
Let C c E. Then its polar set is defined by
C={veE|(v. x)<1(xeC)}.
Moreover, we put C*° := (C°)° and call it the bipolar set of C.

] IfKisaconethenK°:{ve]E|<v.x>§0(xeK)}.

m For C c E we have C°° =conv (C U{0}). (bipolar theorem)

Proposition 10.

Let C c E be closed and convex with 0 € C. Then

* *
Yo =0co «— 8o and yco =o¢ «— dc.
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Infimal convolution and the Attouch-Brézis Theorem

Infimal projection

Theorem 11 (Infimal projection).

Lety : Ey X E; — R U {400} be convex. Then the optimal value function

p:Ei =R, p(x) = inf y(x,y)
yeBp

is convex.
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Infimal convolution and the Attouch-Brézis Theorem

Infimal projection

Theorem 11 (Infimal projection).

Lety : Ey X E; — R U {400} be convex. Then the optimal value function

p:Ei =R, p(x) = inf y(x,y)
yeBp

is convex.

Let L : (x,y,a) — (x, ) and observe that

epicp = {(x,a) ir}]/fw(x,y)<a}
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Infimal convolution and the Attouch-Brézis Theorem

Infimal projection

Theorem 11 (Infimal projection).

Lety : Ey X E; — R U {400} be convex. Then the optimal value function

p:Ei =R, p(x) = inf y(x,y)
yeBp

is convex.

Proof.

Let L : (x,y,a) — (x, ) and observe that

wip = {(xo)

ir}]/fw(x,y) < a}

= {xa)|3y: v(xy) <o}
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ss of matrix support functionals

Infimal convolution and the Attouch-Brézis Theorem

Infimal projection

Theorem 11 (Infimal projection).

Lety : Ey X E; — R U {400} be convex. Then the optimal value function

p:Ei =R, p(x) = inf y(x,y)
yeBp

is convex.

Proof.

Let L : (x,y,a) — (x, ) and observe that

epi<p

{(x,a) ir}]/f U(x.y) < a}

= {(x,a) [y w(xy) < a}
= L(epi<y).
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Infimal convolution and the Attouch-Brézis Theorem

Infimal projection

Theorem 11 (Infimal projection).

Lety : Ey X E; — R U {400} be convex. Then the optimal value function

p:Ei =R, p(x) = inf y(x,y)
yeBp

is convex.

Let L : (x,y,a) — (x, ) and observe that

epicp = {(x,a) ir;fw(x,y) <a}
= {xa) |y vlxy) <a)
= L(epi<¥).

Hence epi . p is a convex set, and thus p is convex.
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Infimal convolution and the Attouch-Brézis Theorem

Infimal convolution - a special case of infimal projection

Definition 12 (Infimal convolution).

Let f,g : E - R U {4co}. Then the function
f#g:E- R, (f#0)(x) == inflf(u) + g(x - u)}

is called the infimal convolution of f and g. We call the infimal convolution f#g exact at x € E if

argmin{f(u) + g(x — u)} # 0.
uekl

We simply call f#g exact if it is exact at every x € dom f#g.
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Infimal convolution and the Attouch-Brézis Theorem

Infimal convolution - a special case of infimal projection

Definition 12 (Infimal convolution).

Let f,g : E - R U {4co}. Then the function

f#g:E—-R, (f#9)(x):= inf(f(u) + g(x - u)}
is called the infimal convolution of f and g. We call the infimal convolution f#g exact at x € E if
argmin{f(u) + g(x — u)} # 0.
ueE

We simply call f#g exact if it is exact at every x € dom f#g.
We always have:

m dom f#g = domf + dom g;

m f#g = g#f;

m f, g convex, then f#g convex (as (f#g)(x) = inf, h(x,y) with h: (x,y) — f(y) + g(x - y)
convex).
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Infimal convolution and the Attouch-Brézis Theorem

Infimal convolution - a special case of infimal projection

Definition 12 (Infimal convolution).

Letf,g : E —» R U {+oo}. Then the function
f#g:E- R, (f#0)(x) == inflf(u) + g(x - u)}

is called the infimal convolution of f and g. We call the infimal convolution f#g exact at x € E if

argmin{f(u) + g(x — u)} # 0.
uekl

We simply call f#g exact if it is exact at every x € dom f#g.

We always have:
m dom f#g = domf + dom g;
m f#g = g#f;
m f, g convex, then f#g convex (as (f#g)(x) = inf, h(x,y) with h: (x,y) — f(y) + g(x - y)
convex).

Example 13 (Distance functions).
Let C c E. Then dg := 6c#ll - I, i.e.

dc(x) = inf |Ix — ull
ueC

is the distance function of C, which is hence convex if C is a convex.
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Infimal convolution and the Attouch-Brézis Theorem

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convoluti

Letf,g : E —» R U {+oco}. Then the following hold:
a) (f#g) =f+g"
b) Iff,g € [y such that dom f Nndomg # 0, then (f + g)* = cl (f*#g*).
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Infimal convolution and the Attouch-Brézis Theorem

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Letf,g : E —» R U {+oco}. Then the following hold:
a) (f#g) =f+g"
b) Iff,g € [y such that dom f Nndomg # 0, then (f + g)* = cl (f*#g*).

a) For all y € E, we have

(10’ () = sup{(x y) = inf(f(u) +g(x - u)}}
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Infimal convolution and the Attouch-Brézis Theorem

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Letf,g : E —» R U {+oco}. Then the following hold:
a) (f#g) =f+g"
b) Iff,g € [y such that dom f Nndomg # 0, then (f + g)* = cl (f*#g*).

a) For all y € E, we have

(f#9)"(v)

sup {(X, ) —inf{f(u) +g(x - U)}}

= quL5>{<x, y) = f(u) —g(x —u)}




Infimal convolution and the Attouch-Brézis Theorem

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Letf,g : E —» R U {+oco}. Then the following hold:
a) (f#g) =f+g"
b) Iff,g € [y such that dom f Nndomg # 0, then (f + g)* = cl (f*#g*).

a) For all y € E, we have

(f#9)"(v)

sup {(X, ) —inf{f(u) +g(x - U)}}
= sup ey S HulSg bl

= sxuup{(<u, y) = f(u)) + (x —u, y)y — g(x — u))}
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Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Letf,g : E —» R U {+oco}. Then the following hold:
a) (f#g) =f+g"
b) Iff,g € [y such that dom f Nndomg # 0, then (f + g)* = cl (f*#g*).

a) For all y € E, we have

(f#9)"(v)

sup {(X, ) —inf{f(u) +g(x - U)}}
= quL5>{<x, y) = f(u) - g(x - u)}
= sxuup{(<u, y) = f(u)) + (x —u, y)y — g(x — u))}

= ) +gWy)



Infimal convolution and the Attouch-Brézis Theorem

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Letf,g : E —» R U {+oco}. Then the following hold:
a) (f#g) =f+g"
b) Iff,g € [y such that dom f Nndomg # 0, then (f + g)* = cl (f*#g*).

a) For all y € E, we have

(f#9)"(v)

sup {(X, ) —inf{f(u) +g(x - U)}}

= sup ey S HulSg bl

= st;u"{(<“’ y) = () + (x - u, y) — g(x — u))}
- W +IW.

f.gel clear?
=04 g €

b) (f‘#g*)* a:) 7 gu r



Infimal convolution and the Attouch-Brézis Theorem

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Letf,g : E —» R U {+oco}. Then the following hold:
a) (f#g) =f+g"
b) Iff,g € [y such that dom f Nndomg # 0, then (f + g)* = cl (f*#g*).

a) For all y € E, we have

(f#9)"(v)

sup {(X, ) —inf{f(u) +g(x - U)}}

= sup ey S HulSg bl

= st;u"{(<“’ y) = () + (x - u, y) — g(x — u))}
- W +IW.

f.gel clear?
=04 g €

= c(f'#g") = (F#9)" = (f+9)".

b) (f‘#g*)* a:) 7 gu



acy of composite functions via K-convexity and inf-convolution A new class o support functionals

Infimal convolution and the Attouch-Brézis Theorem

Attouch-Brézis - drop the closure!

Theorem 15 (Attouch-Brézis).

Letf,g € Iy such that

ti (dom f) Nri(domg) #0  (CQ).

Then (f + g)* = f*#g*, and the infimal convolution is exact, i.e. the infimum in the infimal convolution is
attained on dom f*#g*.

Proof.
On blackboard.
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Infimal convolution and the Attouch-Brézis Theorem

Attouch-Brézis - drop the closure!

Theorem 15 (Attouch-Brézis).

Letf,g € Iy such that
ri(domf) Nri(domg) # 0 (CQ).

Then (f + g)* = f*#g*, and the infimal convolution is exact, i.e. the infimum in the infimal convolution is
attained on dom f*#g*.

Proof.
On blackboard. o

We note that (CQ) is always satisfied under any of the following:
m int(domf) Ndomg # 0,
m domf =E,

and is equivalent to saying that
0 € ri(domf — dom g).
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Infimal convolution and the Attouch-Brézis Theorem

Excursion: Moreau envelope and proximal operator !

Letfelyand A > 0. Then
1
fo=fH—|-IP
euf = f# oIl

is called the Moreau envelope of f.

"Not in lecture notes!
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Infimal convolution and the Attouch-Brézis Theorem

Excursion: Moreau envelope and proximal operator !

Letfelyand A > 0. Then
1
fo=fH#—I-IP
euf = f# oIl
is called the Moreau envelope of f. The map P,f : E — E given by

Paf(x) := argmin{f(u) + l||x - ullz}.
u 21

We have
m P,fis 1-Lipschitz (in fact, firmly non-expansive)

"Not in lecture notes!
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Infimal convolution and the Attouch-Brézis Theorem

Excursion: Moreau envelope and proximal operator !

Letfelyand A > 0. Then
1
fo=fH—|-IP
euf = f# oIl

is called the Moreau envelope of f. The map P,f : E — E given by
1
Paf(x) := argmin{ f(u) + —Ilx — ull®}.
u 21

We have
m P,fis 1-Lipschitz (in fact, firmly non-expansive)
mefeC'nrly

"Not in lecture notes!
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Infimal convolution and the Attouch-Brézis Theorem

Excursion: Moreau envelope and proximal operator !

Letfelyand A > 0. Then
1
fo=fH—|-IP
euf = f# oIl

is called the Moreau envelope of f. The map P,f : E — E given by
1
Paf(x) := argmin{ f(u) + —Ilx — ull®}.
u 21

We have
m P,fis 1-Lipschitz (in fact, firmly non-expansive)
mefeC'nrly
B Ve, f = 1(id - Pyf)

"Not in lecture notes!
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[e]e]ee] }

Infimal convolution and the Attouch-Brézis Theorem

Excursion: Moreau envelope and proximal operator !

Letfelyand A > 0. Then
1
fo=fH—|-IP
euf = f# oIl

is called the Moreau envelope of f. The map P,f : E — E given by
1
Paf(x) := argmin{ f(u) + —Ilx — ull®}.
u 21

We have
m P,fis 1-Lipschitz (in fact, firmly non-expansive)
mefeC'nrly
B Ve, f = 1(id - Pyf)

B x cargminf & x € argmine,f < x = P,f(x) (— proximal point/gradient method)

"Not in lecture notes!
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[e]e]ee] }

Infimal convolution and the Attouch-Brézis Theorem

Excursion: Moreau envelope and proximal operator !

Letfelgand 2> 0. Then
euf =t ol P
is called the Moreau envelope of f. The map P,f : E — E given by
Pf(x) := arglrlnin{f(u) + 21_/1”X - u||2}-

We have

m P,fis 1-Lipschitz (in fact, firmly non-expansive)

mefeC'nrly

B Ve,f = 1(id - Pyif)

B x cargminf & x € argmine,f < x = P,f(x) (— proximal point/gradient method)

m e, fTf (2] 0)(monotone pointwise convergence)

"Not in lecture notes!
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[e]e]ee] }

Infimal convolution and the Attouch-Brézis Theorem

Excursion: Moreau envelope and proximal operator !

Letfelyand A > 0. Then
1
fo=fH—|-IP
euf = f# oIl

is called the Moreau envelope of f. The map P,f : E — E given by
1
Paf(x) := argmin{ f(u) + —Ilx — ull®}.
u 21

We have
m P,fis 1-Lipschitz (in fact, firmly non-expansive)
mefeC'nrly
B Ve,f = 1(id - Pyif)
X € argminf < x € argmine,f & x = P,f(x) (— proximal point/gradient method)

e f T f (41 0) (monotone pointwise convergence)

epie,f »epif (4] 0) (epi-convergence)

"Not in lecture notes!
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Consequences of Attouch-Brézis

Conjugacy for convex-linear composites

Letfeland L € L(E,E’). Then
Lf:E >R, (LA(y) :=inf{f(x) | L(x) =y}

is convex?.

2Show that epi <Lf = T(epi <f) for T : (x,y) = (Tx,y).
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Consequences of Attouch-Brézis

Conjugacy for convex-linear composites

Letfeland L € L(E,E’). Then
Lf:E >R, (LA(y) :=inf{f(x) | L(x) =y}

is convex?.

Proposition 16.
Letg: E — R be properand L € L(E,E’) and T € £(E',E). Then the following hold:
a) (Lg)" =g oL
b) (goT) =cl(T*g*)ifgeTl.
c) The closure in b) can be dropped and the infimum is attained when finite if g € 'y and

ri(rge T) Nri (dom g) # 0. ®)

Notes and Part 2. u]

2Show that epi <Lf = T(epi <f) for T: (x,y) = (Tx,y).
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matrix support functionals

o

Consequences of Attouch-Brézis

Infimal projection revisited

Theorem 17 (Infimal projection II).

Lety € To(Ey x Ep) and define p : By — R by

p(x) := ir‘}f U(x,v). (4)
Then the following hold:
a) p is convex.
b) p* = y*(-,0) which is closed and convex.

c) The condition
domy*(-,0) # 0 (5)
is equivalent to having p* € Ig.

d) If (5) holds then p € 'y and the infimum in its definition is attained when finite.

Proof.
Blackboard/Notes.



Conjugacy of composite functions via K-convexity and inf-convolution

2. Conjugacy of composite functions via
K-convexity and inf-convolution
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K-convexity

Cone-induced ordering

Given a cone K c E, the relation
X<ky & y-xeK (xy€eE)

induces an ordering on E which is a partial ordering if K is convex and pointed®.

Sie. KN (-K) = {0}
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[ 1o}

K-convexity

Cone-induced ordering

Given a cone K c E, the relation
X<ky & y-xeK (xy€eE)
induces an ordering on E which is a partial ordering if K is convex and pointed®.

m Attach to E a largest element +oco, W.r.t. <x which satisfies x <x +o, (x € E).

Sie. KN (-K) = {0}




Conjugacy of composite functions via K-convexity and inf-convolution

[ 1o}

K-convexity

Cone-induced ordering

Given a cone K c E, the relation
X<ky & y-xeK (xy€eE)
induces an ordering on E which is a partial ordering if K is convex and pointed®.
m Attach to E a largest element +oco, W.r.t. <x which satisfies x <x +o, (x € E).
m SetE® :=E U {4o0,}.
m For F: Ey — E3 define
domF :={x € Ey | F(x) €Ez} (domain),
gph F :={(x,F(x)) €E4 xEz | x edomF} (graph),
rge F :={F(x) €e Bz | xedom F} (range).

Sie. KN (-K) = {0}
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K-convexity

K-convexity

Definition 18 (K-convexity).

Let K c Ep be acone and F : Ey — E3. Then we call F K-convex if

K-epi F := {(x,v) € By x Bp | F(x) <k v} (K-epigraph)

is convex (in By X Ep).




Conjugacy of composite functions via K-convexity and inf-convolution

(o] J

K-convexity

K-convexity

Definition 18 (K-convexity).

Let K c Ep be acone and F : Ey — E3. Then we call F K-convex if

K-epi F := {(x,v) € By x Bp | F(x) <k v} (K-epigraph)

is convex (in By X Ep).

m Fis K-convex = F(Ax+ (1-2)y) <k AF(x)+ (1 -)F(y) (x,y €E1,1€]0,1])
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(o] J

K-convexity

K-convexity

Definition 18 (K-convexity).

Let K c Ep be acone and F : Ey — E3. Then we call F K-convex if

K-epi F := {(x,v) € By x Bp | F(x) <k v} (K-epigraph)

is convex (in By X Ep).

m Fis K-convex = F(Ax+ (1-2)y) <k AF(x)+ (1 -)F(y) (x,y €E1,1€]0,1])

= F K-convex, then ri (K-epi F) = {(x,v) | x € 1i(dom F), F(x) <) v}
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(o] J

K-convexity

K-convexity

Definition 18 (K-convexity).

Let K c Ep be acone and F : Ey — E3. Then we call F K-convex if

K-epi F := {(x,v) € By x Bp | F(x) <k v} (K-epigraph)

is convex (in By X Ep).

m Fis K-convex < F(ix+ (1-2)y) <k AF(x)+ (1 -A)F(y) (x,y €Eq,2€][0,1])
= F K-convex, then ri (K-epi F) = {(x,v) | x € 1i(dom F), F(x) <) v}

m K c L cones: F K-convex = L-convex
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K-convexity

K-convexity

Definition 18 (K-convexity).

Let K c Ep be acone and F : Ey — E3. Then we call F K-convex if

K-epi F := {(x,v) € By x Bp | F(x) <k v} (K-epigraph)

is convex (in By X Ep).

m Fis K-convex = F(Ax+ (1-2)y) <k AF(x)+(1-A)F(y) (x.y €Ey,2€]0,1])
= F K-convex, then ri (K-epi F) = {(x,v) | x € 1i(dom F), F(x) <) v}
m K Cc L cones: F K-convex = L-convex
Examples:
m K=RTand F:R" - (R")*with F; el (i=1,....m)
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K-convexity

K-convexity

Definition 18 (K-convexity).

Let K c Ep be acone and F : Ey — E3. Then we call F K-convex if

K-epi F := {(x,v) € By x Bp | F(x) <k v} (K-epigraph)

is convex (in By X Ep).

m Fis K-convex = F(Ax+ (1-2)y) <k AF(x)+(1-A)F(y) (x.y €Ey,2€]0,1])
= F K-convex, then ri (K-epi F) = {(x,v) | x € 1i(dom F), F(x) <) v}
m K Cc L cones: F K-convex = L-convex
Examples:
m K=RTand F:R" - (R")*with F; el (i=1,....m)
m K={(x,t)eR"xR||Ix<t}and F:R" - R" xR, F(x) = (x,lIxll)
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(o] J

K-convexity

K-convexity

Definition 18 (K-convexity).

Let K c Ep be acone and F : Ey — E3. Then we call F K-convex if

K-epi F := {(x,v) € By x Bp | F(x) <k v} (K-epigraph)

is convex (in By X Ep).

m Fis K-convex = F(Ax+ (1-2)y) <k AF(x)+(1-A)F(y) (x.y €Ey,2€]0,1])
= F K-convex, then ri (K-epi F) = {(x,v) | x € 1i(dom F), F(x) <) v}
m K Cc L cones: F K-convex = L-convex
Examples:
m K=RTand F:R" - (R")*with F; el (i=1,....m)
m K={(x,t)eR"xR||Ix<t}and F:R" - R" xR, F(x) = (x,lIxll)

X1, X>o,

— n . n nye —
mK=S7andF:§S —>(S),F(X)_{ oo, olse
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(o] J

K-convexity

K-convexity

Definition 18 (K-convexity).

Let K c Ep be acone and F : Ey — E3. Then we call F K-convex if

K-epi F := {(x,v) € By x Bp | F(x) <k v} (K-epigraph)

is convex (in By X Ep).

m Fis K-convex = F(Ax+ (1-2)y) <k AF(x)+(1-A)F(y) (x.y €Ey,2€]0,1])
= F K-convex, then ri (K-epi F) = {(x,v) | x € 1i(dom F), F(x) <) v}
m K Cc L cones: F K-convex = L-convex
Examples:
m K=RTand F:R" - (R")*with F; el (i=1,....m)
m K={(x,t)eR"xR||Ix<t}and F:R" - R" xR, F(x) = (x,lIxll)

X1, X>o,

— n . n nye —
mK=S7andF:§S —>(S),F(X)_{ oo, olse

m K=g" and F : R™" — 8", F(X) = XXT
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K-convexity

K-convexity

Definition 18 (K-convexity).

Let K c Ep be acone and F : Ey — E3. Then we call F K-convex if

K-epi F := {(x,v) € By x Bp | F(x) <k v} (K-epigraph)

is convex (in By X Ep).

m Fis K-convex = F(Ax+ (1-2)y) <k AF(x)+(1-A)F(y) (x.y €Ey,2€]0,1])
= F K-convex, then ri (K-epi F) = {(x,v) | x € 1i(dom F), F(x) <) v}
m K Cc L cones: F K-convex = L-convex
Examples:
m K=RTand F:R" - (R")*with F; el (i=1,....m)
m K={(x,t)eR"xR||Ix<t}and F:R" - R" xR, F(x) = (x,lIxll)

X1, X>o0,

— n . n nye —
mK=S7andF:§S —>(S),F(X)_{ oo, olse

m K=5"and F:R™" - 5", F(X) = XXT
m K arbitrary, F affine.



Conjugacy of composite functions via K-convexity and inf-convolution

[ 1o}

Composite functions and scalarization

Convexity of composite functions

For F: Ey — Ej and g : E; — R U {40} we define

(g0 F)(x) == { 9(F(x)) if x € dom F,

—+oc0 else.
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[ 1o}

Composite functions and scalarization

Convexity of composite functions

For F: Ey — Ej and g : E; — R U {40} we define

(g0 F)(x) == { Q(F(j_(cl)’ elge_ x € dom F,

Proposition 19.

Let K C Ep be a convex cone, F : Ey — E5 K-convex and g € I'(Ez) such thatrge F N dom g # 0. If
g(F(x)) sg(y) ((x.y) € K-epiF) (6)
then the following hold:
a) go F is convex and proper.
b) If g is Isc and F is continuous then g o F is lower semicontinuous.
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[ 1o}

Composite functions and scalarization

Convexity of composite functions

For F: Ey — Ej and g : E; — R U {40} we define

(g0 F)(x) == { Q(F(j_(cl)’ elge_ x € dom F,

Proposition 19.
Let K C Ep be a convex cone, F : Ey — E5 K-convex and g € I'(Ez) such thatrge F N dom g # 0. If
g(F(x)) sg(y) ((x.y) € K-epiF) (6)
then the following hold:
a) go F is convex and proper.
b) If g is Isc and F is continuous then g o F is lower semicontinuous.

Condition (6) holds if g is K-increasing, i.e.

x<ky = g(x)<g(y)
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Composite functions and scalarization

Scalarization

Given v € E, and the linear form (v, -) : E; —» R, we set(v, F):=(v, -)o F, i.e.

<v.F>(x):{<V»F(X)> it xedomF,

4o else.
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Given v € E, and the linear form (v, -) : E; —» R, we set(v, F):=(v, -)o F, i.e.

v. Fy(x) :{ v, F(IZZ N xedomF,

For K a closed, convex cone we have:
m Fis K-convex = (v, F)isconvex (ve-K°)

B ogpnr(U,—v) = (v, F)" (u).

B OK-epiF(U, V) = 0gpnF (U, V) + ko (V)
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Composite functions and scalarization

Scalarization

Given v € E, and the linear form (v, -) : E; —» R, we set(v, F):=(v, -)o F, i.e.

(v,F)(x):{<V’F(_:_(C)>Z N xedomF,

For K a closed, convex cone we have:
m Fis K-convex = (v, F)isconvex (ve-K°)
B ogpnr(U,—v) = (v, F)" (u).

B OK-epiF(U, V) = 0gpnF (U, V) + ko (V)

Lemma 20 (Pennanen, JCA 1999).

Let f: Eq — Ej with a convex domain and let K c E be the smallest closed convex cone with respect to
which F is convex. Then
(-K)° ={v eEx | (v, F) is convex}.
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gacy for composite function, H./Nguyen 19, Bot et. al ’11).

Let K c Ep be a closed convex cone, F : Ey — E3 K-convex such that K-epi F is closed and g € I'(Ez2)
such that (6) is satisfied, i.e.

xsky = g(x)<g(y)
Under the CQ
F(ri (dom F)) Nri(domg — K) # 0 (7)
we have
(9o F)'(p) = min g"(v) +<(v. F)" (p)

with dom (g o F)* = {p €E; |Av edomg® n (-K°) : (v, F)" (p) < +oo}_

Proof.
Blackboard/Notes. u}
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gacy for composite function, H./Nguyen 19, Bot et. al ’11).

Let K c Ep be a closed convex cone, F : Ey — E3 K-convex such that K-epi F is closed and g € I'(Ez2)
such that (6) is satisfied, i.e.

xsky = g(x)<g(y)
Under the CQ
F(ri (dom F)) Nri(domg — K) # 0 (7)
we have
(9o F)'(p) = min g"(v) +<(v. F)" (p)

with dom (g o F)* = {p €E; |Av edomg® n (-K°) : (v, F)" (p) < +oo}_

Blackboard/Notes. u}
Remark:

m The CQ (7) is trivially satisfied if g is finite-valued.
m Condition (6) can be replaced by the stronger condition that g be K-increasing.

m K-epi F is closed if F is continuous.
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Conjugacy results

Extension to the additive composite setting

Corollary 22 (Conjugate of additive composite functions, H./Nguyen °19).

Under the assumptions of Theorem 21 let f € 'y such that
F(ri (dom f Nndom F)) Nri(domg — K) # 0. (8)
Then

(f+goF)(p) = pad g (v) +f(y) +(v. B (P~ ).
yeBy




matrix support functionals

Extension to the additive composite setting

Corollary 22 (Conjugate of additive composite functions, H./Nguyen °19).

Under the assumptions of Theorem 21 let f € 'y such that
F(ri (dom f Nndom F)) Nri(domg — K) # 0. (8)

Then
(f+goF)(p) = pad g (v) +f(y) +(v. B (P~ ).

yeBq

Proof.
(Sketch) Apply Theorem 2110 § : (s,y) € R x Ep > s + g(y), F : x € By — (f(x),x) and
K =R, xK. o
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Conjugacy results

The case K = —hzng
For g € Iy its horizon function g is given via
epig™ = (epig)™.

The horizon cone of g is

hzng = {x | g™ (x) < O}m.
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Conjugacy results

The case K = —hzng
For g € Iy its horizon function g is given via
epig™ = (epig)”.
The horizon cone of g is

hzng = {x | g™ (x) < O}m.

m hzng = (cone (dom g*))°

m gis K-increasing for K = —hzn g:
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Conjugacy results

The case K = —hzng
For g € Iy its horizon function g is given via
epig™ = (epig)™.
The horizon cone of g is
hzng := {x |g=(x) < O}m.
m hzng = (cone (dom g*))°
m gis K-increasing for K = —hzng: Let x <x y,i.e. y = x + b for some b € K. Then

g = sup ((x2)=g'@) = sup ((y.2)=(b.2)=g' (D} =< sup [y, 2)=9'(2)) = g(y).
zedom g* * zedom g*

zedom g’
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Conjugacy results

The case K = —hzng
For g € Iy its horizon function g is given via
epig™ = (epig)™.
The horizon cone of g is
hzng := {x |g=(x) < O}m.
m hzng = (cone (dom g*))°
m gis K-increasing for K = —hzng: Let x <x y,i.e. y = x + b for some b € K. Then

g(x) = sup {x,2)-g"(2)} = sup y.2)—<(b,2)—g'(2)} < sup_((y. 2)-g'(2)} = g(y),
* zedom g*

zedom g* zedom g

Corollary 23 (Burke ’91, H./Nguyen ’19).

Letg € ['o(Ez2) and let F : Ey — E3 be (~hzn g)-convex with —hzn g-epi F closed such that
F(ri (dom F)) Nri (dom g + hzn g) # 0.

Then
(go F)(p) = ming(v) +<v. F)" (p).



Conjugacy of composite functions via K-convexity and inf-convolution

Conjugacy results

The linear case

Corollary 24 (The linear case).

Letg € I'(Ez) and F : Ey — Ey linear such that

rge F Nri(dom g) # 0.
Then

(92 F)(p) = pinfo' ) | F (1) =p)
with dom (g o F) = (F*)~"(dom g*).
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The linear case

Corollary 24 (The linear case).
Letg € I'(Ez) and F : Ey — Ey linear such that

rge F Nri(dom g) # 0.
Then
(92 F)'(p) = min{a’(v) | F'(v) = p)

with dom (g o F) = (F*)~"(dom g*).

We notice that F is {0}-convex. Hence we can apply Theorem 21 with K = {0}. Condition (7) then reads
rge F Nri (dom g) # 0, which is our assumption. Hence we obtain

(go FY'(p) = min, g"(v) +(v, )" (p) = ming"(v) + dir+vy (P)-
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Conic programming duality
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or equivalently
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X€E4

where f : Ey — Ris convex, F : Ey — E, is K-convex and K c E; is a closed, convex cone.
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Conic programming duality
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min f(x) + (6_k o F)(x) (10)
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where f : Ey — Ris convex, F : Ey — E; is K-convex and K c E; is a closed, convex cone. The
qualification condition (7) turns into a generalized Slater condition

rge FNri(—-K) # 0. (11)
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Applications

Conic programming duality

Consider the general conic program
minf(x) st F(x)e-K (9)
or equivalently
min f(x) + (6_k o F)(x) (10)
X€E4

where f : Ey — Ris convex, F : Ey — E; is K-convex and K c E; is a closed, convex cone. The
qualification condition (7) turns into a generalized Slater condition

rge FNri(—-K) # 0. (11)

Theorem 25 (Strong duality and dual attainment for conic programming).

Letf:Eq — R is convex, K c E» a closed, convex cone, and let F : E; — E» be K-convex with closed
K-epigraph. If (11) holds then

Jnf 100 + (5. 0 F)(x) = max ~F'(y) = (3 F)'(=y) = max inf 1(:) + (v, F(x).

ve—-K© xeBq
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Applications

Conjugate of pointwise maximum of convex functions

Proposition 26.

Forfy,...,fn € To(E) define f := maxij—1,_m fi. Then f € [o(E) with

f(x) = m|n (Zm:v,f,)*

=1

am={1er™|SM 4 =1,420(1,....m)]
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Applications

Conjugate of pointwise maximum of convex functions

Proposition 26.

Forfy,...,fn € To(E) define f := maxij—1,_m fi. Then f € [o(E) with

v,-f,-)*(x).

Fe) = J;m(

We have f = g o F for

. m ,
F:xm {(f1(x)""’f’"(x)) if x & iz domf, and g:ye Max_ X;.
=

+o0, otherwise, T 7 =t m

am={1er™|SM 4 =1,420(1,....m)]
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Applications

Conjugate of pointwise maximum of convex functions

Proposition 26.

Forfy,...,fn € To(E) define f := maxij—1,_m fi. Then f € [o(E) with

v,-f,-)*(x).

Fe) = J;m(

We have f = g o F for

F:xm {(f1 (x)s--s fm(x))  if x € Ny dom f;,

and Iy max X.
o0, otherwise, g:y o max Xi

..... m

Then F is RT-convex and g is R -increasing with dom g = R™, and g* = Sam®.

am={1er™|SM 4 =1,420(1,....m)]
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Applications

Conjugate of pointwise maximum of convex functions

Proposition 26.

Forfy,...,fn € To(E) define f := maxij—1,_m fi. Then f € [o(E) with

v,-f,-)*(x).

Fe) = J;m(

We have f = g o F for

. m ,
F:xm {(f1(x)""’f’"(x)) if x & iz domf, and g:ye Max_ X;.
=

+o0, otherwise, T 7 =t m

Then F is RT-convex and g is R -increasing with dom g = R™, and g* = Sam*. Hence

(9o F)"(x)

am={1er™|SM 4 =1,420(1,....m)]
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Applications

Conjugate of pointwise maximum of convex functions

Proposition 26.

Forfy,...,fn € To(E) define f := maxij—1,_m fi. Then f € [o(E) with

v,-f,-)*(x).

Fe) = J;m(

We have f = g o F for

. m ,
F:xm {(f1(x)""’f’"(x)) if x & iz domf, and g:ye Max_ X;.
=

+o0, otherwise, T 7 =t m

Then F is RT-convex and g is R -increasing with dom g = R™, and g* = Sam*. Hence

(go F)"(x) = min g"(v) + (v, F)" (x)
+

am={1er™|SM 4 =1,420(1,....m)]
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Applications

Conjugate of pointwise maximum of convex functions

Proposition 26.

Forfy,...,fn € To(E) define f := maxij—1,_m fi. Then f € [o(E) with

v,-f,-)*(x).

Fe) = J;m(

We have f = g o F for

. m ,
F:xm {(f1(x)""’f’"(x)) if x & iz domf, and g:ye Max_ X;.
=

+o0, otherwise, T 7 =t m

Then F is RT-convex and g is R -increasing with dom g = R™, and g* = Sam*. Hence

(go F)*(x) = min g"(v) + (v, F)* (x) = min dap, (V) + (v, F)* (x)
VERT VERT

am={1er™|SM 4 =1,420(1,....m)]
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Applications

Conjugate of pointwise maximum of convex functions

Proposition 26.

Forfy,...,fn € To(E) define f := maxij—1,_m fi. Then f € [o(E) with

v,-f,-)*(x).

Fe) = J;m(

We have f = g o F for

. m ,
F:xm {(f1(x)""’f’"(x)) if x & iz domf, and g:ye Max_ X;.
=

+o0, otherwise, T 7 =t m

Then F is RT-convex and g is R -increasing with dom g = R™, and g* = Sam*. Hence

m

(go F)*(x) = min g*(v) + (v, F)* (x) = min 6a,(v) + (v, F)* (X) = min (Z v,-f,-) (x)
veRrT veRrT veAm

i=1

am={1er™|SM 4 =1,420(1,....m)]
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Rank minimization (— Netflix recommender problem)

min rankX st. MX =B (MeRP*" BeRP™M) (12)
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50(X) = (o1, ...,0n) is the vector of positive singular values of X.
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The generalized matrix-fractional function

Motivation I: Nuclear norm minimization/smoothing

Rank minimization (— Netflix recommender problem)

min rankX st. MX =B (MeRP*" BeRP™M) (12)

XeRrnxm

m Approximating the rank function (— combinatorial)

Convex approx.

rank X = |lo(X)llo llo(X)Ilh =: IXIl.  (nuclear norm)>

m Convex approximation of (12)
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50(X) = (o1, ...,0n) is the vector of positive singular values of X.
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®00000

The generalized matrix-fractional function

Motivation I: Nuclear norm minimization/smoothing

Rank minimization (— Netflix recommender problem)

min rankX st. MX =B (MeRP*" BeRP™M) (12)

XeRrnxm

m Approximating the rank function (— combinatorial)

Convex approx.

rank X = |lo(X)llo llo(X)Ilh =: IXIl.  (nuclear norm)>

m Convex approximation of (12)
min_[[X]. st MX=B
Xernxm
= Hsieh/Olsen "14: [IX|l. = minyeen (V) + 3 (XTVIX) (X eR™™M)
m Smooth approximation of (12)

min 1tr(V) + 1tr(XTV’1X) st. MX=B
(XV)eRMXNxsT | 2 2

S50(X) = (015 ... o) is the vector of positive singular values of X.
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The generalized matrix-fractional function

Motivation II: Maximum likelihood estimation
Lety; e R" (i=1,..., N) be measurements of

y~NuX) (ueR"XeS], — unknown)

m Likelihood function:

= 1 e
%)= WHWGXP(—E(M-—M) = (y,-—u))

i=1
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The generalized matrix-fractional function

Motivation II: Maximum likelihood estimation
Lety; e R" (i=1,..., N) be measurements of

y~NuX) (ueR"XeS], — unknown)

m Likelihood function:
N

6 = G | | ey exp(—%(yi -0 —u))

i=1

m log-likelihood function

N
log ((1, %) = ~ 5 log(det ) ~ £ 3 (v~ )= (i ~ ) - 1 log(2x)

i=1
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0O@0000

The generalized matrix-fractional function

Motivation II: Maximum likelihood estimation
Lety; e R" (i=1,..., N) be measurements of

y~NuX) (ueR"XeS], — unknown)

m Likelihood function:
N

6 = G | | ey exp(—%(yi -0 —u))

i=1
m log-likelihood function

N
log ((1, %) = ~ 5 log(det ) ~ £ 3 (v~ )= (i ~ ) - 1 log(2x)

i=1
m Maximum likelihood estimation
max €(u, X & min —log {(u, X
max (T3] min —log (1. %)
Xi=Yj—H
=3

1 N
min —tr (XTZ7'X) + = log(det X)
(xz)ermNxgn | 2 2
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The Moore-Penrose pseudoinverse

Theorem 27 (Moore-Penrose pseudoinverse).

Let A € R™" with rank A = r and the singular value decomposition
A=UZVT with ¥ =diag(oi), U,V orthogonal.
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The Moore-Penrose pseudoinverse

Theorem 27 (Moore-Penrose pseudoinverse).

Let A € R™" with rank A = r and the singular value decomposition
A=UZVT with ¥ =diag(oi), U,V orthogonal.

The matrix .

71

AT = vSTUT with f.— St i
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called the (Moore-Penrose) pseudoinverse of A is the unique matrix with the following properties.
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The generalized matrix-fractional function

The Moore-Penrose pseudoinverse

Theorem 27 (Moore-Penrose pseudoinverse).

Let A € R™" with rank A = r and the singular value decomposition
A=UZVT with ¥ =diag(oi), U,V orthogonal.

The matrix .

71

AT = v=fuT with =f:.= o7 ,
"o
called the (Moore-Penrose) pseudoinverse of A is the unique matrix with the following properties.

a) AATA = A and ATAAT = At
b) (AAT)T = AA and (ATA)T = AtAs
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The generalized matrix-fractional function

The Moore-Penrose pseudoinverse

Theorem 27 (Moore-Penrose pseudoinverse).

Let A € R™" with rank A = r and the singular value decomposition
A=UZVT with ¥ =diag(oi), U,V orthogonal.

The matrix .

71

AT = vSTUT with f.— St i

0
called the (Moore-Penrose) pseudoinverse of A is the unique matrix with the following properties.
a) AATA = A and ATAAT = AT
b) (AAT)T = AAT and (ATA)T = ATAs
Moreover:
c) Ainvertble = Af=A"
d A>0 = A'>0
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The closure of the matrix-fractional function

PutE := R™M x S".

le(XTVX)  if V>0,
+oo  else.

¢:(X,V)€]E!—>{

v

&y cpid = {(x, V)l dyesm ( o

= ¢ proper, sublinear and not Isc.

(matrix-fractional function)

); )20,V>0, 1tr(Y)$a}
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The generalized matrix-fractional function

The closure of the matrix-fractional function

PutE := R™M x S".

¢:(X,V)eEm { (X7 V_j,_)f,(), elisfe. V>0, (matrix-fractional function)
&y epig = {(x, V)l dyesm ( )}/T ); ) >0, V>0, tu(Y) < a}
= ¢ proper, sublinear and not Isc.
- o (X.V) B Tu(XTViX) if  V>0rgeXergeV,

+oco  else
is proper, Isc and sublinear
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The generalized matrix-fractional function

The closure of the matrix-fractional function

PutE := R™M x S".

lu(XTv'X) if V>0 ) ) )
. 2 o &
¢:(X,V)eEm { Lo else. (matrix-fractional function)
Sch
=" epi¢p = {(x, V,e)aYesm : ( )}/T ); ) 20, V>0, ttr(Y) < a,r}
= ¢ proper, sublinear and not Isc.
le(XTVIX) if Vx>0,rgeXergeV
. 2 =0, s
= clg: (X,V)eEm Lo else
is proper, Isc and sublinear
Hormander's Theorem . .
= cl ¢ is a support function
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The generalized matrix-fractional function

Motivation Ill: Quadratic programming

For A e RP*" and V € S" put
M(V):=(YAT) and %a:={Ves|u"Vux0(uekerA)l.

Theorem 28 (Burke, H. *15).

Forb € rge A, we have

.
X X .
inf {1UTVu—xTu|Au=b}= —15( b ) M(V)T( 5 ) if  xerge[VAT], Ve¥Xa,
2 —o0 else.

ueR"
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The generalized matrix-fractional function

Motivation Ill: Quadratic programming

For A e RP*" and V € S" put
M(V):=(YAT) and %a:={Ves|u"Vux0(uekerA)l.

Theorem 28 (Burke, H. *15).

Forb € rge A, we have

.
X X N
inf {1uTVu—xTu|Au=b}= ‘15( b ) M(V)T( b ) it xerge[VAT], Vea,
uern | 2
—o0 else.

Question: For A € RP*" B € RP*™ is

%tr(()s()TM(V)T()é)) if ree (X) C ree M(V), Ve Ka,

YAB (X, V) eEmr
+o0 else

a support function?



A new class of matrix support functionals

O0000e

The generalized matrix-fractional function

A new class of matrix support functions
Define

D(A,B) = {(Y,—%YYT) EE|YeR™™: AY = B} (A eRP", B e RP™),
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The generalized matrix-fractional function

A new class of matrix support functions
Define
D(A,B) = {(Y,—%YYT) EE|YeR™™: AY = B} (A e RP" B e RPX™),

Theorem 29 (Burke, H. ’15).

Forrge B CrgeA

;tr( g)TM(V)*(g)) if ree (X) < ree M(V), V € Ka,

400 else

o) (X, V) = { ((X,V) €E)

with

int(domo‘D(A,B)) = {(X, V) €eE|VeintKa }
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The generalized matrix-fractional function

A new class of matrix support functions
Define
D(A,B) = {(Y,—%YYT) EE|YeR™™: AY = B} (A e RP" B e RPX™),

Theorem 29 (Burke, H. ’15).
Forrge B CrgeA

1o (X7 (X ) . X
s (X V) :{ 2tr( 3 M(V)'(3)) if rge () crgeM(V), Ve Ka, (X, V) € E)
+oo else
with
int(domo‘D(A,B)) = {(X, V) €E|VeintKa }
In particular,
1Etr(XTVJ‘X) if V>=0,rgeX crgeV,

ap(00)(X; V) = { Lo else =clg(X, V).

Blackboard/Notes. o
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[ Jelele]

The closed convex hull of D(A, B) with applications

Closed convex hull of D(A, B) : Carathéodory-based description

Recall
3o pas)(X. V) = (Y. W) econv D(A, B) | (X, V) € Namwoas) (Y- W)} and opps) = St oA B)
where

D(A,B) := {(Y,—%YYT)G]E| Y e R™M AY:B}.

84 ® Iy = (djlm) € RM(+1)
7k :=dimE
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The closed convex hull of D(A, B) with applications

Closed convex hull of D(A, B) : Carathéodory-based description

Recall
3o pas)(X. V) = (Y. W) econv D(A, B) | (X, V) € Namwoas) (Y- W)} and opps) = St oA B)
where

D(A,B) := {(Y,—%YYT)G]E| Y e R™M AY:B}.

Proposition 30 (Burke, H. '15).

conv D(A, B) = {(Z(d@ Im),—%ZZT) | (d.2) e F(A, B)}.6

where
d>0, |dl=1,

7
Az,-:d,-B(i=1,...,K+1)}‘

F(A,B) = {(d, Z) e R*H x RPmH)

84 ® Iy = (djlm) € RM(+1)
7k :=dimE
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The closed convex hull of D(A, B) with applications

Closed convex hull of D(A, B) : A new description
Define

Q(A,B);:{(Y,W)G]E‘AY:B and %YYT+W6'K;}, (13)

and observe that

K = Ryconv {-w' |vekerAl.
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The closed convex hull of D(A, B) with applicat

Closed convex hull of D(A, B) : A new description
Define

Q(A,B);:{(Y,W)eE‘AY:B and %YYT+W6'K;}, (13)

and observe that
K = Ryconv {-w' |vekerAl.

Theorem 31 (Burke, Gao, H. '17).
We have

conv D(A,B) = Q(A, B).
In particular,

_convD(0,0)={(Y,W)EE’AY=B and %WT+W50}.

Proof.

Notes.




A new class of matrix support functionals

The closed convex hull of D(A, B) with applicat

Closed convex hull of D(A, B) : A new description
Define

Q(A,B)::{(Y,W)G]E‘AY:B and %YYT+W6'K;}, (13)

and observe that
K = Ryconv {-w' |vekerAl.

Theorem 31 (Burke, Gao, H. ’17).
We have

conv D(A,B) = Q(A, B).
In particular,

conv D(0,0) = {(Y, W)eE ’ AY =B and %YYT+ W< o}.
Notes.

Corollary 32 (Conjugate of GMF).
We have

Tp(as) = 0a(AB)-
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The closed convex hull of D(A, B) with applications

Convex geometry of Q(A, B)

Recall that Q(A, B) := {(Y, W)eE | AY=B and 1YY" +We 7(;}
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The closed convex hull of D(A, B) with applications

Convex geometry of Q(A, B)

Recall that Q(A, B) := {(Y, W) e E | AY =B and ;YY" + We%; |

Proposition 33 (Burke, Gao, H. ’17).

Let Q(A, B) be given as above. Then:
a) 1iQ(A,B) ={(Y,W) €E|AY =B and $YYT + W eri(%3)}.
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The closed convex hull of D(A, B) with applications

Convex geometry of Q(A, B)
Recall that Q(A, B) := {(Y, W) e E | AY =B and ;YY" + We%; |

Proposition 33 (Burke, Gao, H. ’17).

Let Q(A, B) be given as above. Then:
a) 1iQ(A,B) ={(Y,W) €E|AY =B and $YYT + W eri(%3)}.

b) aff Q(A,B) ={(Y.W)€E |AY =B and }YYT + W e span; |.

o) QA,B) = {(x, V)

ree (X) c ree M(V), V € Ka, btr ((g)TM(v)T(g)) <1 }
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The closed convex hull of D(A, B) with applications

Convex geometry of Q(A, B)
Recall that Q(A, B) := {(Y, W) e E | AY =B and ;YY" + We%; |

Proposition 33 (Burke, Gao, H. ’17).

Let Q(A, B) be given as above. Then:
a) 1iQ(A,B) ={(Y,W) €E|AY =B and $YYT + W eri(%3)}.

b) aff Q(A,B) ={(Y.W)€E |AY =B and }YYT + W e span; |.

o) QA,B) = {(x, V)

ree (X) c ree M(V), V € Ka, btr ((g)TM(v)T(g)) <1 }

d) Q(A,B)*® = {Opxm} X K.




A new class of matrix support functionals

The closed convex hull of D(A, B) with applications

Convex geometry of Q(A, B)
Recall that Q(A, B) := {(Y, W) e E | AY =B and ;YY" + We%; |

Proposition 33 (Burke, Gao, H. ’17).

Let Q(A, B) be given as above. Then:
a) 1iQ(A,B) ={(Y,W) €E|AY =B and $YYT + W eri(%3)}.

b) aff Q(A,B) ={(Y.W)€E |AY =B and }YYT + W e span; |.

o) QA,B) = {(x, V)

rge (§) crge M(V), V e Ka, St ((;)TM(V)T().S)) <1 }

d) Q(A,B)® = {Onxm} X K.

Proposition 34 (Burke, Gao, H. ’17).
Let Q(A, B) be given as above and let (Y, W) € Q(A, B). Then
VeKa, <v, Ty s W>:0
NQ(A,B)(Yv W) = (X, V) €eE 2
and rge (X — VY) c (kerA)*
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The closed convex hull of D(A, B) with applications

Subdifferentiation of the GMF

For any set C recall that

doc(x) ={z e C | x € Negwe(2) } (14)
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The closed convex hull of D(A, B) with applications

Subdifferentiation of the GMF

For any set C recall that
doc(x) ={z e C | x € Negwe(2) } (14)

Corollary 35 (The subdifferential of o5 5))-

For all (X, V) € dom op(a g), we have

AZeRPM: X=VY+A'Z,
dopiag) = 1(Y. W) € Q(A,B)

<v, %YYT+W>:0
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The closed convex hull of D(A, B) with applicat

Subdifferentiation of the GMF

For any set C recall that

doc(x) ={z e C | x € Negwe(2) } (14)

Corollary 35 (The subdifferential of o5 5))-

For all (X, V) € dom op(a g), we have

AZeRPM: X=VY+A'Z,

do Y. W)eQ(A,B
(a8 =1 ( ) €Q(A, B) <V,%YYT+W>:0

Corollary 36
The GMF o p(a g) is (continuously) differentiable on the interior of its domain with

1 .
Vopuae) (X.V) = (Y, -5 YYT) ((X.V) €int (domapag)))

where Y := ATB 4 (P(PTVP)~'PT)(X — AtX), P € R™("P) js any matrix whose columns form an
orthonormal basis of ker A and p := rank A.
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Applications of the GMF

Conjugate of variational Gram functions
For M c 87 (w.lo.g.) closed, convex, the associated variational Gram function (VGF) is given by

Qu :R™™ S RU {400}, Qu(X) = %O'M(XXT).

With ]
FiRMM 587 F(X) = 5XXT. (15)

Qu = om o F fits the composite scheme studied in Section 2.
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Applications of the GMF

Conjugate of variational Gram functions
For M c 87 (w.lo.g.) closed, convex, the associated variational Gram function (VGF) is given by

1
Qu :R™™ S RU {400}, Qu(X) = EaM(xxT),
With ’
F:R™™ 8" F(X)= Exxf (15)
Qu = om o F fits the composite scheme studied in Section 2.

m S is the smallest closed convex cone in " with respect to which F is convex;

m —hznoy D S". In particular, F is (—hzn oy )-convex.
+
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Applications of the GMF

Conjugate of variational Gram functions
For M c 87 (w.lo.g.) closed, convex, the associated variational Gram function (VGF) is given by

Qu :R™™ S RU {400}, Qu(X) = %O'M(XXT).
With ’
FiRMM 587 F(X) = 5XXT. (15)
Qu = om o F fits the composite scheme studied in Section 2.
m S is the smallest closed convex cone in " with respect to which F is convex;

m —hznoy D S7. In particular, F is (~hzn oy )-convex.

Theorem 37 (Jalali et al. *17/ Burke, Gao, H. ’19).

Let M c S| be nonempty, convex and compact. Then Sy, is finite-valued and given by

Q(X) = {tr(XTVTX) |rgeXcrgeV}4

— min
2 veM

Blackboard/Notes. =
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Applications of the GMF

Nuclear norm smoothing
For A € RP*" set

Ker A :={VeR™ |AV =0} and RgeA::{WeR”X" rgeWCrgeA}.
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Applications of the GMF

Nuclear norm smoothing
For A € RP*" set

Ker A:={VeR™ |AV =0} and RgeA::{WER”X"|rgeWCrgeA}.

Theorem 38.
Letp : R™™ — R be defined by

X) = inf X,V o v
p(X) ‘/'anU'Q(A.o)( )+< )

for some U € S7 N Ker A and set C(U) := {Y | $YYT < U}. Then we have:
a) P” = d¢(D)nker A IS Closed, proper, convex.

b) p=ocynken = Yo(D)o+Rec AT is sublinear, finite-valued, nonnegative and symmetric (i.e. a
seminorm).

c) IfU>0with2U=LLT (L e R™") and A = 0 then p = ¢y = ILT()ll.. i.e. p is a norm with
C(U)° as its unit ball and y¢g, as its dual norm.

Blackboard/Notes. u]
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