0 00000000 0000000		0 000000 0000 0000
00	00	

Topics in Convex Analysis

Tim Hoheisel (McGill University, Montreal)

Spring School on Variational Analysis

Paseky, May 19-25, 2019

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ ○ ○ ○ ○

	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		000000

Outline

1 Fundamentals from Convex Analysis

- Convex sets and functions
- Subdifferentiation and conjugacy of convex functions
- Infimal convolution and the Attouch-Brézis Theorem
- Consequences of Attouch-Brézis
- 2 Conjugacy of composite functions via K-convexity and inf-convolution
 - K-convexity
 - Composite functions and scalarization
 - Conjugacy results
 - Applications
- 3 A new class of matrix support functionals
 - The generalized matrix-fractional function
 - The closed convex hull of $\mathcal{D}(A, B)$ with applications
 - Applications of the GMF

Fundamentals from Convex Analysis		
• 00000000 00000 00000 00	0 00 00 0000 00	0 000000 0000 000

1. Fundamentals from Convex Analysis

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 •000000 000000 00000 00000	0 00 00 00000 00	o 000000 0000 000
· · · · ·		

In what follows \mathbb{E} will be a **Euclidean space**, i.e. a *real-vector space* equipped with an *inner product* $\langle \cdot, \cdot \rangle : \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ of dimension $\kappa < \infty$.

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 •0000000 000000 00000 00000	0 00 00000 0000	o 000000 0000 000

In what follows \mathbb{E} will be a **Euclidean space**, i.e. a *real-vector space* equipped with an *inner product* $\langle \cdot, \cdot \rangle : \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ of dimension $\kappa < \infty$.

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト …

= nar

Examples

$$\blacksquare \mathbb{E} = \mathbb{R}^n, \quad \langle x, y \rangle := x^T y, \quad \kappa = n$$

$$\blacksquare \mathbb{E} = \mathbb{R}^{m \times n}, \quad \langle A, B \rangle := \operatorname{tr} (A^T B), \quad \kappa = mn$$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 •0000000 000000 00000 00000	0 00 00000 0000	o 000000 0000 000

In what follows \mathbb{E} will be a **Euclidean space**, i.e. a *real-vector space* equipped with an *inner product* $\langle \cdot, \cdot \rangle : \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ of dimension $\kappa < \infty$.

Examples

$$\blacksquare \mathbb{E} = \mathbb{R}^n, \quad \langle x, y \rangle := x^T y, \quad \kappa = n$$

 $\blacksquare \mathbb{E} = \mathbb{R}^{m \times n}, \quad \langle A, B \rangle := \operatorname{tr} (A^T B), \quad \kappa = mn$

Minkowski addition/multiplication: Let $A \subset \mathbb{E}$

 $\blacksquare A + B := \{a + b \mid a \in A, b \in B\} \quad (B \subset \mathbb{E})$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 •0000000 000000 00000 00000	0 00 00000 0000	o 000000 0000 000

In what follows \mathbb{E} will be a **Euclidean space**, i.e. a *real-vector space* equipped with an *inner product* $\langle \cdot, \cdot \rangle : \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ of dimension $\kappa < \infty$.

Examples

$$\blacksquare \ \mathbb{E} = \mathbb{R}^n, \quad \langle x, y \rangle := x^T y, \quad \kappa = n$$

 $\blacksquare \mathbb{E} = \mathbb{R}^{m \times n}, \quad \langle A, B \rangle := \operatorname{tr} (A^T B), \quad \kappa = mn$

Minkowski addition/multiplication: Let $A \subset \mathbb{E}$

- $\blacksquare A + B := \{a + b \mid a \in A, b \in B\} \quad (B \subset \mathbb{E})$
- $A+x := A + \{x\} \quad (x \in \mathbb{E})$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 •0000000 000000 00000 00000	0 00 00000 0000	o 000000 0000 000

In what follows \mathbb{E} will be a **Euclidean space**, i.e. a *real-vector space* equipped with an *inner product* $\langle \cdot, \cdot \rangle : \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ of dimension $\kappa < \infty$.

Examples

$$\blacksquare \ \mathbb{E} = \mathbb{R}^n, \quad \langle x, y \rangle := x^T y, \quad \kappa = n$$

 $\blacksquare \mathbb{E} = \mathbb{R}^{m \times n}, \quad \langle A, B \rangle := \operatorname{tr} (A^T B), \quad \kappa = mn$

Minkowski addition/multiplication: Let $A \subset \mathbb{E}$

- $\blacksquare A + B := \{a + b \mid a \in A, b \in B\} \quad (B \subset \mathbb{E})$
- $A + x := A + \{x\} \quad (x \in \mathbb{E})$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 •0000000 000000 00000 00000	0 00 00000 0000	o 000000 0000 000

In what follows \mathbb{E} will be a **Euclidean space**, i.e. a *real-vector space* equipped with an *inner product* $\langle \cdot, \cdot \rangle : \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ of dimension $\kappa < \infty$.

Examples

$$\blacksquare \ \mathbb{E} = \mathbb{R}^n, \quad \langle x, y \rangle := x^T y, \quad \kappa = n$$

 $\blacksquare \mathbb{E} = \mathbb{R}^{m \times n}, \quad \langle A, B \rangle := \operatorname{tr} (A^T B), \quad \kappa = mn$

Minkowski addition/multiplication: Let $A \subset \mathbb{E}$

- $\blacksquare A + B := \{a + b \mid a \in A, b \in B\} \quad (B \subset \mathbb{E})$
- $A+x := A + \{x\} \quad (x \in \mathbb{E})$

 $A := \{\lambda\} \cdot A \ (\lambda \in \mathbb{R})$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 •0000000 000000 00000 00000	0 00 00000 0000	o 000000 0000 000

In what follows \mathbb{E} will be a **Euclidean space**, i.e. a *real-vector space* equipped with an *inner product* $\langle \cdot, \cdot \rangle : \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ of dimension $\kappa < \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Examples

$$\mathbb{E} = \mathbb{R}^n, \quad \langle x, y \rangle := x^T y, \quad \kappa = n$$
$$\mathbb{E} = \mathbb{R}^{m \times n}, \quad \langle A, B \rangle := \operatorname{tr} (A^T B), \quad \kappa = mn$$

Minkowski addition/multiplication: Let $A \subset \mathbb{E}$

- $\blacksquare A + B := \{a + b \mid a \in A, b \in B\} \quad (B \subset \mathbb{E})$
- $A + x := A + \{x\} \quad (x \in \mathbb{E})$

$$\lambda A := \{\lambda\} \cdot A \ (\lambda \in \mathbb{R})$$

Examples:

■ $U, V \subset \mathbb{E}$ subspaces. Then $U + V = \text{span}(U \cup V)$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00 00 00000 00	o 000000 0000 000

In what follows \mathbb{B} will be a **Euclidean space**, i.e. a *real-vector space* equipped with an *inner product* $\langle \cdot, \cdot \rangle : \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ of dimension $\kappa < \infty$.

Examples

$$\mathbb{E} = \mathbb{R}^n, \quad \langle x, y \rangle := x^T y, \quad \kappa = n$$
$$\mathbb{E} = \mathbb{R}^{m \times n}, \quad \langle A, B \rangle := \operatorname{tr} (A^T B), \quad \kappa = mn$$

Minkowski addition/multiplication: Let $A \subset \mathbb{E}$

- $\blacksquare A + B := \{a + b \mid a \in A, b \in B\} \quad (B \subset \mathbb{E})$
- $A + x := A + \{x\} \quad (x \in \mathbb{E})$

$$\lambda A := \{\lambda\} \cdot A \ (\lambda \in \mathbb{R})$$

Examples:

■ $U, V \subset \mathbb{E}$ subspaces. Then $U + V = \text{span}(U \cup V)$

 $\blacksquare B_{\varepsilon}(x) = x + \varepsilon \mathbb{B}$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00 00 00000 00	o 000000 0000 000

In what follows \mathbb{E} will be a **Euclidean space**, i.e. a *real-vector space* equipped with an *inner product* $\langle \cdot, \cdot \rangle : \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ of dimension $\kappa < \infty$.

Examples

$$\mathbb{E} = \mathbb{R}^n, \quad \langle x, y \rangle := x^T y, \quad \kappa = n$$
$$\mathbb{E} = \mathbb{R}^{m \times n}, \quad \langle A, B \rangle := \operatorname{tr} (A^T B), \quad \kappa = mn$$

Minkowski addition/multiplication: Let $A \subset \mathbb{E}$

- $\blacksquare A + B := \{a + b \mid a \in A, b \in B\} \quad (B \subset \mathbb{E})$
- $A+x := A + \{x\} \quad (x \in \mathbb{E})$

$$\lambda A := \{\lambda\} \cdot A \ (\lambda \in \mathbb{R})$$

Examples:

- $U, V \subset \mathbb{E}$ subspaces. Then $U + V = \text{span}(U \cup V)$
- $\blacksquare B_{\varepsilon}(x) = x + \varepsilon \mathbb{B}$
- pos $S := \mathbb{R}_+ S$ (conical hull)

▲□▶▲舂▶▲≧▶▲≧▶ ― 差 … のへで

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 000000 000000 00000 00	0 00 00000 0000	o 000000 0000 000
Convex sets and functions		

Convex sets and cones

"The great watershed in optimization is not between linearity and nonlinearity, but convexity and nonconvexity." (R.T. Rockafellar, *1935)

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

3

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		
Convex sets and functions		

Convex sets and cones

"The great watershed in optimization is not between linearity and nonlinearity, but convexity and nonconvexity." (R.T. Rockafellar, *1935)

 $S \subset \mathbb{E}$ is said to be

- convex if $\lambda S + (1 \lambda)S \subset S$ ($\lambda \in (0, 1)$);
- a cone if $\lambda S \subset S$ ($\lambda \ge 0$).

Note that $K \subset \mathbb{E}$ is a *convex cone* iff $K + K \subset K$.

Figure: Convex set/non-convex cone

0 0 0 0 0000000 00 000000 000000 000000 00 00000 00000 000000 00000 0000 0000 000000 00000 0000 0000	Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
	0 000000 000000 00000 00	o oo oo ooco oo	0 00000 0000 000

The convex hull and the closed convex hull

Definition 1 (Convex hull/closed convex hull).

Let $S \subset \mathbb{B}$ nonempty. Then the *convex hull* of S is the smallest convex set containing S, i.e.

 $\operatorname{conv} S := \bigcap \{ C \subset \mathbb{E} \mid S \subset C, \ C \text{ convex} \}.$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 0000000 000000 00000 00000	0 00 0000 0000	0 000000 0000 000

The convex hull and the closed convex hull

Definition 1 (Convex hull/closed convex hull).

Let $S \subset \mathbb{B}$ nonempty. Then the *convex hull* of S is the smallest convex set containing S, i.e.

$$\operatorname{conv} S := \bigcap \left\{ C \subset \mathbb{E} \mid S \subset C, \ C \text{ convex} \right\}.$$

The closed convex hull of S is the smallest closed, convex set containing S, i.e.

 $\overline{\operatorname{conv}} S := \bigcap \left\{ C \subset \mathbb{E} \mid S \subset C, \ C \text{ closed and convex} \right\}.$

・ロト・日本・日本・日本・日本・日本

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 000000 000000 00000 00000	o co co coco coco co	0 000000 0000 000

The convex hull and the closed convex hull

Definition 1 (Convex hull/closed convex hull).

Let $S \subset \mathbb{B}$ nonempty. Then the *convex hull* of S is the smallest convex set containing S, i.e.

$$\operatorname{conv} S := \bigcap \left\{ C \subset \mathbb{E} \mid S \subset C, \ C \text{ convex} \right\}.$$

The closed convex hull of S is the smallest closed, convex set containing S, i.e.

 $\overline{\operatorname{conv}} S := \bigcap \{ C \subset \mathbb{E} \mid S \subset C, \ C \text{ closed and convex} \}.$

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 – のへで

 $\overline{\text{conv}} S = \text{cl}(\text{conv} S)$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 0000000 000000 00000 00000	0 00 0000 0000	0 000000 0000 000

The convex hull and the closed convex hull

Definition 1 (Convex hull/closed convex hull).

Let $S \subset \mathbb{B}$ nonempty. Then the *convex hull* of S is the smallest convex set containing S, i.e.

$$\operatorname{conv} S := \bigcap \left\{ C \subset \mathbb{E} \mid S \subset C, \ C \text{ convex} \right\}.$$

The closed convex hull of S is the smallest closed, convex set containing S, i.e.

 $\overline{\operatorname{conv}} S := \bigcap \{ C \subset \mathbb{E} \mid S \subset C, \ C \text{ closed and convex} \}.$

$$\overline{\text{conv}} S = \text{cl}(\text{conv} S)$$

■ conv
$$S = \left\{ \sum_{i=1}^{\kappa+1} \lambda_i x_i \mid x_i \in S, \ \lambda_i \ge 0 \ (i = 1, ..., \kappa + 1), \ \sum_{i=1}^{\kappa+1} \lambda_i = 1 \right\}$$
 (Carathéodory's Theorem)

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ⊙ へ ⊙

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 0000000 000000 00000 00000	0 00 0000 0000	0 000000 0000 000

The convex hull and the closed convex hull

Definition 1 (Convex hull/closed convex hull).

Let $S \subset \mathbb{B}$ nonempty. Then the *convex hull* of S is the smallest convex set containing S, i.e.

$$\operatorname{conv} S := \bigcap \left\{ C \subset \mathbb{E} \mid S \subset C, \ C \text{ convex} \right\}.$$

The closed convex hull of S is the smallest closed, convex set containing S, i.e.

$$\overline{\operatorname{conv}}\,S:=\bigcap\{\mathcal{C}\subset\mathbb{E}\mid S\subset\mathcal{C},\ \mathcal{C}\ {
m closed}\ {
m and}\ {
m convex}\,\}\,.$$

•
$$\overline{\text{conv}} S = \text{cl}(\text{conv} S)$$

• conv $S = \left\{\sum_{i=1}^{\kappa+1} \lambda_i x_i \mid x_i \in S, \ \lambda_i \ge 0 \ (i = 1, \dots, \kappa + 1), \ \sum_{i=1}^{\kappa+1} \lambda_i = 1\right\}$ (Carathéodory's Theorem)

conv preserves compactness and boundedness, not necessarily closedness

0 0 0 0 0000000 00 000000 000000 00000 000000 0000 0000 0000 0000 000000 0000 0000 0000 0000	Fundamentals from Convex Analysis		
	0 0000000 000000 00000 00	0 00 0000 0000 00	0 000000 0000 000

The convex hull and the closed convex hull

Definition 1 (Convex hull/closed convex hull).

Let $S \subset \mathbb{B}$ nonempty. Then the *convex hull* of S is the smallest convex set containing S, i.e.

$$\operatorname{conv} S := \bigcap \left\{ C \subset \mathbb{E} \mid S \subset C, \ C \text{ convex} \right\}.$$

The closed convex hull of S is the smallest closed, convex set containing S, i.e.

$$\overline{\operatorname{conv}} S := \bigcap \{ C \subset \mathbb{E} \mid S \subset C, \ C \text{ closed and convex} \}.$$

$$\overline{\operatorname{conv}} S = \operatorname{cl}(\operatorname{conv} S)$$

• conv $S = \left\{\sum_{i=1}^{\kappa+1} \lambda_i x_i \mid x_i \in S, \ \lambda_i \ge 0 \ (i = 1, \dots, \kappa + 1), \ \sum_{i=1}^{\kappa+1} \lambda_i = 1\right\}$ (Carathéodory's Theorem)

conv preserves compactness and boundedness, not necessarily closedness

Example:
$$S := \{\binom{0}{0}\} \cup \{\binom{a}{1} \mid a \ge 0\},$$

 $\binom{1}{1/k} = \frac{1}{k} \binom{k}{1} + (1 - \frac{1}{k}) \binom{0}{0} \in \operatorname{conv} S.$
But: $\binom{1}{1/k} \to \binom{1}{0} \notin \operatorname{conv} S.$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		
00000	0000	000

The topology relative to the affine hull

Affine set: A set S = U + x with $x \in \mathbb{E}$ and a subspace $U \subset$ is called *affine*. This is characterized by

 $\alpha S + (1 - \alpha)S \subset S \quad (\alpha \in \mathbb{R}).$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		
00000	0000	000

The topology relative to the affine hull

Affine set: A set S = U + x with $x \in \mathbb{B}$ and a subspace $U \subset$ is called *affine*. This is characterized by

 $\alpha S + (1 - \alpha)S \subset S \quad (\alpha \in \mathbb{R}).$

Affine hull: aff $M := \bigcap \{ S \in \mathbb{E} \mid M \subset S, S \text{ affine} \}$.

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 000000 000000 00000 00	0 00 00000 0000	o 000000 0000 000

The topology relative to the affine hull

Affine set: A set S = U + x with $x \in \mathbb{B}$ and a subspace $U \subset$ is called *affine*. This is characterized by

 $\alpha S + (1 - \alpha)S \subset S \quad (\alpha \in \mathbb{R}).$

Affine hull: aff $M := \bigcap \{ S \in \mathbb{E} \mid M \subset S, S \text{ affine} \}$.

Relative interior/boundary: $C \subset \mathbb{E}$ convex.

 $\operatorname{ri} C \quad := \quad \left\{ x \in C \mid \exists \varepsilon > 0 : \ B_{\varepsilon}(x) \cap \operatorname{aff} C \subset C \right\} \quad (\text{relative interior})$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 000000 000000 00000 00	0 00 00000 0000	o 000000 0000 000

The topology relative to the affine hull

Affine set: A set S = U + x with $x \in \mathbb{B}$ and a subspace $U \subset$ is called *affine*. This is characterized by

$$\alpha S + (1 - \alpha)S \subset S \quad (\alpha \in \mathbb{R}).$$

Affine hull: aff $M := \bigcap \{ S \in \mathbb{E} \mid M \subset S, S \text{ affine} \}$.

Relative interior/boundary: $C \subset \mathbb{E}$ convex.

$$\begin{array}{rcl} \operatorname{ri} \mathcal{C} & := & \left\{ x \in \mathcal{C} \mid \exists \varepsilon > 0 : & B_{\varepsilon}(x) \cap \operatorname{aff} \mathcal{C} \subset \mathcal{C} \right\} & (\text{relative interior}) \\ \operatorname{rbd} \mathcal{C} & := & \operatorname{cl} \mathcal{C} \setminus \operatorname{ri} \mathcal{C} & (\text{relative boundary}) \\ x \in \operatorname{ri} \mathcal{C} & \Leftrightarrow & \operatorname{span} \mathcal{C} = \mathbb{R}_+(\mathcal{C} - x) \end{array}$$

Fundamentals from Convex Analysis		
0 000000 000000 00000 00		0 000000 0000 000

The topology relative to the affine hull

Affine set: A set S = U + x with $x \in \mathbb{B}$ and a subspace $U \subset$ is called *affine*. This is characterized by

$$\alpha S + (1 - \alpha)S \subset S \quad (\alpha \in \mathbb{R}).$$

Affine hull: aff $M := \bigcap \{ S \in \mathbb{E} \mid M \subset S, S \text{ affine} \}.$

Relative interior/boundary: $C \subset \mathbb{E}$ convex.

$$\begin{array}{rcl} \operatorname{ri} \mathcal{C} & := & \left\{ x \in \mathcal{C} \mid \exists \varepsilon > 0 : & B_{\varepsilon}(x) \cap \operatorname{aff} \mathcal{C} \subset \mathcal{C} \right\} & (\text{relative interior}) \\ \operatorname{rbd} \mathcal{C} & := & \operatorname{cl} \mathcal{C} \setminus \operatorname{ri} \mathcal{C} & (\text{relative boundary}) \\ x \in \operatorname{ri} \mathcal{C} & \Leftrightarrow & \operatorname{span} \mathcal{C} = \mathbb{R}_+(\mathcal{C} - x) \end{array}$$

С	aff C	ri C
{ <i>x</i> }	{ <i>X</i> }	{ x }
[x, x']	$\{\lambda x + (1 - \lambda)x' \mid \lambda \in \mathbb{R}\}$	(x, x')
$\overline{B}_{\varepsilon}(x)$	E	$B_{\varepsilon}(x)$

Table: Examples for relative interiors

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		
Convey acts and functions		

The horizon cone

Definition 2 (Horizon cone).

For a nonempty set $S \subset \mathbb{E}$ the set

 $S^{\infty} := \{ v \in \mathbb{E} \mid \exists \{ x_k \in S \}, \{ t_k \} \downarrow 0 : t_k x_k \rightarrow v \}$

▲□▶▲御▶★臣▶★臣▶ 臣 のへで

is called the *horizon cone* of *S*. We put $\emptyset^{\infty} := \{0\}$.

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
00000000		
Convex sets and functions		

The horizon cone

Definition 2 (Horizon cone).

For a nonempty set $S \subset \mathbb{E}$ the set

 $S^{\infty} := \{ v \in \mathbb{E} \mid \exists \{ x_k \in S \}, \{ t_k \} \downarrow 0 : t_k x_k \rightarrow v \}$

is called the *horizon cone* of S. We put $\emptyset^{\infty} := \{0\}$.

Figure: The horizon cone of an unbounded, nonconvex set

Fundamentals from Convex Analysis		
0000000		

The horizon cone

Definition 2 (Horizon cone).

For a nonempty set $S \subset \mathbb{E}$ the set

 $S^{\infty} := \{ v \in \mathbb{E} \mid \exists \{ x_k \in S \}, \{ t_k \} \downarrow 0 : t_k x_k \rightarrow v \}$

is called the *horizon cone* of S. We put $\emptyset^{\infty} := \{0\}$.

Figure: The horizon cone of an unbounded, nonconvex set

Proposition 3 (The convex case).

Let $C \subset \mathbb{E}$ be nonempty and convex. Then $C^{\infty} = \{v \mid \forall x \in cl \ C, \lambda \ge 0 : x + \lambda v \in cl \ C \}$. In particular, C^{∞} is (a closed and) convex (cone) if C is convex.

Fundamentals from Convex Analysis Conjugacy of composite functions via K-convexity and inf-convolution A new class of m	matrix support functionals
0 0 0 0 0000000 00 000000 000000 00000 000000 0000 0000 0000 0000 00000 0000 0000 0000 0000	

Extended real-valued functions: An epigraphical perspective

Let $f : \mathbb{E} \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}.$

• $\operatorname{epi} f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \le \alpha\}$ (epigraph)

¹Only for $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$

・ロト・日本・日本・日本・日本・日本

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	o oo oo ooco oo	0 000000 0000 000

Extended real-valued functions: An epigraphical perspective

Let $f : \mathbb{E} \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$. **a** epi $f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \le \alpha\}$ (epigraph) **b** epi $_{<} f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) < \alpha\}$ (strict epigraph)

Fundamentals from Convex Analysis		
0		
000000	00	0000
00000	0000	

Extended real-valued functions: An epigraphical perspective

Let
$$f : \mathbb{E} \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}.$$

a epi $f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \le \alpha\}$ (epigraph)
b epi $_{<}f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) < \alpha\}$ (strict epigraph)

• dom
$$f := \{x \in \mathbb{E} \mid f(x) < \infty\}$$
 (domain).

 \rightarrow f is uniquely determined through epi f!

Figure: Epigraph of $f : \mathbb{R} \to \mathbb{R}$

・ロト ・ 日本 ・ 日本 ・ 日本 ・

3

Fundamentals from Convex Analysis Conjugacy of composite functions via K-convexity and inf-convolution A new c	
0 0 0000000 00 000000 00 00000 0000	

Extended real-valued functions: An epigraphical perspective

Let
$$f : \mathbb{E} \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$$
.
• epi $f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \le \alpha\}$ (epigraph)
• epi $_{<}f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) < \alpha\}$ (strict epigraph)
• dom $f := \{x \in \mathbb{E} \mid f(x) < \infty\}$ (domain).

 \rightarrow f is uniquely determined through epi f!

Figure: Epigraph of $f : \mathbb{R} \to \mathbb{R}$

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト ・

ъ

f proper : \Leftrightarrow $-\infty < f \neq +\infty$ \Leftrightarrow ¹ dom $f \neq \emptyset$

Fundamentals from Convex Analysis Conjugacy of composite functions via K-convexity and inf-convolution A new c	
0 0 0000000 00 000000 00 00000 0000	

Extended real-valued functions: An epigraphical perspective

Let
$$f : \mathbb{E} \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$$
.
a epi $f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \le \alpha\}$ (epigraph)
b epi $_{<}f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) < \alpha\}$ (strict epigraph)
b dom $f := \{x \in \mathbb{E} \mid f(x) < \infty\}$ (domain).

 \rightarrow f is uniquely determined through epi f!

Figure: Epigraph of $f : \mathbb{R} \to \mathbb{R}$

f proper	:⇔	$-\infty < f \not\equiv +\infty$	\Leftrightarrow ¹	dom $f \neq \emptyset$
f convex	:⇔	epi f/epi <f convex<="" td=""><td>\Leftrightarrow ¹</td><td>$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \ (x, y \in \mathbb{E}, \ \lambda \in [0, 1])$</td></f>	\Leftrightarrow ¹	$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \ (x, y \in \mathbb{E}, \ \lambda \in [0, 1])$

Fundamentals from Convex Analysis Conjugacy of composite functions via K-convexity and inf-convolution A new c	
0 0 0000000 00 000000 00 00000 0000	

Extended real-valued functions: An epigraphical perspective

Let
$$f : \mathbb{E} \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$$
.
a epi $f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \le \alpha\}$ (epigraph)
b epi $_{<}f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) < \alpha\}$ (strict epigraph)

• dom
$$f := \{x \in \mathbb{E} \mid f(x) < \infty\}$$
 (domain).

 \rightarrow f is uniquely determined through epi f!

Figure: Epigraph of $f : \mathbb{R} \to \mathbb{R}$

f proper	:⇔	$-\infty < f \not\equiv +\infty$	\Leftrightarrow ¹	dom $f \neq \emptyset$
f convex	:⇔	$epi f/epi_{<} f$ convex	\Leftrightarrow ¹	$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \ (x, y \in \mathbb{E}, \ \lambda \in [0, 1])$
f pos. hom.	$:\Leftrightarrow$ ¹	epi f cone	⇔	$\alpha f(x) = f(\alpha x) (x \in \mathbb{E}, \ \alpha \ge 0)$

¹Only for $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$

▲□▶▲御▶▲臣▶▲臣▶ 臣 のQ@

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	o oo oo ooco oo	0 000000 0000 000

Extended real-valued functions: An epigraphical perspective

Let
$$f : \mathbb{E} \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}.$$

e pi $f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \le \alpha\}$ (epigraph)
e pi $_{<}f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) < \alpha\}$ (strict epigraph)

• dom
$$f := \{x \in \mathbb{E} \mid f(x) < \infty\}$$
 (domain).

 \rightarrow f is uniquely determined through epi f!

Figure: Epigraph of $f : \mathbb{R} \to \mathbb{R}$

f proper	:⇔	$-\infty < f \not\equiv +\infty$	\Leftrightarrow ¹
f convex	:⇔	$epi f/epi_{<} f$ convex	\Leftrightarrow ¹
f pos. hom.	$:\Leftrightarrow$ ¹	epi f cone	\Leftrightarrow
f sublinear	:⇔ ¹	epi f cvx. cone	⇔

 $\begin{aligned} & \operatorname{dom} f \neq \emptyset \\ & f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \ (x, y \in \mathbb{E}, \ \lambda \in [0, 1]) \\ & \alpha f(x) = f(\alpha x) \quad (x \in \mathbb{E}, \ \alpha \geq 0) \\ & f(\lambda x + \mu y) \leq \lambda f(x) + \mu f(y) \quad (x, y \in \mathbb{E}, \ \lambda, \mu \geq 0). \end{aligned}$

¹Only for $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$

▲□▶▲御▶▲臣▶▲臣▶ = 三 つへぐ

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	o oo oo ooco oo	0 000000 0000 000

Extended real-valued functions: An epigraphical perspective

Let
$$f : \mathbb{E} \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$$
.
• epi $f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \le \alpha\}$ (epigraph)
• epi $_{<}f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) < \alpha\}$ (strict epigraph)

• dom
$$f := \{x \in \mathbb{E} \mid f(x) < \infty\}$$
 (domain).

 \rightarrow f is uniquely determined through epi f!

Figure: Epigraph of $f : \mathbb{R} \to \mathbb{R}$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
00000000		
Convox cote and functions		

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ and $\overline{x} \in \mathbb{E}$.

Lower limit:

 $\liminf_{x\to\bar{x}} f(x) := \inf \left\{ \alpha \mid \exists x_k \to \bar{x} : f(x_k) \to \alpha \right\}$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
00000000		

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ and $\overline{x} \in \mathbb{E}$.

Lower limit: $\liminf_{x \to \bar{x}} f(x) := \inf \left\{ \alpha \mid \exists x_k \to \bar{x} : f(x_k) \to \alpha \right\}$

Lower semicontinuity: f is said to be *lsc* (or *closed*) at \bar{x} if

 $\liminf_{x\to\bar{x}}f(x)\geq f(\bar{x}).$

Fundamentals from Convex Analysis Conjugacy of composite functions via K-convexity and inf-convolution	A new class of matrix support functionals
0 0 0000000 00 000000 00 00000 0000 00 0000 0000	0 000000 0000 000

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ and $\overline{x} \in \mathbb{E}$.

Lower limit: $\liminf_{x \to \bar{x}} f(x) := \inf \left\{ \alpha \mid \exists x_k \to \bar{x} : f(x_k) \to \alpha \right\}$

Lower semicontinuity: f is said to be *lsc* (or *closed*) at \bar{x} if

 $\liminf_{x\to \bar{x}} f(x) \ge f(\bar{x}).$

Closure: $\operatorname{cl} f : \mathbb{E} \to \overline{\mathbb{R}}, \quad (\operatorname{cl} f)(\overline{x}) := \liminf_{x \to \overline{x}} f(x).$

Figure: $f \underline{not}$ lsc at \overline{x}

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

Fundamentals from Convex Analysis Conjugacy of composite functions via K-convexity and inf-convolution	n A new class of matrix support functionals
0 0 000000000 00 000000 00 000000 0000 00 0000 0000	o ococoo ococ oco

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ and $\overline{x} \in \mathbb{E}$.

Lower limit: $\liminf_{x \to \bar{x}} f(x) := \inf \left\{ \alpha \mid \exists x_k \to \bar{x} : f(x_k) \to \alpha \right\}$

Lower semicontinuity: f is said to be *lsc* (or *closed*) at \bar{x} if

 $\liminf_{x\to \bar{x}} f(x) \ge f(\bar{x}).$

Closure: $\operatorname{cl} f : \mathbb{E} \to \overline{\mathbb{R}}, \quad (\operatorname{cl} f)(\overline{x}) := \liminf_{x \to \overline{x}} f(x).$

Facts:

■ $f \operatorname{lsc} \iff \operatorname{epi} f \operatorname{closed} \iff f = \operatorname{cl} f \iff \operatorname{lev}_r f$ closed $(r \in \mathbb{R})$

Figure: f not lsc at \bar{x}

Fundamentals from Convex Analysis Conjugacy of composite functions via K-convexity and inf-convolution	A new class of matrix support functionals
0 0 0000000 00 000000 00 00000 0000 00 0000 0000	0 000000 0000 000

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ and $\overline{x} \in \mathbb{E}$.

Lower limit: $\liminf_{x \to \bar{x}} f(x) := \inf \left\{ \alpha \mid \exists x_k \to \bar{x} : f(x_k) \to \alpha \right\}$

Lower semicontinuity: f is said to be *lsc* (or *closed*) at \bar{x} if

 $\liminf_{x\to \bar{x}} f(x) \ge f(\bar{x}).$

Closure: $\operatorname{cl} f : \mathbb{E} \to \overline{\mathbb{R}}, \quad (\operatorname{cl} f)(\overline{x}) := \liminf_{x \to \overline{x}} f(x).$

Facts:

■
$$f | \text{sc} \iff \text{epi} f \text{closed} \iff f = \text{cl} f \iff \text{lev}_r f$$

 $\text{closed} (r \in \mathbb{R})$
■ $\text{cl} f \leq f$

Figure: $f \underline{not}$ lsc at \overline{x}

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	o oo ooco ooco oo	o oooooo oooo ooo

Convex sets and functions

Lower semicontinuity

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ and $\overline{x} \in \mathbb{E}$.

Lower limit: $\liminf_{x \to \bar{x}} f(x) := \inf \left\{ \alpha \mid \exists x_k \to \bar{x} : f(x_k) \to \alpha \right\}$

Lower semicontinuity: f is said to be *lsc* (or *closed*) at \bar{x} if

 $\liminf_{x\to \bar{x}} f(x) \ge f(\bar{x}).$

Closure:
$$\operatorname{cl} f : \mathbb{E} \to \overline{\mathbb{R}}, \quad (\operatorname{cl} f)(\overline{x}) := \liminf_{x \to \overline{x}} f(x).$$

Facts:

- $f \text{ lsc } \iff epi f \text{ closed } \iff f = cl f \iff lev_r f$ closed $(r \in \mathbb{R})$
- $cl f \le f$
- *f* proper, lsc and coercive (i.e. $\lim_{\|x\|\to\infty} f(x) = \infty$) then:

$$\underset{\mathbb{E}}{\operatorname{argmin}} f \neq \emptyset \quad \text{and} \quad \inf_{\mathbb{E}} f \in \mathbb{R}$$

Figure: $f \underline{not}$ lsc at \overline{x}

・ロト ・四ト ・ヨト ・ヨトー

Fundamentals from Convex Analysis Conjugacy of composite functions via K-convexity and inf-convolution A new c	lass of matrix support functionals
0 0 0000000 00 000000 00 00000 0000	

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ and $\overline{x} \in \mathbb{E}$.

Lower limit: $\liminf_{x \to \bar{x}} f(x) := \inf \left\{ \alpha \mid \exists x_k \to \bar{x} : f(x_k) \to \alpha \right\}$

Lower semicontinuity: f is said to be *lsc* (or *closed*) at \bar{x} if

 $\liminf_{x\to \bar x} f(x) \ge f(\bar x).$

Closure:
$$\operatorname{cl} f : \mathbb{E} \to \overline{\mathbb{R}}, \quad (\operatorname{cl} f)(\overline{x}) := \liminf_{x \to \overline{x}} f(x).$$

Facts:

- $f \text{ lsc } \iff epi f \text{ closed } \iff f = cl f \iff lev_r f$ closed $(r \in \mathbb{R})$
- $cl f \le f$
- *f* proper, lsc and coercive (i.e. $\lim_{\|x\|\to\infty} f(x) = \infty$) then:

$$\underset{\mathbb{E}}{\operatorname{argmin}} f \neq \emptyset \quad \text{and} \quad \inf_{\mathbb{E}} f \in \mathbb{R}$$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		
00000	0000	000
Convey acts and functions		

1 Set Operations

For C, C_i $(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}'$ convex, $F : \mathbb{E} \to \mathbb{E}'$ affine the following sets are convex:

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		

1 Set Operations

For C, C_i $(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}'$ convex, $F : \mathbb{E} \to \mathbb{E}'$ affine the following sets are convex:

 \circ F(C) (affine image)

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 0000000 000000 00000 00	0 00 00 00000 00	0 000000 0000 000
Convex sets and functions		

1 Set Operations

For C, C_i $(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}'$ convex, $F : \mathbb{E} \to \mathbb{E}'$ affine the following sets are convex:

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 日 > < 日 > < 0 < 0</p>

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 0000000 000000 00000 00	0 00 00 00000 00	0 000000 0000 000
Convex sets and functions		

1 Set Operations

For C, C_i $(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}'$ convex, $F : \mathbb{E} \to \mathbb{E}'$ affine the following sets are convex:

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 日 > < 日 > < 0 < 0</p>

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		

1 Set Operations

For C, C_i $(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}'$ convex, $F : \mathbb{E} \to \mathbb{E}'$ affine the following sets are convex:

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 日 > < 日 > < 0 < 0</p>

 $\begin{array}{ll} \circ & F(C) & (affine image) \\ \circ & F^{-1}(D) & (affine pre-image) \\ \circ & C \times D & (Cartesian product) \\ \circ & C_1 + C_2 & (Minkowski sum) \end{array}$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		000000
00000	0000	000

1 Set Operations

For C, C_i $(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}'$ convex, $F : \mathbb{E} \to \mathbb{E}'$ affine the following sets are convex:

 $\begin{array}{lll} \circ & F(C) & (affine image) \\ \circ & F^{-1}(D) & (affine pre-image) \\ \circ & C \times D & (Cartesian product) \\ \circ & C_1 + C_2 & (Minkowski sum) \\ \circ & \bigcap_{i \in I} C_i & (Intersection) \end{array}$

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 0000000 000000 00000 00000		0 0000000 0000 000

1 Set Operations

For C, C_i $(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}'$ convex, $F : \mathbb{E} \to \mathbb{E}'$ affine the following sets are convex:

 $\begin{array}{ll} \circ & F(C) & (affine image) \\ \circ & F^{-1}(D) & (affine pre-image) \\ \circ & C \times D & (Cartesian product) \\ \circ & C_1 + C_2 & (Minkowski sum) \\ \circ & \bigcap_{i \in I} C_i & (Intersection) \end{array}$

2 Functional operations

For $f_i, g : \mathbb{E} \to \overline{\mathbb{R}}$ convex and $F : \mathbb{E}' \to \mathbb{E}$ affine the following functions are convex:

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 0000000 000000 00000 00	0 00 00000 0000	0 000000 0000 000

Jonvex sets and functions

Convexity preserving operations - new from old

1 Set Operations

For C, C_i $(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}'$ convex, $F : \mathbb{E} \to \mathbb{E}'$ affine the following sets are convex:

 $\begin{array}{lll} \circ & F(C) & (affine image) \\ \circ & F^{-1}(D) & (affine pre-image) \\ \circ & C \times D & (Cartesian product) \\ \circ & C_1 + C_2 & (Minkowski sum) \\ \circ & \bigcap_{i \in I} C_i & (Intersection) \end{array}$

2 Functional operations

For $f_i, g : \mathbb{E} \to \overline{\mathbb{R}}$ convex and $F : \mathbb{E}' \to \mathbb{E}$ affine the following functions are convex:

(Affine pre-composition) $f := g \circ F$: $epi f = T^{-1}(epi g), T : (x, \alpha) \mapsto (T(x), \alpha)$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		

1 Set Operations

For C, C_i $(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}'$ convex, $F : \mathbb{E} \to \mathbb{E}'$ affine the following sets are convex:

 $\begin{array}{lll} \circ & F(C) & (affine image) \\ \circ & F^{-1}(D) & (affine pre-image) \\ \circ & C \times D & (Cartesian product) \\ \circ & C_1 + C_2 & (Minkowski sum) \\ \circ & \bigcap_{i \in I} C_i & (Intersection) \end{array}$

2 Functional operations

For $f_i, g : \mathbb{E} \to \overline{\mathbb{R}}$ convex and $F : \mathbb{E}' \to \mathbb{E}$ affine the following functions are convex:

- (Affine pre-composition) $f := g \circ F$: $epi f = T^{-1}(epi g), T : (x, \alpha) \mapsto (T(x), \alpha)$
- (Pointwise supremum) $f := \sup_{i \in I} f_i$: epi $f = \bigcap_{i \in I} epi f_i$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		

Jonvex sets and functions

Convexity preserving operations - new from old

Set Operations

For C, C_i $(i \in I) \subset \mathbb{E}, D \subset \mathbb{E}'$ convex, $F : \mathbb{E} \to \mathbb{E}'$ affine the following sets are convex:

 $\begin{array}{ll} \circ & F(C) & (affine image) \\ \circ & F^{-1}(D) & (affine pre-image) \\ \circ & C \times D & (Cartesian product) \\ \circ & C_1 + C_2 & (Minkowski sum) \\ \circ & \bigcap_{i \in I} C_i & (Intersection) \end{array}$

2 Functional operations

For $f_i, g : \mathbb{E} \to \overline{\mathbb{R}}$ convex and $F : \mathbb{E}' \to \mathbb{E}$ affine the following functions are convex:

- (Affine pre-composition) $f := g \circ F$: $epi f = T^{-1}(epi g), T : (x, \alpha) \mapsto (T(x), \alpha)$
- (Pointwise supremum) $f := \sup_{i \in I} f_i$: $epi f = \bigcap_{i \in I} epi f_i$
- (Moreau envelope) $f := e_{\lambda}g : x \mapsto \inf_{u} \left\{ g(u) + \frac{1}{2\lambda} \|x u\|^2 \right\}$: $\operatorname{epi} f = \operatorname{epi} g + \operatorname{epi} \frac{1}{2} \| \cdot \|^2$.

0 0 0 0000000 00 00000 00000 00000 00000 00000	Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
	0 00000000 •00000 00000 00	o co coco coco co	0 000000 0000 000

The convex subdifferential

Definition 4.

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$. A vector $v \in \mathbb{E}$ is called a *subgradient* of v at \overline{x} if

$$f(x) \ge f(\overline{x}) + \langle v, x - \overline{x} \rangle \quad (x \in \mathbb{E}).$$
 (1)

ヘロト 人間 ト 人 ヨト 人 ヨト

= 900

We denote by $\partial f(\bar{x})$ the set of all subgradients of f at \bar{x} and call it the *(convex)* subdifferential of f at \bar{x} .

The inequality (1) is referred to as subgradient inequality.

0 0 0 0000000 00 00000 00000 00000 00000 00000	Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
	0 00000000 •00000 00000 00	o co coco coco co	0 000000 0000 000

The convex subdifferential

Definition 4.

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$. A vector $v \in \mathbb{E}$ is called a *subgradient* of v at \overline{x} if

$$f(x) \ge f(\bar{x}) + \langle v, x - \bar{x} \rangle \quad (x \in \mathbb{E}).$$
⁽¹⁾

くロト (得) (ア・マラト・

3

We denote by $\partial f(\bar{x})$ the set of all subgradients of f at \bar{x} and call it the *(convex)* subdifferential of f at \bar{x} .

The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at \bar{x} are the slopes of affine minorants of f that coincide with f at \bar{x} ".

0 0 0 0 0000000 00 000000 000000 000000 000000 00000 0000 0000	Fundamentals from Convex Analysis		
	0 00000000 •00000 00000 00	0 00 0000 0000 00	0 000000 0000 000

The convex subdifferential

Definition 4.

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$. A vector $v \in \mathbb{E}$ is called a *subgradient* of v at \overline{x} if

$$f(x) \ge f(\bar{x}) + \langle v, x - \bar{x} \rangle \quad (x \in \mathbb{E}).$$
 (1

We denote by $\partial f(\bar{x})$ the set of all subgradients of f at \bar{x} and call it the *(convex)* subdifferential of f at \bar{x} .

The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at \bar{x} are the slopes of affine minorants of f that coincide with f at \bar{x} ".

The subdifferential operator is a set-valued mapping $\partial f : \mathbb{E} \rightrightarrows \mathbb{E}$. Set

dom
$$\partial f := \{x \in \mathbb{E} \mid \partial f(x) \neq \emptyset\}.$$

■ $0 \in \partial f(x) \iff x \in \operatorname{argmin}_{\mathbb{E}} f$ (Fermat's rule)

0 0 0 0 0000000 00 000000 000000 000000 000000 00000 0000 0000	Fundamentals from Convex Analysis		
	0 00000000 •00000 00000 00	0 00 0000 0000 00	0 000000 0000 000

The convex subdifferential

Definition 4.

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$. A vector $v \in \mathbb{E}$ is called a *subgradient* of v at \overline{x} if

$$f(x) \ge f(\bar{x}) + \langle v, x - \bar{x} \rangle \quad (x \in \mathbb{E}).$$
 (1

We denote by $\partial f(\bar{x})$ the set of all subgradients of f at \bar{x} and call it the *(convex)* subdifferential of f at \bar{x} .

The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at \bar{x} are the slopes of affine minorants of f that coincide with f at \bar{x} ".

The subdifferential operator is a set-valued mapping $\partial f : \mathbb{E} \rightrightarrows \mathbb{E}$. Set

dom
$$\partial f := \{x \in \mathbb{E} \mid \partial f(x) \neq \emptyset\}.$$

- $0 \in \partial f(x) \iff x \in \operatorname{argmin}_{\mathbb{E}} f$ (Fermat's rule)
- $\partial f(x)$ closed and convex ($x \in \mathbb{E}$)

0 0 0 0 0000000 00 000000 000000 000000 000000 00000 0000 0000	Fundamentals from Convex Analysis		
	0 00000000 •00000 00000 00	0 00 0000 0000 00	0 000000 0000 000

The convex subdifferential

Definition 4.

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$. A vector $v \in \mathbb{E}$ is called a *subgradient* of v at \overline{x} if

$$f(x) \ge f(\bar{x}) + \langle v, x - \bar{x} \rangle \quad (x \in \mathbb{E}).$$
 (1)

We denote by $\partial f(\bar{x})$ the set of all subgradients of f at \bar{x} and call it the *(convex)* subdifferential of f at \bar{x} .

The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at \bar{x} are the slopes of affine minorants of f that coincide with f at \bar{x} ".

The subdifferential operator is a set-valued mapping $\partial f : \mathbb{E} \Rightarrow \mathbb{E}$. Set

dom
$$\partial f := \{x \in \mathbb{E} \mid \partial f(x) \neq \emptyset\}.$$

- $0 \in \partial f(x) \iff x \in \operatorname{argmin}_{\mathbb{E}} f$ (Fermat's rule)
- $\partial f(x)$ closed and convex ($x \in \mathbb{E}$)
- $\partial f(x)$ is a singleton \iff f differentiable at $x \iff$ f continuously differentiable at x

▲□▶▲□▶▲□▶▲□▶ □ の々ぐ

0 0 0 0 00000000 00 000000 000000 000000 000000 000000 000000 00000	Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
	0 00000000 •00000 00000 00	0 00 0000 0000 00	o 000000 0000 000

The convex subdifferential

Definition 4.

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$. A vector $v \in \mathbb{E}$ is called a *subgradient* of v at \overline{x} if

$$f(x) \ge f(\bar{x}) + \langle v, x - \bar{x} \rangle \quad (x \in \mathbb{E}).$$
 (1)

ヘロト 人間 ト 人 ヨト 人 ヨト

= 900

We denote by $\partial f(\bar{x})$ the set of all subgradients of f at \bar{x} and call it the *(convex)* subdifferential of f at \bar{x} .

The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at \bar{x} are the slopes of affine minorants of f that coincide with f at \bar{x} ".

The subdifferential operator is a set-valued mapping $\partial f : \mathbb{E} \Rightarrow \mathbb{E}$. Set

dom
$$\partial f := \{x \in \mathbb{E} \mid \partial f(x) \neq \emptyset\}.$$

- $0 \in \partial f(x) \iff x \in \operatorname{argmin}_{\mathbb{E}} f$ (Fermat's rule)
- $\partial f(x)$ closed and convex ($x \in \mathbb{E}$)
- $\partial f(x)$ is a singleton \iff f differentiable at $x \iff$ f continuously differentiable at x
- $\operatorname{ri}(\operatorname{dom} f) \subset \operatorname{dom} \partial f \subset \operatorname{dom} f$ (f convex).

Fundamentals from Convex Analysis	
00000	

Examples of subdifferentiation

■ (Indicator function/Normal cone) Let $S \subset \mathbb{E}$.

Indicator function of S:

$$\delta_{S}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \delta_{S}(x) := \begin{cases} 0, & x \in S, \\ +\infty, & \text{else.} \end{cases}$$

Fundamentals from Convex Analysis		
0000000	00	00000
00000 00	0000 00	

Examples of subdifferentiation

■ (Indicator function/Normal cone) Let $S \subset \mathbb{E}$.

Indicator function of S:

$$\delta_{\mathcal{S}}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \delta_{\mathcal{S}}(x) := \begin{cases} 0, & x \in \mathcal{S}, \\ +\infty, & \text{else.} \end{cases}$$

$$\partial \delta_{\mathcal{S}}(\bar{x}) = \left\{ v \mid \delta_{\mathcal{C}}(x) \ge \delta_{\mathcal{C}}(\bar{x}) + \langle v, x - \bar{x} \rangle \ (x \in \mathbb{E}) \right\}$$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		000000
00000		
00000	0000	000

Examples of subdifferentiation

■ (Indicator function/Normal cone) Let $S \subset \mathbb{E}$.

Indicator function of S:

$$\delta_{\mathcal{S}}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \delta_{\mathcal{S}}(\mathbf{x}) := \begin{cases} 0, & \mathbf{x} \in \mathcal{S}, \\ +\infty, & \text{else.} \end{cases}$$

$$\begin{array}{ll} \partial \delta_{\mathcal{S}}(\bar{x}) & = & \left\{ v \mid \delta_{\mathcal{C}}(x) \geq \delta_{\mathcal{C}}(\bar{x}) + \langle v, \, x - \bar{x} \rangle \, \left(x \in \mathbb{E} \right) \right\} \\ & = & \left\{ v \in \mathbb{E} \mid \langle v, \, x - \bar{x} \rangle \leq 0 \, \left(x \in \mathcal{S} \right) \right\} \end{array}$$

Fundamentals from Convex Analysis	
00000	

Examples of subdifferentiation

■ (Indicator function/Normal cone) Let $S \subset \mathbb{E}$.

Indicator function of S:

$$\delta_{\mathcal{S}}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \delta_{\mathcal{S}}(\mathbf{x}) := \begin{cases} 0, & \mathbf{x} \in \mathcal{S}, \\ +\infty, & \text{else.} \end{cases}$$

$$\begin{aligned} \partial \delta_{\mathcal{S}}(\bar{x}) &= \left\{ v \mid \delta_{\mathcal{C}}(x) \ge \delta_{\mathcal{C}}(\bar{x}) + \langle v, x - \bar{x} \rangle \ (x \in \mathbb{E}) \right\} \\ &= \left\{ v \in \mathbb{E} \mid \langle v, x - \bar{x} \rangle \le 0 \ (x \in S) \right\} \\ &=: \quad N_{\mathcal{S}}(\bar{x}) \quad (\bar{x} \in S) \end{aligned}$$

Figure: Normal cone

Fundamentals from Convex Analysis		
00000		
00000	0000	000

Examples of subdifferentiation

■ (Indicator function/Normal cone) Let $S \subset \mathbb{E}$.

Indicator function of S:

$$\delta_{\mathcal{S}}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \delta_{\mathcal{S}}(\mathbf{x}) := \begin{cases} 0, & \mathbf{x} \in \mathcal{S}, \\ +\infty, & \text{else.} \end{cases}$$

$$\begin{array}{ll} \partial \delta_{S}(\bar{x}) & = & \left\{ v \mid \delta_{C}(x) \geq \delta_{C}(\bar{x}) + \langle v, \, x - \bar{x} \rangle \, \left(x \in \mathbb{E} \right) \right\} \\ & = & \left\{ v \in \mathbb{E} \mid \langle v, \, x - \bar{x} \rangle \leq 0 \, \left(x \in S \right) \right\} \\ & = : & N_{S}(\bar{x}) \quad (\bar{x} \in S) \end{array}$$

• (Euclidean norm) $\|\cdot\| := \sqrt{\langle \cdot, \cdot \rangle}$. Then

$$\partial \|\cdot\|(\bar{x}) = \begin{cases} \left\{\frac{\bar{x}}{\|\bar{x}\|}\right\} & \text{if } \bar{x} \neq 0, \\ \mathbb{B} & \text{if } \bar{x} = 0. \end{cases}$$

Figure: Normal cone

▲□▶▲舂▶▲≧▶▲≧▶ 差 のQで

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
00000		
00000	0000	000

Examples of subdifferentiation

■ (Indicator function/Normal cone) Let $S \subset \mathbb{E}$.

Indicator function of S:

$$\delta_{\mathcal{S}}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \delta_{\mathcal{S}}(\mathbf{x}) := \begin{cases} 0, & \mathbf{x} \in \mathcal{S}, \\ +\infty, & \text{else.} \end{cases}$$

$$\begin{aligned} \partial \delta_{S}(\bar{x}) &= \left\{ v \mid \delta_{C}(x) \geq \delta_{C}(\bar{x}) + \langle v, x - \bar{x} \rangle \ (x \in \mathbb{E}) \right\} \\ &= \left\{ v \in \mathbb{E} \mid \langle v, x - \bar{x} \rangle \leq 0 \ (x \in S) \right\} \\ &=: \quad N_{S}(\bar{x}) \quad (\bar{x} \in S) \end{aligned}$$

• (Euclidean norm) $\|\cdot\| := \sqrt{\langle \cdot, \cdot \rangle}$. Then

$$\partial \| \cdot \| (\bar{x}) = \begin{cases} \left\{ \frac{\bar{x}}{\|\bar{x}\|} \right\} & \text{if } \bar{x} \neq 0, \\ \mathbb{B} & \text{if } \bar{x} = 0. \end{cases}$$

(Empty subdifferential)

$$f: x \in \mathbb{R} \mapsto \begin{cases} -\sqrt{x} & \text{if } x \ge 0\\ +\infty & \text{else.} \end{cases}$$
$$\partial f(x) = \begin{cases} \left\{ -\frac{1}{2\sqrt{x}} \right\}, & x > 0, \\ 0, & \text{else.} \end{cases}$$

Figure: Normal cone

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00000		0 000000 0000 0000 000
<u> </u>		

_ _

The Fenchel conjugate

For $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ let $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi *f*:

$$\operatorname{epi} f^* \stackrel{!}{=} \left\{ (v, \beta) \mid \langle v, x \rangle - \beta \leq f(x) \quad (x \in \mathbb{E}) \right\}$$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00000	0 00 00000 0000	0 000000 0000 000

The Fenchel conjugate

For $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ let $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi f:

$$\begin{array}{l} \operatorname{epi} f^* \stackrel{!}{=} \left\{ (v,\beta) \mid \langle v, x \rangle - \beta \leq f(x) \quad (x \in \mathbb{E}) \right\} \\ \Longrightarrow \quad f^*(v) \leq \beta \quad \longleftrightarrow \quad \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \leq \beta \quad ((v,\beta) \in \mathbb{E} \times \mathbb{R}) \end{aligned}$$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00000	0 00 00000	0 000000 0000 000

The Fenchel conjugate

For $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ let $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi f:

$$\begin{array}{l} \operatorname{epi} f^* \stackrel{!}{=} \left\{ (v,\beta) \mid \langle v, x \rangle - \beta \leq f(x) \quad (x \in \mathbb{E}) \right\} \\ \Longrightarrow \quad f^*(v) \leq \beta \quad \Longleftrightarrow \quad \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \leq \beta \quad ((v,\beta) \in \mathbb{E} \times \mathbb{R}) \\ \Longrightarrow \quad f^*(v) = \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \quad (v \in \mathbb{E}).$$

$$\begin{array}{l} \end{array}$$

$$\begin{array}{l} (2) \end{array}$$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 00 000 00000 00	0 00 000 0000 00	0 00000 0000 000

The Fenchel conjugate

For $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ let $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi *f*:

$$epi f^{*} \stackrel{!}{=} \left\{ (v, \beta) \mid \langle v, x \rangle - \beta \leq f(x) \quad (x \in \mathbb{E}) \right\}$$

$$\implies \quad f^{*}(v) \leq \beta \quad \Longleftrightarrow \quad \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \leq \beta \quad ((v, \beta) \in \mathbb{E} \times \mathbb{R})$$

$$\implies \quad f^{*}(v) = \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \quad (v \in \mathbb{E}).$$

$$(2)$$

Definition 5 (Fenchel conjugate).

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ proper. The function $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ defined through (2) is called the (Fenchel) conjugate of f. The function $(f^{**}) := (f^*)^*$ is called the biconjugate of f.

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 00 000 00000 00	0 00 000 0000 00	0 00000 0000 000

The Fenchel conjugate

For $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ let $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi f:

$$epi f^{*} \stackrel{!}{=} \left\{ (v, \beta) \mid \langle v, x \rangle - \beta \leq f(x) \quad (x \in \mathbb{E}) \right\}$$

$$\implies \quad f^{*}(v) \leq \beta \quad \Longleftrightarrow \quad \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \leq \beta \quad ((v, \beta) \in \mathbb{E} \times \mathbb{R})$$

$$\implies \quad f^{*}(v) = \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \quad (v \in \mathbb{E}).$$

$$(2)$$

Definition 5 (Fenchel conjugate).

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ proper. The function $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ defined through (2) is called the (Fenchel) conjugate of f. The function $(f^{**}) := (f^*)^*$ is called the biconjugate of f.

Define $\Gamma := \{ f : \mathbb{E} \to \overline{\mathbb{R}} \mid f \text{ convex and proper} \}$ and $\Gamma_0 := \{ f \in \Gamma \mid f \text{ closed} \}.$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 00 000 00000 00	0 00 000 0000 00	0 00000 0000 000

The Fenchel conjugate

For $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ let $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi *f*:

$$\begin{array}{l} \operatorname{epi} f^{*} \stackrel{!}{=} \left\{ (v,\beta) \mid \langle v, x \rangle - \beta \leq f(x) \quad (x \in \mathbb{E}) \right\} \\ \Longrightarrow \quad f^{*}(v) \leq \beta \quad \Longleftrightarrow \quad \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \leq \beta \quad ((v,\beta) \in \mathbb{E} \times \mathbb{R}) \\ \Longrightarrow \quad f^{*}(v) = \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \quad (v \in \mathbb{E}).$$

$$\begin{array}{l} \end{array}$$

$$\begin{array}{l} (2) \end{array}$$

Definition 5 (Fenchel conjugate).

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ proper. The function $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ defined through (2) is called the (Fenchel) conjugate of f. The function $(f^{**}) := (f^*)^*$ is called the biconjugate of f.

Define $\Gamma := \{ f : \mathbb{E} \to \overline{\mathbb{R}} \mid f \text{ convex and proper} \}$ and $\Gamma_0 := \{ f \in \Gamma \mid f \text{ closed} \}.$

■ f^* closed and convex - proper if $f \neq +\infty$ with an affine minorant

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 00 000 00000 00	0 00 000 0000 00	0 00000 0000 000

The Fenchel conjugate

For $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ let $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi *f*:

$$epi f^{*} \stackrel{!}{=} \left\{ (v, \beta) \mid \langle v, x \rangle - \beta \leq f(x) \quad (x \in \mathbb{E}) \right\}$$

$$\implies \quad f^{*}(v) \leq \beta \quad \Longleftrightarrow \quad \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \leq \beta \quad ((v, \beta) \in \mathbb{E} \times \mathbb{R})$$

$$\implies \quad f^{*}(v) = \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \quad (v \in \mathbb{E}).$$

$$(2)$$

Definition 5 (Fenchel conjugate).

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ proper. The function $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ defined through (2) is called the (Fenchel) conjugate of f. The function $(f^{**}) := (f^*)^*$ is called the biconjugate of f.

Define $\Gamma := \{ f : \mathbb{E} \to \overline{\mathbb{R}} \mid f \text{ convex and proper} \}$ and $\Gamma_0 := \{ f \in \Gamma \mid f \text{ closed} \}.$

- f^* closed and convex proper if $f \neq +\infty$ with an affine minorant
- $f = f^{**} proper \iff f \in \Gamma_0$ (Fenchel-Moreau)
| Fundamentals from Convex Analysis | Conjugacy of composite functions via K-convexity and inf-convolution | |
|---|--|---------------------------|
| 0
00000000
00 000
00000
00 | 0
00
000
0000
00 | 0
00000
0000
000 |
| | | |

The Fenchel conjugate

For $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ let $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi *f*:

$$\begin{array}{l} \operatorname{epi} f^{*} \stackrel{!}{=} \left\{ (v,\beta) \mid \langle v, x \rangle - \beta \leq f(x) \quad (x \in \mathbb{E}) \right\} \\ \Longrightarrow \quad f^{*}(v) \leq \beta \quad \Longleftrightarrow \quad \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \leq \beta \quad ((v,\beta) \in \mathbb{E} \times \mathbb{R}) \\ \Longrightarrow \quad f^{*}(v) = \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \quad (v \in \mathbb{E}).$$

$$\begin{array}{l} \end{array}$$

$$\begin{array}{l} (2) \end{array}$$

Definition 5 (Fenchel conjugate).

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ proper. The function $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ defined through (2) is called the (Fenchel) conjugate of f. The function $(f^{**}) := (f^*)^*$ is called the biconjugate of f.

Define $\Gamma := \{ f : \mathbb{E} \to \overline{\mathbb{R}} \mid f \text{ convex and proper} \}$ and $\Gamma_0 := \{ f \in \Gamma \mid f \text{ closed} \}.$

■ f^* closed and convex - proper if $f \neq +\infty$ with an affine minorant

■
$$f = f^{**} proper \iff f \in \Gamma_0$$
 (Fenchel-Moreau)

$$f^* = (\operatorname{cl} f)^* \quad (f \in \Gamma)$$

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 00 000 00000 00	0 00 000 0000 00	0 00000 0000 000

The Fenchel conjugate

For $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ let $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of epi f:

$$epi f^{*} \stackrel{!}{=} \left\{ (v, \beta) \mid \langle v, x \rangle - \beta \leq f(x) \quad (x \in \mathbb{E}) \right\}$$

$$\implies \quad f^{*}(v) \leq \beta \quad \Longleftrightarrow \quad \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \leq \beta \quad ((v, \beta) \in \mathbb{E} \times \mathbb{R})$$

$$\implies \quad f^{*}(v) = \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \quad (v \in \mathbb{E}).$$

$$(2)$$

Definition 5 (Fenchel conjugate).

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ proper. The function $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ defined through (2) is called the (Fenchel) conjugate of f. The function $(f^{**}) := (f^*)^*$ is called the biconjugate of f.

Define $\Gamma := \{ f : \mathbb{E} \to \overline{\mathbb{R}} \mid f \text{ convex and proper} \}$ and $\Gamma_0 := \{ f \in \Gamma \mid f \text{ closed} \}.$

■ f^* closed and convex - proper if $f \neq +\infty$ with an affine minorant

■
$$f = f^{**} proper \iff f \in \Gamma_0$$
 (Fenchel-Moreau)

$$f^* = (\operatorname{cl} f)^* \quad (f \in \Gamma)$$

■ $f(x) + f^*(y) \ge \langle x, y \rangle$ $(x, y \in \mathbb{E})$ (Fenchel-Young Inequality)

Fundamentals from Convex Analysis		
0000000		000000
000000		
00000	0000	000

▲□▶▲□▶▲□▶▲□▶ □ のへで

Subdifferentiation and conjugacy of convex functions

Interplay of conjugation and subdifferentiation

Theorem 6 (Subdifferential and conjugate function).		
Let $f \in \Gamma_0$. TFAE:		
i) $y \in \partial f(x);$		
ii) $f(x) + f^*(y) = \langle x, y \rangle;$		
iii) $x \in \partial f^*(y)$.		
In particular, $\partial f^* = (\partial f)^{-1}$.		

Fundamentals from Convex Analysis		
0000000		000000
000000		
00000	0000	000

Interplay of conjugation and subdifferentiation

Let $f \in \Gamma_0$. TFAE: i) $y \in \partial f(x)$; ii) $f(x) + f^*(y) = \langle x, y \rangle$;

iii) $x \in \partial f^*(y)$.

In particular, $\partial f^* = (\partial f)^{-1}$.

Proof.

Notice that

 $y \in \partial f(x) \qquad \iff \qquad f(z) \ge f(x) + \langle y, z - x \rangle \quad (z \in \mathbb{E})$

・ロト・日本・モート ヨー シック

Fundamentals from Convex Analysis		
0000000		000000
000000		
00000	0000	000

Interplay of conjugation and subdifferentiation

Theorem 6 (Subdifferential and conjugate function).

Let $f \in \Gamma_0$. TFAE: i) $y \in \partial f(x)$; ii) $f(x) + f^*(y) = \langle x, y \rangle$;

iii) $x \in \partial f^*(y)$. In particular, $\partial f^* = (\partial f)^{-1}$.

Proof.

Notice that

$$y \in \partial f(x) \qquad \longleftrightarrow \qquad f(z) \ge f(x) + \langle y, z - x \rangle \quad (z \in \mathbb{E})$$
$$\iff \qquad \langle y, x \rangle - f(x) \ge \sup_{z} \{\langle y, z \rangle - f(z)\}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Fundamentals from Convex Analysis		
0000000		000000
000000		
00000	0000	000

Interplay of conjugation and subdifferentiation

Theorem 6 (Subdifferential and conjugate function).

Let $f \in \Gamma_0$. TFAE: i) $y \in \partial f(x)$; ii) $f(x) + f^*(y) = \langle x, y \rangle$;

iii)
$$x \in \partial f^*(y)$$
.

In particular, $\partial f^* = (\partial f)^{-1}$.

Proof.

Notice that

$$y \in \partial f(x) \qquad \Longleftrightarrow \qquad f(z) \ge f(x) + \langle y, z - x \rangle \quad (z \in \mathbb{E})$$
$$\iff \qquad \langle y, x \rangle - f(x) \ge \sup_{z} \{\langle y, z \rangle - f(z) \}$$
$$\iff \qquad f(x) + f^{*}(y) \le \langle x, y \rangle$$

Fundamentals from Convex Analysis		
0000000		000000
000000		
00000	0000	000

Interplay of conjugation and subdifferentiation

Theorem 6 (Subdifferential and conjugate function).

Let $f \in \Gamma_0$. TFAE: i) $y \in \partial f(x)$; ii) $f(x) + f^*(y) = \langle x, y \rangle$;

iii) $x \in \partial f^*(y)$.

In particular, $\partial f^* = (\partial f)^{-1}$.

Proof.

Notice that

$$\begin{array}{lll} y \in \partial f(x) & \Longleftrightarrow & f(z) \geq f(x) + \langle y, \, z - x \rangle \quad (z \in \mathbb{E}) \\ & \longleftrightarrow & \langle y, \, x \rangle - f(x) \geq \sup_{z} \{\langle y, \, z \rangle - f(z) \} \\ & \longleftrightarrow & f(x) + f^{*}(y) \leq \langle x, \, y \rangle \\ & \stackrel{Fenchel-Young}{\Leftrightarrow} & f(x) + f^{*}(y) = \langle x, \, y \rangle, \end{array}$$

・ロト・日本・日本・日本・日本・日本

Fundamentals from Convex Analysis	
000000	

Interplay of conjugation and subdifferentiation

Theorem 6 (Subdifferential and conjugate function).

Let $f \in \Gamma_0$. TFAE: i) $y \in \partial f(x)$; ii) $f(x) + f^*(y) = \langle x, y \rangle$;

iii) $x \in \partial f^*(y)$.

In particular, $\partial f^* = (\partial f)^{-1}$.

Proof.

Notice that

イロト イポト イヨト

ъ

Applying the same reasoning to f^* and noticing that $f^{**} = f$ if $f \in \Gamma_0$, gives the missing equivalence.

Fundamentals from Convex Analysis		
0 0000000 000000 00000 00000	0 00 00 00000 00	0 000000 0000 000

Support functions: A special case of conjugacy

The support function σ_S of $S \subset \mathbb{E}$ (nonempty) is defined by

 $\sigma_{\mathcal{S}}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \sigma_{\mathcal{S}}(z) := \delta^*_{\mathcal{S}}(z) = \sup_{x \in \mathcal{S}} \langle x, z \rangle.$

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fundamentals from Convex Analysis		
	0 00000000 000000 00000 00000	0 00 00000	0 000000 0000 0000 000

Support functions: A special case of conjugacy

The support function σ_S of $S \subset \mathbb{E}$ (nonempty) is defined by

 $\sigma_{\mathcal{S}}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \sigma_{\mathcal{S}}(z) := \delta^*_{\mathcal{S}}(z) = \sup_{x \in \mathcal{S}} \langle x, z \rangle.$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 \bullet σ_S is finite-valued if and only if S is bounded (and nonempty)

 $\sigma_{S} = \sigma_{\text{conv}\,S} = \sigma_{\overline{\text{conv}}\,S} = \sigma_{\text{cl}\,S}$

Fundamentals from Convex Analysis	
0000000	000000
000000	

Support functions: A special case of conjugacy

The support function σ_S of $S \subset \mathbb{E}$ (nonempty) is defined by

 $\sigma_{\mathcal{S}}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \sigma_{\mathcal{S}}(z) := \delta^*_{\mathcal{S}}(z) = \sup_{x \in \mathcal{S}} \langle x, z \rangle.$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

 \bullet σ_S is finite-valued if and only if S is bounded (and nonempty)

$$\sigma_{\rm S} = \sigma_{\rm conv\,S} = \sigma_{\overline{\rm conv\,S}} = \sigma_{\rm cl\,S}$$

 $\bullet \sigma_{S}^{*} = \delta_{\overline{\text{conv}}S}$

Fundamentals from Convex Analysis	
0000000	000000
000000	

Support functions: A special case of conjugacy

The support function σ_S of $S \subset \mathbb{E}$ (nonempty) is defined by

$$\sigma_{\mathcal{S}}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \sigma_{\mathcal{S}}(z) := \delta^*_{\mathcal{S}}(z) = \sup_{x \in \mathcal{S}} \langle x, z \rangle.$$

ヘロト 人間 ト 人造 ト 人造 トー

э

 \bullet σ_{S} is finite-valued if and only if S is bounded (and nonempty)

$$\sigma_{\rm S} = \sigma_{\rm conv\,S} = \sigma_{\rm conv\,S} = \sigma_{\rm cl\,S}$$

$$\sigma_{S}^{*} = \delta_{\overline{\text{conv}}S}$$

$$\partial \sigma_{S}(x) = \left\{ z \in \overline{\text{conv}} S \mid x \in N_{\overline{\text{conv}}S}(z) \right\}$$

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fundamentals from Convex Analysis		
	0 00000000 000000 00000 00000	0 00 00000	0 000000 0000 0000 000

Support functions: A special case of conjugacy

The support function σ_S of $S \subset \mathbb{E}$ (nonempty) is defined by

$$\sigma_{\mathcal{S}}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \sigma_{\mathcal{S}}(z) := \delta^*_{\mathcal{S}}(z) = \sup_{x \in \mathcal{S}} \langle x, z \rangle.$$

 \bullet σ_{S} is finite-valued if and only if S is bounded (and nonempty)

$$\sigma_{\rm S} = \sigma_{\rm conv\,S} = \sigma_{\rm \overline{conv}\,S} = \sigma_{\rm cl\,S}$$

•
$$\sigma_{S}^{*} = \delta_{\overline{\text{conv}}S}$$

$$\partial \sigma_{S}(x) = \left\{ z \in \overline{\text{conv}} S \mid x \in N_{\overline{\text{conv}}S}(z) \right\}$$

■ epi σ_S = ∩_{s∈S} epi ⟨s, ·⟩ is a nonempty, closed, convex cone, i.e. σ_S is proper, closed and sublinear.

< ロ > < 同 > < 回 > < 回 > < □ > <

э

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fundamentals from Convex Analysis		
	0 00000000 000000 00000 00000	0 00 00000	0 000000 0000 0000 000

Support functions: A special case of conjugacy

The support function σ_S of $S \subset \mathbb{E}$ (nonempty) is defined by

$$\sigma_{\mathcal{S}}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \sigma_{\mathcal{S}}(z) := \delta^*_{\mathcal{S}}(z) = \sup_{x \in \mathcal{S}} \langle x, z \rangle.$$

 \bullet σ_{S} is finite-valued if and only if S is bounded (and nonempty)

$$\sigma_{\rm S} = \sigma_{\rm conv\,S} = \sigma_{\rm conv\,S} = \sigma_{\rm cl\,S}$$

•
$$\sigma_{S}^{*} = \delta_{\overline{\text{conv}}S}$$

$$\partial \sigma_{S}(x) = \left\{ z \in \overline{\text{conv}} S \mid x \in N_{\overline{\text{conv}}S}(z) \right\}$$

■ epi σ_S = ∩_{s∈S} epi ⟨s, ·⟩ is a nonempty, closed, convex cone, i.e. σ_S is proper, closed and sublinear.

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Fundamentals from Convex Analysis		
0 0000000 000000	0 00 00	0 000000 0000
00000 00	0000 00	

Support functions: A special case of conjugacy

The support function σ_S of $S \subset \mathbb{E}$ (nonempty) is defined by

$$\sigma_{S}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \sigma_{S}(z) := \delta_{S}^{*}(z) = \sup_{x \in S} \langle x, z \rangle.$$

 \bullet σ_S is finite-valued if and only if S is bounded (and nonempty)

$$\sigma_{S} = \sigma_{\operatorname{conv} S} = \sigma_{\overline{\operatorname{conv}} S} = \sigma_{\operatorname{cl} S}$$

•
$$\sigma_{S}^{*} = \delta_{\overline{\text{conv}}S}$$

$$\partial \sigma_{S}(x) = \left\{ z \in \overline{\operatorname{conv}} S \mid x \in N_{\overline{\operatorname{conv}}S}(z) \right\}$$

epi σ_S = ∩_{s∈S} epi ⟨s, ·⟩ is a nonempty, closed, convex cone, i.e. σ_S is proper, closed and sublinear.

Here's the complete picture:

Theorem 7 (Hörmander).

A function $f: \mathbb{E} \to \overline{\mathbb{R}}$ is proper, closed and sublinear if and only if it is a support function.

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000	0 00 00 0000	0 000000 0000 0000
00	00	

Gauges and polar sets

Definition 8 (Gauge function).

Let $C \subset \mathbb{E}$. The gauge (function) of C is defined by $\gamma_C : x \in \mathbb{E} \mapsto \inf \{\lambda \ge 0 \mid x \in \lambda C\}$.

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000	0 00 00 0000	0 000000 0000 0000
00	00	

Gauges and polar sets

Definition 8 (Gauge function).

Let $C \subset \mathbb{E}$. The gauge (function) of C is defined by $\gamma_C : x \in \mathbb{E} \mapsto \inf \{\lambda \ge 0 \mid x \in \lambda C\}$.

If $C \subset \mathbb{E}$ be nonempty, closed and convex with $0 \in C$, then γ_C is proper, lsc and sublinear.

Fundamentals from Convex Analysis		
0 00000000 000000 00000 00	0 00 0000 0000 00	o 0000000 0000 000

Gauges and polar sets

Definition 8 (Gauge function).

Let $C \subset \mathbb{E}$. The gauge (function) of C is defined by $\gamma_C : x \in \mathbb{E} \mapsto \inf \{\lambda \ge 0 \mid x \in \lambda C \}$.

If $C \subset \mathbb{E}$ be nonempty, closed and convex with $0 \in C$, then γ_C is proper, lsc and sublinear.

Definition 9 (Polar sets).

Let $C \subset \mathbb{E}$. Then its *polar set* is defined by

$$C^{\circ} := \left\{ v \in \mathbb{E} \mid \langle v, x \rangle \leq 1 \ (x \in C) \right\}$$

Moreover, we put $C^{\circ\circ} := (C^{\circ})^{\circ}$ and call it the *bipolar set* of *C*.

- If *K* is a cone then $K^{\circ} = \{ v \in \mathbb{E} \mid \langle v, x \rangle \leq 0 \ (x \in K) \}.$
- For $C \subset \mathbb{E}$ we have $C^{\circ\circ} = \overline{\operatorname{conv}}(C \cup \{0\})$. (bipolar theorem)

Fundamentals from Convex Analysis		
0 00000000 000000 00000 00	0 00 0000 0000 00	o 0000000 0000 000

Gauges and polar sets

Definition 8 (Gauge function).

Let $C \subset \mathbb{E}$. The gauge (function) of C is defined by $\gamma_C : x \in \mathbb{E} \mapsto \inf \{\lambda \ge 0 \mid x \in \lambda C\}$.

If $C \subset \mathbb{E}$ be nonempty, closed and convex with $0 \in C$, then γ_C is proper, lsc and sublinear.

Definition 9 (Polar sets).

Let $C \subset \mathbb{E}$. Then its *polar set* is defined by

$$C^{\circ} := \left\{ v \in \mathbb{E} \mid \langle v, x \rangle \leq 1 \ (x \in C) \right\}$$

Moreover, we put $C^{\circ\circ} := (C^{\circ})^{\circ}$ and call it the *bipolar set* of *C*.

- If *K* is a cone then $K^{\circ} = \{ v \in \mathbb{E} \mid \langle v, x \rangle \leq 0 \ (x \in K) \}.$
- For $C \subset \mathbb{E}$ we have $C^{\circ\circ} = \overline{\operatorname{conv}}(C \cup \{0\})$. (bipolar theorem)

Proposition 10.

Let $C \subset \mathbb{E}$ be closed and convex with $0 \in C$. Then

$$\gamma_{\mathcal{C}} = \sigma_{\mathcal{C}^{\circ}} \stackrel{*}{\longleftrightarrow} \delta_{\mathcal{C}^{\circ}} \text{ and } \gamma_{\mathcal{C}^{\circ}} = \sigma_{\mathcal{C}} \stackrel{*}{\longleftrightarrow} \delta_{\mathcal{C}}$$

Fundamentals from Convex Analysis Conjugacy	
0 00000000 ●00000 00 00000 00 00000 00000	0 000000 0000 000

Infimal projection

Theorem 11 (Infimal projection).

Let $\psi : \mathbb{E}_1 \times \mathbb{E}_2 \to \mathbb{R} \cup \{+\infty\}$ be convex. Then the optimal value function

$$p: \mathbb{E}_1 \to \overline{\mathbb{R}}, \ p(x) := \inf_{y \in \mathbb{E}_2} \psi(x, y)$$

▲□▶▲御▶★臣▶★臣▶ 臣 のへで

is convex.

Fundamentals from Convex Analysis		
0 00000000 000000 ●0000 00	0 00 00000 0000	0 000000 0000 000

Infimal projection

Theorem 11 (Infimal projection).

Let $\psi : \mathbb{E}_1 \times \mathbb{E}_2 \to \mathbb{R} \cup \{+\infty\}$ be convex. Then the optimal value function

$$p: \mathbb{E}_1 \to \overline{\mathbb{R}}, \ p(x) := \inf_{y \in \mathbb{E}_2} \psi(x, y)$$

is convex.

Proof.

Let $L : (x, y, \alpha) \mapsto (x, \alpha)$ and observe that

$$\operatorname{epi}_{<} p = \left\{ (x, \alpha) \mid \inf_{y} \psi(x, y) < \alpha \right\}$$

・ロト・日本・日本・日本・日本・日本

Fundamentals from Convex Analysis		
0 00000000 000000 ●0000 00	0 00 00000 0000	0 000000 0000 000

Infimal projection

Theorem 11 (Infimal projection).

Let $\psi : \mathbb{E}_1 \times \mathbb{E}_2 \to \mathbb{R} \cup \{+\infty\}$ be convex. Then the optimal value function

$$p: \mathbb{E}_1 \to \overline{\mathbb{R}}, \ p(x) := \inf_{y \in \mathbb{E}_2} \psi(x, y)$$

is convex.

Proof.

Let $L : (x, y, \alpha) \mapsto (x, \alpha)$ and observe that

$$\operatorname{epi}_{<} p = \left\{ (x, \alpha) \middle| \inf_{y} \psi(x, y) < \alpha \right\}$$
$$= \left\{ (x, \alpha) \middle| \exists y : \psi(x, y) < \alpha \right\}$$

Fundamentals from Convex Analysis		
0 00000000 000000 ●0000 00	0 00 00000 0000	0 000000 0000 000

Infimal projection

Theorem 11 (Infimal projection).

Let $\psi : \mathbb{E}_1 \times \mathbb{E}_2 \to \mathbb{R} \cup \{+\infty\}$ be convex. Then the optimal value function

$$p: \mathbb{E}_1 \to \overline{\mathbb{R}}, \ p(x) := \inf_{y \in \mathbb{E}_2} \psi(x, y)$$

is convex.

Proof.

Let $L : (x, y, \alpha) \mapsto (x, \alpha)$ and observe that

$$\begin{aligned} \exp_{x} \rho &= \left\{ (x, \alpha) \mid \inf_{y} \psi(x, y) < \alpha \right\} \\ &= \left\{ (x, \alpha) \mid \exists y : \psi(x, y) < \alpha \right\} \\ &= L(\operatorname{epi}_{<} \psi). \end{aligned}$$

Fundamentals from Convex Analysis		
0 00000000 000000 ●0000 00	0 00 00000 0000	0 000000 0000 000

Infimal projection

Theorem 11 (Infimal projection).

Let $\psi : \mathbb{E}_1 \times \mathbb{E}_2 \to \mathbb{R} \cup \{+\infty\}$ be convex. Then the optimal value function

$$p: \mathbb{E}_1 \to \overline{\mathbb{R}}, \ p(x) := \inf_{y \in \mathbb{E}_2} \psi(x, y)$$

is convex.

Proof.

Let $L : (x, y, \alpha) \mapsto (x, \alpha)$ and observe that

$$epi_{<}p = \left\{ (x, \alpha) \mid \inf_{y} \psi(x, y) < \alpha \right\}$$
$$= \left\{ (x, \alpha) \mid \exists y : \psi(x, y) < \alpha \right\}$$
$$= L(epi_{<}\psi).$$

Hence epi < p is a convex set, and thus p is convex.

Fundamentals from Convex Analysis		
0000000	00	000000
000000	00	0000
00	00	

Infimal convolution - a special case of infimal projection

Definition 12 (Infimal convolution).

Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$. Then the function

$$f \# g : \mathbb{E} \to \overline{\mathbb{R}}, \quad (f \# g)(x) := \inf_{u \in \mathbb{E}} \{f(u) + g(x - u)\}$$

is called the *infimal convolution* of f and g. We call the infimal convolution f#g exact at $x \in \mathbb{E}$ if

 $\operatorname*{argmin}_{u\in\mathbb{E}}\{f(u)+g(x-u)\}\neq \emptyset.$

We simply call f #g exact if it is exact at every $x \in \text{dom } f #g$.

<ロト < 母 ト < 臣 ト < 臣 ト 三 の < ○</p>

Fundamentals from Convex Analysis		
0000000	00	000000
000000	00	0000
00	00	

Infimal convolution - a special case of infimal projection

Definition 12 (Infimal convolution).

Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$. Then the function

$$f \# g : \mathbb{E} \to \overline{\mathbb{R}}, \quad (f \# g)(x) := \inf_{u \in \mathbb{E}} \{f(u) + g(x - u)\}$$

is called the *infimal convolution* of f and g. We call the infimal convolution f#g exact at $x \in \mathbb{E}$ if

 $\operatorname*{argmin}_{u\in\mathbb{E}}\{f(u)+g(x-u)\}\neq \emptyset.$

We simply call f #g exact if it is exact at every $x \in \text{dom } f #g$.

We always have:

- dom f #g = dom f + dom g;
- f#g = g#f;
- f, g convex, then f#g convex (as $(f#g)(x) = \inf_y h(x, y)$ with $h: (x, y) \mapsto f(y) + g(x y)$ convex).

Fundamentals from Convex Analysis		
0000000	00	000000
00000		

Infimal convolution - a special case of infimal projection

Definition 12 (Infimal convolution).

Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$. Then the function

$$f \# g : \mathbb{E} \to \overline{\mathbb{R}}, \quad (f \# g)(x) := \inf_{u \in \mathbb{E}} \{f(u) + g(x - u)\}$$

is called the *infimal convolution* of f and g. We call the infimal convolution f#g exact at $x \in \mathbb{E}$ if

$$\underset{u\in\mathbb{B}}{\operatorname{argmin}}\{f(u)+g(x-u)\}\neq\emptyset.$$

We simply call f #g exact if it is exact at every $x \in \text{dom } f #g$.

We always have:

$$dom f #g = dom f + dom g;$$

- f#g = g#f;
- f, g convex, then f#g convex (as $(f#g)(x) = \inf_y h(x, y)$ with $h: (x, y) \mapsto f(y) + g(x y)$ convex).

Example 13 (Distance functions).

Let $C \subset \mathbb{E}$. Then $d_C := \delta_C \# \| \cdot \|$, i.e.

$$d_C(x) = \inf_{u \in C} ||x - u|$$

is the distance function of C, which is hence convex if C is a convex.

Fundamentals from Convex Analysis		
0 0000000 000000 00000	0 00 00 0000	0 000000 0000 000

▲□▶▲□▶▲三▶▲三▶ 三三 のへで

Infimal convolution and the Attouch-Brézis Theorem

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$. Then the following hold:

a) $(f \# g)^* = f^* + g^*;$

b) If $f, g \in \Gamma_0$ such that dom $f \cap \text{dom } g \neq \emptyset$, then $(f + g)^* = \text{cl}(f^* \# g^*)$.

Fundamentals from Convex Analysis		
0 00000000 000000 00000 00000	0 00 00000	o oooooo oooo ooo
00	00	

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$. Then the following hold:

- a) $(f \# g)^* = f^* + g^*;$
- b) If $f, g \in \Gamma_0$ such that dom $f \cap \text{dom } g \neq \emptyset$, then $(f + g)^* = \text{cl}(f^* \# g^*)$.

Proof.

a) For all $y \in \mathbb{E}$, we have

$$(f\#g)^*(y) = \sup_{x} \left\{ \langle x, y \rangle - \inf_{u} \left\{ f(u) + g(x-u) \right\} \right\}$$

Fundamentals from Convex Analysis		
0 00000000 000000 00000 00000	0 00 00000	o oooooo oooo ooo
00	00	

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$. Then the following hold:

- a) $(f \# g)^* = f^* + g^*;$
- b) If $f, g \in \Gamma_0$ such that dom $f \cap \text{dom } g \neq \emptyset$, then $(f + g)^* = \text{cl}(f^* \# g^*)$.

Proof.

a) For all $y \in \mathbb{E}$, we have

$$(f \# g)^*(y) = \sup_{x} \left\{ \langle x, y \rangle - \inf_{u} \left\{ f(u) + g(x - u) \right\} \right\}$$
$$= \sup_{x,u} \left\{ \langle x, y \rangle - f(u) - g(x - u) \right\}$$

ursurserser e 990

Fundamentals from Convex Analysis		
000000	00	0000
00000 00	0000 00	

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$. Then the following hold:

- a) $(f \# g)^* = f^* + g^*;$
- b) If $f, g \in \Gamma_0$ such that dom $f \cap \text{dom } g \neq \emptyset$, then $(f + g)^* = \text{cl}(f^* \# g^*)$.

Proof.

a) For all $y \in \mathbb{E}$, we have

$$(f \# g)^*(y) = \sup_{x} \left\{ \langle x, y \rangle - \inf_{u} \left\{ f(u) + g(x - u) \right\} \right\}$$

=
$$\sup_{x,u} \left\{ \langle x, y \rangle - f(u) - g(x - u) \right\}$$

=
$$\sup_{x,u} \left\{ (\langle u, y \rangle - f(u)) + (\langle x - u, y \rangle - g(x - u)) \right\}$$

ursurraeraer e *)Q(3

Fundamentals from Convex Analysis		
000000	00	0000
00000 00	0000 00	

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$. Then the following hold:

- a) $(f \# g)^* = f^* + g^*;$
- b) If $f, g \in \Gamma_0$ such that dom $f \cap \text{dom } g \neq \emptyset$, then $(f + g)^* = \text{cl}(f^* \# g^*)$.

Proof.

a) For all $y \in \mathbb{E}$, we have

$$(f \# g)^*(y) = \sup_{x} \left\{ \langle x, y \rangle - \inf_{u} \left\{ f(u) + g(x - u) \right\} \right\}$$

=
$$\sup_{x,u} \left\{ \langle x, y \rangle - f(u) - g(x - u) \right\}$$

=
$$\sup_{x,u} \left\{ \langle \langle u, y \rangle - f(u) \rangle + (\langle x - u, y \rangle - g(x - u)) \right\}$$

=
$$f^*(y) + g^*(y).$$

nurrerter e MQC

Fundamentals from Convex Analysis		
0 00000000 000000 00000 00000	0 00 00000	o oooooo oooo ooo
00	00	

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$. Then the following hold:

- a) $(f \# g)^* = f^* + g^*;$
- b) If $f, g \in \Gamma_0$ such that dom $f \cap \text{dom } g \neq \emptyset$, then $(f + g)^* = \text{cl}(f^* \# g^*)$.

Proof.

a) For all $y \in \mathbb{E}$, we have

$$(f \# g)^{*}(y) = \sup_{x} \left\{ \langle x, y \rangle - \inf_{u} \left\{ f(u) + g(x - u) \right\} \right\}$$

= $\sup_{x,u} \left\{ \langle x, y \rangle - f(u) - g(x - u) \right\}$
= $\sup_{x,u} \left\{ (\langle u, y \rangle - f(u)) + (\langle x - u, y \rangle - g(x - u)) \right\}$
= $f^{*}(y) + g^{*}(y).$

b) $(f^* \# g^*)^* \stackrel{a)}{=} f^{**} + g^{**} \stackrel{f,g \in \Gamma_0}{=} f + g \stackrel{clear?}{\in} \Gamma$

U K NUK K NE K NE K E " *) ((

Fundamentals from Convex Analysis		
000000	00	0000
00000 00	0000 00	

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$. Then the following hold:

- a) $(f \# g)^* = f^* + g^*;$
- b) If $f, g \in \Gamma_0$ such that dom $f \cap \text{dom } g \neq \emptyset$, then $(f + g)^* = \text{cl}(f^* \# g^*)$.

Proof.

a) For all $y \in \mathbb{E}$, we have

$$(f \# g)^{*}(y) = \sup_{x} \left\{ \langle x, y \rangle - \inf_{u} \{f(u) + g(x - u)\} \right\}$$

=
$$\sup_{x,u} \left\{ \langle x, y \rangle - f(u) - g(x - u) \right\}$$

=
$$\sup_{x,u} \left\{ (\langle u, y \rangle - f(u)) + (\langle x - u, y \rangle - g(x - u)) \right\}$$

=
$$f^{*}(y) + g^{*}(y).$$

- nac

b) $(f^* \# g^*)^* \stackrel{a)}{=} f^{**} + g^{**} \stackrel{f.g \in \Gamma_0}{=} f + g \stackrel{clear?}{\in} \Gamma$ $\implies cl(f^* \# g^*) = (f^* \# g^*)^{**} = (f + g)^*.$

Fundamentals from Convex Analysis		
0 00000000 000000	0 00 00	0 000000 0000
00000 00	0000 00	

Attouch-Brézis - drop the closure!

Theorem 15 (Attouch-Brézis).

Let $f, g \in \Gamma_0$ such that

 $\operatorname{ri}(\operatorname{dom} f)\cap\operatorname{ri}(\operatorname{dom} g)\neq 0\quad (CQ).$

Then $(f + g)^* = f^* # g^*$, and the infimal convolution is exact, i.e. the infimum in the infimal convolution is attained on dom $f^* # g^*$.

Proof.

On blackboard.

Fundamentals from Convex Analysis		
000000	00	0000
00000	0000 00	

Attouch-Brézis - drop the closure!

Theorem 15 (Attouch-Brézis).

Let $f, g \in \Gamma_0$ such that

 $\operatorname{ri}(\operatorname{dom} f)\cap\operatorname{ri}(\operatorname{dom} g)\neq 0\quad(CQ).$

Then $(f + g)^* = f^* # g^*$, and the infimal convolution is exact, i.e. the infimum in the infimal convolution is attained on dom $f^* # g^*$.

Proof.

On blackboard.

We note that (CQ) is always satisfied under any of the following:

- int $(\operatorname{dom} f) \cap \operatorname{dom} g \neq \emptyset$,
- dom $f = \mathbb{E}$,

and is equivalent to saying that

 $0 \in \operatorname{ri}(\operatorname{dom} f - \operatorname{dom} g).$
Fundamentals from Convex Analysis		
000000	00	0000
00000	0000 00	

Excursion: Moreau envelope and proximal operator ¹

Let $f \in \Gamma_0$ and $\lambda > 0$. Then

$$e_{\lambda}f := f \# \frac{1}{2\lambda} \| \cdot \|^2$$

is called the Moreau envelope of f.

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

¹Not in lecture notes!

Fundamentals from Convex Analysis		
00000000		000000
00000	0000	000

Excursion: Moreau envelope and proximal operator ¹

Let $f \in \Gamma_0$ and $\lambda > 0$. Then

$$\mathbf{e}_{\lambda}f:=f\#\frac{1}{2\lambda}\|\cdot\|^2$$

is called the *Moreau envelope* of *f*. The map $P_{\lambda}f : \mathbb{E} \to \mathbb{E}$ given by

$$\mathbf{P}_{\lambda}f(x) := \underset{u}{\operatorname{argmin}} \left\{ f(u) + \frac{1}{2\lambda} \|x - u\|^2 \right\}.$$

・ロト ・四ト ・ヨト ・ヨト

3

We have

P $_{\lambda}f$ is 1-Lipschitz (in fact, firmly non-expansive)

Fundamentals from Convex Analysis		
00000000		000000
00000	0000	000

Excursion: Moreau envelope and proximal operator ¹

Let $f \in \Gamma_0$ and $\lambda > 0$. Then

$$\mathbf{e}_{\lambda}f:=f\#\frac{1}{2\lambda}\|\cdot\|^2$$

is called the *Moreau envelope* of *f*. The map $P_{\lambda}f : \mathbb{E} \to \mathbb{E}$ given by

$$\mathsf{P}_{\lambda}f(x) := \operatorname*{argmin}_{u} \left\{ f(u) + \frac{1}{2\lambda} \|x - u\|^2 \right\}.$$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

3

We have

P $_{\lambda}f$ is 1-Lipschitz (in fact, firmly non-expansive)

 $\bullet_{\lambda} f \in C^{1,1} \cap \Gamma_0$

Fundamentals from Convex Analysis		
00000000		000000
00000	0000	000

Excursion: Moreau envelope and proximal operator ¹

Let $f \in \Gamma_0$ and $\lambda > 0$. Then

$$\mathbf{e}_{\lambda}f:=f\#\frac{1}{2\lambda}\|\cdot\|^2$$

is called the *Moreau envelope* of *f*. The map $P_{\lambda}f : \mathbb{E} \to \mathbb{E}$ given by

$$\mathsf{P}_{\lambda}f(x) := \operatorname*{argmin}_{u} \left\{ f(u) + \frac{1}{2\lambda} \|x - u\|^2 \right\}.$$

・ロト ・四ト ・ヨト ・ヨト

3

We have

P $_{\lambda}f$ is 1-Lipschitz (in fact, firmly non-expansive)

$$\bullet_{\lambda} f \in C^{1,1} \cap \Gamma_0$$

$$\nabla \boldsymbol{e}_{\lambda} \boldsymbol{f} = \frac{1}{\lambda} (\mathrm{id} - \boldsymbol{P}_{\lambda} \boldsymbol{f})$$

¹Not in lecture notes!

Fundamentals from Convex Analysis		
00000000		000000
00000	0000	000

Excursion: Moreau envelope and proximal operator ¹

Let $f \in \Gamma_0$ and $\lambda > 0$. Then

$$\mathbf{e}_{\lambda}f:=f\#\frac{1}{2\lambda}\|\cdot\|^2$$

is called the *Moreau envelope* of *f*. The map $P_{\lambda}f : \mathbb{E} \to \mathbb{E}$ given by

$$P_{\lambda}f(x) := \underset{u}{\operatorname{argmin}} \left\{ f(u) + \frac{1}{2\lambda} \|x - u\|^2 \right\}.$$

We have

P $_{\lambda}f$ is 1-Lipschitz (in fact, firmly non-expansive)

$$e_{\lambda}f\in C^{1,1}\cap\Gamma_0$$

$$\nabla e_{\lambda} f = \frac{1}{\lambda} (\mathrm{id} - P_{\lambda} f)$$

• $x \in \operatorname{argmin} f \iff x \in \operatorname{argmin} e_{\lambda}f \iff x = P_{\lambda}f(x) (\rightarrow \operatorname{proximal point/gradient method})$

¹Not in lecture notes!

Fundamentals from Convex Analysis		
00000000		000000
00000	0000	000

Excursion: Moreau envelope and proximal operator ¹

Let $f \in \Gamma_0$ and $\lambda > 0$. Then

$$\mathbf{e}_{\lambda}f:=f\#\frac{1}{2\lambda}\|\cdot\|^2$$

is called the *Moreau envelope* of *f*. The map $P_{\lambda}f : \mathbb{E} \to \mathbb{E}$ given by

$$P_{\lambda}f(x) := \underset{u}{\operatorname{argmin}} \left\{ f(u) + \frac{1}{2\lambda} \|x - u\|^2 \right\}.$$

イロト イポト イヨト イヨト

3

We have

P $_{\lambda}f$ is 1-Lipschitz (in fact, firmly non-expansive)

$$e_{\lambda}f\in C^{1,1}\cap\Gamma_0$$

$$\nabla e_{\lambda} f = \frac{1}{\lambda} (\mathrm{id} - P_{\lambda} f)$$

- $x \in \operatorname{argmin} f \iff x \in \operatorname{argmin} e_{\lambda} f \iff x = P_{\lambda} f(x) (\rightarrow \operatorname{proximal point/gradient method})$
- $e_{\lambda}f \uparrow f$ ($\lambda \downarrow 0$) (monotone pointwise convergence)

¹Not in lecture notes!

Fundamentals from Convex Analysis		
00000000		000000
00000	0000	000

Excursion: Moreau envelope and proximal operator ¹

Let $f \in \Gamma_0$ and $\lambda > 0$. Then

$$\mathbf{e}_{\lambda}f:=f\#\frac{1}{2\lambda}\|\cdot\|^2$$

is called the *Moreau envelope* of *f*. The map $P_{\lambda}f : \mathbb{E} \to \mathbb{E}$ given by

$$P_{\lambda}f(x) := \underset{u}{\operatorname{argmin}} \left\{ f(u) + \frac{1}{2\lambda} \|x - u\|^2 \right\}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

We have

P $_{\lambda}f$ is 1-Lipschitz (in fact, firmly non-expansive)

$$e_{\lambda}f\in C^{1,1}\cap\Gamma_0$$

$$\nabla e_{\lambda} f = \frac{1}{\lambda} (\mathrm{id} - P_{\lambda} f)$$

- $x \in \operatorname{argmin} f \iff x \in \operatorname{argmin} e_{\lambda} f \iff x = P_{\lambda} f(x) (\rightarrow \operatorname{proximal point/gradient method})$
- $e_{\lambda}f \uparrow f$ ($\lambda \downarrow 0$) (monotone pointwise convergence)
- epi $e_{\lambda}f \rightarrow \text{epi } f$ ($\lambda \downarrow 0$) (epi-convergence)

¹Not in lecture notes!

Fundamentals from Convex Analysis		
0 00000000 000000 00000 ● 0	o oo oo oooo oo	0 000000 0000 000

Consequences of Attouch-Brézis

Conjugacy for convex-linear composites

Let $f \in \Gamma$ and $L \in \mathcal{L}(\mathbb{E}, \mathbb{E}')$. Then

$$Lf: \mathbb{E}' \to \overline{\mathbb{R}}, \quad (Lf)(y):= \inf \{f(x) \mid L(x) = y\}$$

is convex².

²Show that $epi_{<}Lf = T(epi_{<}f)$ for $T : (x, y) \mapsto (Tx, y)$.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Fundamentals from Convex Analysis		
0 0000000 000000 00000 ●0	0 00 0000 0000	0 000000 0000 000

Consequences of Attouch-Brézis

Conjugacy for convex-linear composites

Let $f \in \Gamma$ and $L \in \mathcal{L}(\mathbb{E}, \mathbb{E}')$. Then

$$Lf: \mathbb{E}' \to \overline{\mathbb{R}}, \quad (Lf)(y):= \inf \{f(x) \mid L(x) = y\}$$

is convex².

Proposition 16.

Let $g : \mathbb{E} \to \overline{\mathbb{R}}$ be proper and $L \in \mathcal{L}(\mathbb{E}, \mathbb{E}')$ and $T \in \mathcal{L}(\mathbb{E}', \mathbb{E})$. Then the following hold:

- a) $(Lg)^* = g^* \circ L^*$.
- b) $(g \circ T)^* = \operatorname{cl}(T^*g^*)$ if $g \in \Gamma$.

c) The closure in b) can be dropped and the infimum is attained when finite if $g \in \Gamma_0$ and

$$\operatorname{ri}(\operatorname{rge} T) \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset. \tag{3}$$

Proof.

Notes and Part 2.

²Show that epi $_{<}Lf = T(epi _{<}f)$ for $T : (x, y) \mapsto (Tx, y)$.

▲□▶▲御▶▲臣▶▲臣▶ 臣 のへの

Fundamentals from Convex Analysis	Conjugacy of composite functions via K-convexity and inf-convolution	
0 0000000 000000 00000 0●	0 00 00000 00000	0 000000 0000 000

Consequences of Attouch-Brézis

Infimal projection revisited

The	eorem 17 (Infimal projection II).	
Let	$\psi \in \Gamma_0(\mathbb{E}_1 imes \mathbb{E}_2)$ and define $p : \mathbb{E}_1 \to \overline{\mathbb{R}}$ by	
	$p(x) := \inf_{v} \psi(x, v).$	(4)
The	en the following hold:	
a) p is convex.	
b) $p^* = \psi^*(\cdot, 0)$ which is closed and convex.	
С) The condition $\dim t^*(-0) \neq 0$	(5)
	is equivalent to having $n^* \in \Gamma_0$	(3)
d) If (5) holds then $p \in \Gamma_0$ and the infimum in its definition is attained when finite.	
Pro	of.	
ыа	ckdoard/notes.	
	< ロ > < 合 > < き > < き >	101

	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		000000
00000	0000	000

2. Conjugacy of composite functions via *K*-convexity and inf-convolution

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00		0 0000000 0000 0000 000
K-convexity		

Cone-induced ordering

Given a cone $K \subset \mathbb{E}$, the relation

 $x \leq_{K} y : \iff y - x \in K \quad (x, y \in \mathbb{E})$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・

3

induces an ordering on \mathbb{E} which is a partial ordering if K is convex and pointed³.

³i.e. $K \cap (-K) = \{0\}$

	Conjugacy of composite functions via K-convexity and inf-convolution	
	•	
00000000		000000
00000		000

Cone-induced ordering

Given a cone $K \subset \mathbb{E}$, the relation

 $x \leq_{\mathcal{K}} y : \iff y - x \in \mathcal{K} \quad (x, y \in \mathbb{E})$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・

3

induces an ordering on \mathbb{E} which is a partial ordering if K is convex and pointed³.

Attach to \mathbb{E} a *largest element* $+\infty_{\bullet}$ w.r.t. \leq_{K} which satisfies $x \leq_{K} +\infty_{\bullet}$ ($x \in \mathbb{E}$).

³i.e. $K \cap (-K) = \{0\}$

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 0000000 000000 00000 00	C ●O OC OCOCO OC	0 000000 0000 000
K convovity		

Cone-induced ordering

Given a cone $K \subset \mathbb{E}$, the relation

 $x \leq_{K} y : \iff y - x \in K \quad (x, y \in \mathbb{E})$

induces an ordering on \mathbb{E} which is a partial ordering if K is convex and pointed³.

- Attach to \mathbb{E} a *largest element* $+\infty_{\bullet}$ w.r.t. \leq_{K} which satisfies $x \leq_{K} +\infty_{\bullet}$ ($x \in \mathbb{E}$).
- Set $\mathbb{E}^{\bullet} := \mathbb{E} \cup \{+\infty_{\bullet}\}.$
- For $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$ define

$$dom F := \{x \in \mathbb{E}_1 \mid F(x) \in \mathbb{E}_2\} \quad (domain),$$

$$gph F := \{(x, F(x)) \in \mathbb{E}_1 \times \mathbb{E}_2 \mid x \in dom F\} \quad (graph),$$

$$rge F := \{F(x) \in \mathbb{E}_2 \mid x \in dom F\} \quad (range).$$

³i.e. $K \cap (-K) = \{0\}$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00		0 000000 0000 000
K-convexity		

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_2$ be a cone and $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$. Then we call F K-convex if

 $K\text{-epi} F := \left\{ (x, v) \in \mathbb{E}_1 \times \mathbb{E}_2 \mid F(x) \leq_K v \right\} \quad (K\text{-epigraph})$

▲□▶▲□▶▲□▶▲□▶ □ のへで

is convex (in $\mathbb{E}_1 \times \mathbb{E}_2$).

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 000000		0 000000 0000 000

Definition 18 (K-convexity).

Let $K \subset \mathbb{B}_2$ be a cone and $F : \mathbb{B}_1 \to \mathbb{B}_2^{\bullet}$. Then we call F *K*-convex if

$$K\text{-epi} F := \left\{ (x, v) \in \mathbb{E}_1 \times \mathbb{E}_2 \mid F(x) \leq_K v \right\} \quad (K\text{-epigraph})$$

is convex (in $\mathbb{E}_1 \times \mathbb{E}_2$).

■ F is K-convex \iff $F(\lambda x + (1 - \lambda)y) \leq_K \lambda F(x) + (1 - \lambda)F(y)$ $(x, y \in \mathbb{E}_1, \lambda \in [0, 1])$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 000000		0 000000 0000 000

Definition 18 (K-convexity).

Let $K \subset \mathbb{B}_2$ be a cone and $F : \mathbb{B}_1 \to \mathbb{B}_2^{\bullet}$. Then we call F *K*-convex if

$$K\text{-epi} F := \left\{ (x, v) \in \mathbb{E}_1 \times \mathbb{E}_2 \mid F(x) \leq_K v \right\} \quad (K\text{-epigraph})$$

is convex (in $\mathbb{E}_1 \times \mathbb{E}_2$).

- *F* is *K*-convex \iff $F(\lambda x + (1 \lambda)y) \leq_K \lambda F(x) + (1 \lambda)F(y)$ $(x, y \in \mathbb{E}_1, \lambda \in [0, 1])$
- F K-convex, then ri (K-epi F) = $\{(x, v) | x \in ri (dom F), F(x) \leq_{ri(K)} v \}$

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 000000		0 000000 0000 000

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_2$ be a cone and $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$. Then we call F *K*-convex if

$$K\text{-epi} F := \left\{ (x, v) \in \mathbb{E}_1 \times \mathbb{E}_2 \mid F(x) \leq_K v \right\} \quad (K\text{-epigraph})$$

is convex (in $\mathbb{E}_1 \times \mathbb{E}_2$).

- *F* is *K*-convex \iff $F(\lambda x + (1 \lambda)y) \leq_K \lambda F(x) + (1 \lambda)F(y)$ $(x, y \in \mathbb{E}_1, \lambda \in [0, 1])$
- F K-convex, then ri (K-epi F) = $\{(x, v) | x \in ri (dom F), F(x) \leq_{ri(K)} v \}$
- $K \subset L$ cones: F K-convex \Rightarrow L-convex

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 000000		0 000000 0000 000

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_2$ be a cone and $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$. Then we call F *K*-convex if

$$K\text{-epi} F := \left\{ (x, v) \in \mathbb{E}_1 \times \mathbb{E}_2 \mid F(x) \leq_K v \right\} \quad (K\text{-epigraph})$$

is convex (in $\mathbb{E}_1 \times \mathbb{E}_2$).

- F is K-convex \iff $F(\lambda x + (1 \lambda)y) \leq_{K} \lambda F(x) + (1 \lambda)F(y)$ $(x, y \in \mathbb{E}_1, \lambda \in [0, 1])$
- F K-convex, then ri (K-epi F) = $\{(x, v) | x \in ri (dom F), F(x) \leq_{ri(K)} v \}$
- $K \subset L$ cones: F K-convex \Rightarrow L-convex

Examples:

• $K = \mathbb{R}^m_+$ and $F : \mathbb{R}^n \to (\mathbb{R}^m)^\bullet$ with $F_i \in \Gamma$ (i = 1, ..., m)

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 000000		0 000000 0000 000

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_2$ be a cone and $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$. Then we call F *K*-convex if

$$K\text{-epi} F := \{(x, v) \in \mathbb{E}_1 \times \mathbb{E}_2 \mid F(x) \leq_K v\} \quad (K\text{-epigraph})$$

is convex (in $\mathbb{E}_1 \times \mathbb{E}_2$).

- *F* is *K*-convex \iff $F(\lambda x + (1 \lambda)y) \leq_K \lambda F(x) + (1 \lambda)F(y)$ $(x, y \in \mathbb{E}_1, \lambda \in [0, 1])$
- F K-convex, then ri (K-epi F) = $\{(x, v) | x \in ri (dom F), F(x) \leq_{ri(K)} v\}$
- $K \subset L$ cones: F K-convex \Rightarrow L-convex

Examples:

- $K = \mathbb{R}^m_+$ and $F : \mathbb{R}^n \to (\mathbb{R}^m)^\bullet$ with $F_i \in \Gamma$ (i = 1, ..., m)
- $K = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} \mid ||x|| \le t\}$ and $F : \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}$, F(x) = (x, ||x||)

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 000000		0 000000 0000 000

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_2$ be a cone and $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$. Then we call F *K*-convex if

$$K\text{-epi} F := \{(x, v) \in \mathbb{E}_1 \times \mathbb{E}_2 \mid F(x) \leq_K v\} \quad (K\text{-epigraph})$$

is convex (in $\mathbb{E}_1 \times \mathbb{E}_2$).

- F is K-convex \iff $F(\lambda x + (1 \lambda)y) \leq_{K} \lambda F(x) + (1 \lambda)F(y)$ $(x, y \in \mathbb{E}_1, \lambda \in [0, 1])$
- F K-convex, then ri (K-epi F) = { $(x, v) | x \in ri (dom F), F(x) \leq_{ri(K)} v$ }
- $K \subset L$ cones: F K-convex \Rightarrow L-convex

Examples:

■
$$K = \mathbb{R}^n_+$$
 and $F : \mathbb{R}^n \to (\mathbb{R}^m)^\bullet$ with $F_i \in \Gamma$ $(i = 1, ..., m)$
■ $K = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} \mid ||x|| \le t\}$ and $F : \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}$, $F(x) = (x, ||x||$
■ $K = \mathbb{S}^n_+$ and $F : \mathbb{S}^n \to (\mathbb{S}^n)^\bullet$, $F(X) = \begin{cases} X^{-1}, & X > 0, \\ +\infty_\bullet, & \text{else} \end{cases}$

<ロト < 回 ト < 目 ト < 目 ト < 目 ・ の へ ()・

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 000000		0 000000 0000 000

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_2$ be a cone and $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$. Then we call F *K*-convex if

$$K\text{-epi} F := \left\{ (x, v) \in \mathbb{E}_1 \times \mathbb{E}_2 \mid F(x) \leq_K v \right\} \quad (K\text{-epigraph})$$

is convex (in $\mathbb{E}_1 \times \mathbb{E}_2$).

- F is K-convex \iff $F(\lambda x + (1 \lambda)y) \leq_{K} \lambda F(x) + (1 \lambda)F(y)$ $(x, y \in \mathbb{E}_1, \lambda \in [0, 1])$
- F K-convex, then ri (K-epi F) = { $(x, v) | x \in ri (dom F), F(x) \leq_{ri(K)} v$ }
- $K \subset L$ cones: F K-convex \Rightarrow L-convex

Examples:

■
$$K = \mathbb{R}^n_+$$
 and $F : \mathbb{R}^n \to (\mathbb{R}^m)^\bullet$ with $F_i \in \Gamma$ $(i = 1, ..., m)$
■ $K = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} \mid ||x|| \le t\}$ and $F : \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}$, $F(x) = (x, ||x||)$
■ $K = \mathbb{S}^n_+$ and $F : \mathbb{S}^n \to (\mathbb{S}^n)^\bullet$, $F(X) = \begin{cases} X^{-1}, & X > 0, \\ +\infty_\bullet, & \text{else} \end{cases}$
■ $K = \mathbb{S}^n_+$ and $F : \mathbb{R}^{m \times n} \to \mathbb{S}^n$, $F(X) = XX^T$

<ロト < 母 ト < 臣 ト < 臣 ト 三 の < (で)</p>

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 000000		0 000000 0000 000

Definition 18 (K-convexity).

Let $K \subset \mathbb{E}_2$ be a cone and $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$. Then we call F *K*-convex if

$$K\text{-epi} F := \{(x, v) \in \mathbb{E}_1 \times \mathbb{E}_2 \mid F(x) \leq_K v\} \quad (K\text{-epigraph})$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

is convex (in $\mathbb{E}_1 \times \mathbb{E}_2$).

- $\blacksquare F \text{ is } K \text{-convex} \iff F(\lambda x + (1 \lambda)y) \leq_K \lambda F(x) + (1 \lambda)F(y) \quad (x, y \in \mathbb{E}_1, \lambda \in [0, 1])$
- F K-convex, then ri (K-epi F) = $\{(x, v) | x \in ri (dom F), F(x) \leq_{ri(K)} v \}$
- $K \subset L$ cones: F K-convex \Rightarrow L-convex

Examples:

•
$$K = \mathbb{R}^m_+$$
 and $F : \mathbb{R}^n \to (\mathbb{R}^m)^\bullet$ with $F_i \in \Gamma$ $(i = 1, ..., m)$

• $K = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} \mid ||x|| \le t\}$ and $F : \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}, F(x) = (x, ||x||)$

•
$$K = \mathbb{S}^n_+$$
 and $F : \mathbb{S}^n \to (\mathbb{S}^n)^{\bullet}, F(X) = \begin{cases} X^{-1}, & X > 0\\ +\infty_{\bullet}, & \text{else} \end{cases}$

- $K = \mathbb{S}^n_+ \text{ and } F : \mathbb{R}^{m \times n} \to \mathbb{S}^n, \ F(X) = XX^T$
- K arbitrary, F affine.

	Conjugacy of composite functions via K-convexity and inf-convolution	
00000000		000000
00000	0000	000
00	00	

Convexity of composite functions

For $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$ and $g : \mathbb{E}_2 \to \mathbb{R} \cup \{+\infty\}$ we define

$$(g \circ F)(x) := \begin{cases} g(F(x)) & \text{if } x \in \operatorname{dom} F \\ +\infty & \text{else.} \end{cases}$$

0 0 0 000000 000000 0 00000 0000 00000 00 0000 0000 00000 0000 0000 0000 00 0000 0000 0000	

Convexity of composite functions

For $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$ and $g : \mathbb{E}_2 \to \mathbb{R} \cup \{+\infty\}$ we define

$$(g \circ F)(x) := \begin{cases} g(F(x)) & \text{if } x \in \operatorname{dom} F, \\ +\infty & \text{else.} \end{cases}$$

Proposition 19.

 $\text{Let } K \subset \mathbb{B}_2 \text{ be a convex cone, } F : \mathbb{B}_1 \to \mathbb{B}_2^{\bullet} \text{ } K \text{-convex and } g \in \Gamma(\mathbb{B}_2) \text{ such that } \operatorname{rge} F \cap \operatorname{dom} g \neq \emptyset. \text{ If } F \cap \operatorname{dom} g \neq \emptyset.$

$$g(F(x)) \le g(y) \quad ((x, y) \in K \operatorname{-epi} F)$$
(6)

then the following hold:

- a) $g \circ F$ is convex and proper.
- b) If g is lsc and F is continuous then $g \circ F$ is lower semicontinuous.

0 0		Conjugacy of composite functions via K-convexity and inf-convolution	
	0 00000000 000000 00000 00	o oo ●o ooco oo	0 000000 0000 000

Convexity of composite functions

For $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$ and $g : \mathbb{E}_2 \to \mathbb{R} \cup \{+\infty\}$ we define

$$(g \circ F)(x) := \begin{cases} g(F(x)) & \text{if } x \in \operatorname{dom} F, \\ +\infty & \text{else.} \end{cases}$$

Proposition 19.

Let $K \subset \mathbb{B}_2$ be a convex cone, $F : \mathbb{B}_1 \to \mathbb{B}_2^{\bullet}$ K-convex and $g \in \Gamma(\mathbb{B}_2)$ such that $\operatorname{rge} F \cap \operatorname{dom} g \neq \emptyset$. If

$$g(F(x)) \le g(y) \quad ((x, y) \in K \operatorname{-epi} F)$$
(6)

then the following hold:

- a) $g \circ F$ is convex and proper.
- b) If g is lsc and F is continuous then g o F is lower semicontinuous.

Condition (6) holds if g is K-increasing, i.e.

$$x \leq_{\mathcal{K}} y \implies g(x) \leq g(y).$$

・ロト・日本・日本・日本・日本・日本

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00000		0 0000000 0000 0000 000
Composite functions and conterization		

Scalarization

Given $v \in \mathbb{E}_2$ and the linear form $\langle v, \cdot \rangle : \mathbb{E}_2 \to \mathbb{R}$, we set $\langle v, F \rangle := \langle v, \cdot \rangle \circ F$, i.e.

$$\langle v, F \rangle(x) = \begin{cases} \langle v, F(x) \rangle & \text{if } x \in \operatorname{dom} F, \\ +\infty & \text{else.} \end{cases}$$

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00		0 000000 0000 000

Scalarization

Given $v \in \mathbb{E}_2$ and the linear form $\langle v, \cdot \rangle : \mathbb{E}_2 \to \mathbb{R}$, we set $\langle v, F \rangle := \langle v, \cdot \rangle \circ F$, i.e.

$$\langle v, F \rangle(x) = \begin{cases} \langle v, F(x) \rangle & \text{if } x \in \operatorname{dom} F, \\ +\infty & \text{else.} \end{cases}$$

▲□▶▲御▶★臣▶★臣▶ 臣 のへで

For K a closed, convex cone we have:

- *F* is *K*-convex \iff $\langle v, F \rangle$ is convex $(v \in -K^{\circ})$
- $\sigma_{\mathrm{gph}\,\mathsf{F}}(u,-v) = \langle v,\,\mathsf{F}\rangle^*(u).$
- $\sigma_{K\text{-epi}F}(u, v) = \sigma_{\text{gph}F}(u, v) + \delta_{K^{\circ}}(v)$

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00		0 000000 0000 000

Scalarization

Given $v \in \mathbb{B}_2$ and the linear form $\langle v, \cdot \rangle : \mathbb{B}_2 \to \mathbb{R}$, we set $\langle v, F \rangle := \langle v, \cdot \rangle \circ F$, i.e.

$$\langle v, F \rangle(x) = \begin{cases} \langle v, F(x) \rangle & \text{if } x \in \operatorname{dom} F, \\ +\infty & \text{else.} \end{cases}$$

For K a closed, convex cone we have:

- *F* is *K*-convex \iff $\langle v, F \rangle$ is convex $(v \in -K^{\circ})$
- $\sigma_{\mathrm{gph}\,F}(u,-v) = \langle v,\,F\rangle^*(u).$
- $\sigma_{K\text{-epi}F}(u, v) = \sigma_{\text{gph}F}(u, v) + \delta_{K^{\circ}}(v)$

Lemma 20 (Pennanen, JCA 1999).

Let $f: \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$ with a convex domain and let $K \subset \mathbb{E}_2$ be the smallest closed convex cone with respect to which F is convex. Then

$$(-K)^{\circ} = \{ v \in \mathbb{E}_2 \mid \langle v, F \rangle \text{ is convex} \}.$$

▲ロト▲御ト▲臣ト▲臣ト 臣 のへぐ

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	00 00 ●0000 00	0 000000 0000 000

Theorem 21 (Conjugacy for composite function, H./Nguyen '19, Bot et. al '11).

Let $K \subset \mathbb{E}_2$ be a closed convex cone, $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$ K-convex such that K-epi F is closed and $g_0 \in \Gamma(\mathbb{E}_2)$ such that (6) is satisfied, i.e.

$$x \leq_{\mathcal{K}} y \implies g(x) \leq g(y).$$

Under the CQ

$$F(ri(dom F)) \cap ri(dom g - K) \neq \emptyset$$

we have

$$g \circ F)^*(p) = \min_{v \in -K^\circ} g^*(v) + \langle v, F \rangle^*(p)$$

with dom $(g \circ F)^* = \{ p \in \mathbb{E}_1 \mid \exists v \in \operatorname{dom} g^* \cap (-K^\circ) : \langle v, F \rangle^* (p) < +\infty \}.$

Proof.

Blackboard/Notes.

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	00 00 ●0000 00	0 000000 0000 000

Theorem 21 (Conjugacy for composite function, H./Nguyen '19, Bot et. al '11).

Let $K \subset \mathbb{E}_2$ be a closed convex cone, $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$ K-convex such that K-epi F is closed and $g_0 \in \Gamma(\mathbb{E}_2)$ such that (6) is satisfied, i.e.

$$x \leq_{\mathcal{K}} y \implies g(x) \leq g(y).$$

Under the CQ

$$F(ri(dom F)) \cap ri(dom g - K) \neq \emptyset$$

we have

$$g \circ F$$
)* $(p) = \min_{v \in -K^{\circ}} g^{*}(v) + \langle v, F \rangle^{*}(p)$

with dom $(g \circ F)^* = \{ p \in \mathbb{E}_1 \mid \exists v \in \operatorname{dom} g^* \cap (-K^\circ) : \langle v, F \rangle^* (p) < +\infty \}.$

Proof.

Blackboard/Notes.

Remark:

■ The CQ (7) is trivially satisfied if *g* is finite-valued.

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	0 00 ●000 00	o 000000 0000 000

Theorem 21 (Conjugacy for composite function, H./Nguyen '19, Bot et. al '11).

Let $K \subset \mathbb{E}_2$ be a closed convex cone, $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$ K-convex such that K-epi F is closed and $g_0 \in \Gamma(\mathbb{E}_2)$ such that (6) is satisfied, i.e.

$$x \leq_{\mathcal{K}} y \implies g(x) \leq g(y).$$

Under the CQ

$$F(ri(dom F)) \cap ri(dom g - K) \neq \emptyset$$

we have

$$(g \circ F)^*(p) = \min_{v \in -K^\circ} g^*(v) + \langle v, F \rangle^*(p)$$

with dom $(g \circ F)^* = \{ p \in \mathbb{E}_1 \mid \exists v \in \operatorname{dom} g^* \cap (-K^\circ) : \langle v, F \rangle^* (p) < +\infty \}.$

Proof.

Blackboard/Notes.

Remark:

- The CQ (7) is trivially satisfied if g is finite-valued.
- Condition (6) can be replaced by the stronger condition that *g* be *K*-increasing.

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	00 00 ●0000 00	0 000000 0000 000

Theorem 21 (Conjugacy for composite function, H./Nguyen '19, Bot et. al '11).

Let $K \subset \mathbb{E}_2$ be a closed convex cone, $F : \mathbb{E}_1 \to \mathbb{E}_2^{\bullet}$ K-convex such that K-epi F is closed and $g_0 \in \Gamma(\mathbb{E}_2)$ such that (6) is satisfied, i.e.

$$x \leq_{\mathcal{K}} y \implies g(x) \leq g(y).$$

Under the CQ

$$F(ri(dom F)) \cap ri(dom g - K) \neq \emptyset$$

we have

$$(g \circ F)^*(p) = \min_{v \in -K^\circ} g^*(v) + \langle v, F \rangle^*(p)$$

with dom $(g \circ F)^* = \{ p \in \mathbb{E}_1 \mid \exists v \in \operatorname{dom} g^* \cap (-K^\circ) : \langle v, F \rangle^* (p) < +\infty \}.$

Proof.

Blackboard/Notes.

Remark:

- The CQ (7) is trivially satisfied if g is finite-valued.
- Condition (6) can be replaced by the stronger condition that *g* be *K*-increasing.
- K-epi F is closed if F is continuous.

・ロト・西ト・西ト・日・ 白・

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	○ ○○ ○● ●● ●● ●●	0 000000 0000 000

Conjugacy results

Extension to the additive composite setting

Corollary 22 (Conjugate of additive composite functions, H./Nguyen '19).

Under the assumptions of Theorem 21 let $f\in \Gamma_0$ such that

$$F(\operatorname{ri}(\operatorname{dom} f \cap \operatorname{dom} F)) \cap \operatorname{ri}(\operatorname{dom} g - K) \neq \emptyset.$$
(8)

Then

$$(f+g\circ F)^*(p)=\min_{\substack{v\in -K^\circ\\ y\in \mathbb{B}_1}}g^*(v)+f^*(y)+\langle v,F\rangle^*(p-y)$$

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	○ ○○ ○● ○● ○● ○● ○●	0 000000 0000 000

Conjugacy results

Extension to the additive composite setting

Corollary 22 (Conjugate of additive composite functions, H./Nguyen '19).

Under the assumptions of Theorem 21 let $f \in \Gamma_0$ such that

$$F(ri(dom f \cap dom F)) \cap ri(dom g - K) \neq \emptyset.$$
(8)

Then

$$(f+g\circ F)^*(p)=\min_{\substack{\nu\in-K^\circ\\ \nu\in\mathbb{R}_1}}g^*(\nu)+f^*(\nu)+\langle\nu,F\rangle^*(p-\nu).$$

Proof.

(Sketch) Apply Theorem 21 to $\tilde{g}: (s, y) \in \mathbb{R} \times \mathbb{E}_2 \mapsto s + g(y), \tilde{F}: x \in \mathbb{E}_1 \to (f(x), x)$ and $\tilde{K}:=\mathbb{R}_+ \times K$.

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	0 00 00●0 00	o 000000 0000 000

The case K = -hzn g

For $g \in \Gamma_0$ its horizon function g^{∞} is given via

$$\operatorname{epi} g^{\infty} = (\operatorname{epi} g)^{\infty}.$$

The horizon cone of g is

$$\operatorname{hzn} g := \left\{ x \mid g^{\infty}(x) \leq 0 \right\}^{\infty}.$$
	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00000		0 000000 0000 000 000

For $g \in \Gamma_0$ its horizon function g^{∞} is given via

$$\operatorname{epi} g^{\infty} = (\operatorname{epi} g)^{\infty}.$$

The horizon cone of g is

$$\operatorname{hzn} g := \left\{ x \mid g^{\infty}(x) \leq 0 \right\}^{\infty}.$$

■ $hzn g = (cone (dom g^*))^\circ$

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00000		0 000000 0000 000 000

For $g \in \Gamma_0$ its horizon function g^{∞} is given via

$$\operatorname{epi} g^{\infty} = (\operatorname{epi} g)^{\infty}.$$

The horizon cone of g is

$$\operatorname{hzn} g := \left\{ x \mid g^{\infty}(x) \leq 0 \right\}^{\infty}.$$

- $hzn g = (cone (dom g^*))^\circ$
- **g** is *K*-increasing for K = -hzn g:

・ロト・日本・日本・日本・日本・日本

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	0 00 00●0 00●0	o 000000 0000 000

For $g \in \Gamma_0$ its horizon function g^{∞} is given via

$$\operatorname{epi} g^{\infty} = (\operatorname{epi} g)^{\infty}.$$

The horizon cone of g is

$$\operatorname{hzn} g := \left\{ x \mid g^{\infty}(x) \leq 0 \right\}^{\infty}.$$

- $hzn g = (cone (dom g^*))^\circ$
- g is K-increasing for K = -hzn g: Let $x \leq_K y$, i.e. y = x + b for some $b \in K$. Then
 - $g(x) = \sup_{z \in \text{dom } g^*} \{\langle x, z \rangle g^*(z)\} = \sup_{z \in \text{dom } g^*} \{\langle y, z \rangle \langle b, z \rangle g^*(z)\} \le \sup_{z \in \text{dom } g^*} \{\langle y, z \rangle g^*(z)\} = g(y),$

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	0 00 00●0 00	0 000000 0000 000

For $g \in \Gamma_0$ its *horizon function* g^{∞} is given via

$$\operatorname{epi} g^{\infty} = (\operatorname{epi} g)^{\infty}.$$

The horizon cone of g is

$$\operatorname{hzn} g := \left\{ x \mid g^{\infty}(x) \leq 0 \right\}^{\infty}$$

- hzn $g = (\text{cone} (\text{dom} g^*))^\circ$
- g is K-increasing for K = -hzn g: Let $x \leq_K y$, i.e. y = x + b for some $b \in K$. Then
 - $g(x) = \sup_{z \in \text{dom } g^*} \{\langle x, z \rangle g^*(z)\} = \sup_{z \in \text{dom } g^*} \{\langle y, z \rangle \langle b, z \rangle g^*(z)\} \le \sup_{z \in \text{dom } g^*} \{\langle y, z \rangle g^*(z)\} = g(y),$

Corollary 23 (Burke '91, H./Nguyen '19).

Let $g \in \Gamma_0(\mathbb{B}_2)$ and let $F : \mathbb{B}_1 \to \mathbb{B}_2^{\bullet}$ be (-hzn g)-convex with -hzn g-epi F closed such that

 $F(\operatorname{ri}(\operatorname{dom} F)) \cap \operatorname{ri}(\operatorname{dom} g + \operatorname{hzn} g) \neq \emptyset.$

Then

$$(g \circ F)^*(p) = \min_{v \in \mathbb{E}_2} g^*(v) + \langle v, F \rangle^*(p).$$

▲□▶▲御▶▲臣▶▲臣▶ 臣 の久⊙

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00000		0 0000000 0000 0000 000

The linear case

Corollary 24 (The linear case).

Let $g \in \Gamma(\mathbb{E}_2)$ and $F : \mathbb{E}_1 \to \mathbb{E}_2$ linear such that

rge $F \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset$.

Then

$$(g \circ F)^*(p) = \min_{v \in \mathbb{B}_2} \{g^*(v) \mid F^*(v) = p\}$$

with dom $(g \circ F) = (F^*)^{-1} (\operatorname{dom} g^*)$.

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	o oo ooo●	0 0000000 0000 0000 000

The linear case

Corollary 24 (The linear case).

Let $g \in \Gamma(\mathbb{E}_2)$ and $F : \mathbb{E}_1 \to \mathbb{E}_2$ linear such that

rge $F \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset$.

Then

$$(g \circ F)^*(p) = \min_{v \in \mathbb{E}_2} \{g^*(v) \mid F^*(v) = p\}$$

with dom $(g \circ F) = (F^*)^{-1} (\text{dom } g^*)$.

Proof.

We notice that *F* is {0}-convex. Hence we can apply Theorem 21 with $K = \{0\}$. Condition (7) then reads rge $F \cap \operatorname{ri}(\operatorname{dom} g) \neq \emptyset$, which is our assumption. Hence we obtain

$$(g \circ F)^*(p) = \min_{v \in -K^\circ} g^*(v) + \langle v, F \rangle^*(p) = \min_{v \in \mathbb{E}_2} g^*(v) + \delta_{(F^*(v))}(p).$$

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	0 00 00000 ●0	0 000000 0000 000

Consider the general conic program

$$\min f(x)$$
 s.t. $F(x) \in -K$ (9)

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト ・

æ

or equivalently

0 0 0 0 00000000 00 000000 000000 000000 000000 000 00000 0000 0000 000 00000 0000 0000 0000		Conjugacy of composite functions via K-convexity and inf-convolution	
	0 00000000 000000 00000 00	0 00 00000 0000	0 000000 0000 000

Consider the general conic program

$$\min f(x) \quad \text{s.t.} \quad F(x) \in -K \tag{9}$$

or equivalently

$$\min_{x \in \mathbb{E}_1} f(x) + (\delta_{-\kappa} \circ F)(x) \tag{10}$$

where $f : \mathbb{B}_1 \to \mathbb{R}$ is convex, $F : \mathbb{B}_1 \to \mathbb{B}_2$ is K-convex and $K \subset \mathbb{B}_2$ is a closed, convex cone.

0 0 0 0 00000000 00 000000 000000 00000 000000 0000 0000 0000 0000		Conjugacy of composite functions via K-convexity and inf-convolution	
	0 00000000 000000 00000 00	0 00 00000 00000	0 000000 0000 000

Consider the general conic program

$$\min f(x) \quad \text{s.t.} \quad F(x) \in -K \tag{9}$$

or equivalently

$$\min_{x \in \mathbb{E}_1} f(x) + (\delta_{-\kappa} \circ F)(x) \tag{10}$$

where $f : \mathbb{E}_1 \to \mathbb{R}$ is convex, $F : \mathbb{E}_1 \to \mathbb{E}_2$ is *K*-convex and $K \subset \mathbb{E}_2$ is a closed, convex cone. The qualification condition (7) turns into a *generalized Slater condition*

$$\operatorname{rge} F \cap \operatorname{ri} (-K) \neq \emptyset. \tag{11}$$

▲ロト▲舂▶▲恵▶▲恵▶ 恵 のへで

0 0 0 0 00000000 00 000000 000000 00000 000000 0000 0000 0000 0000		Conjugacy of composite functions via K-convexity and inf-convolution	
	0 00000000 000000 00000 00	0 00 00000 00000	0 000000 0000 000

Consider the general conic program

$$\min f(x) \quad \text{s.t.} \quad F(x) \in -K \tag{9}$$

or equivalently

$$\min_{x \in \mathbb{E}_1} f(x) + (\delta_{-\kappa} \circ F)(x) \tag{10}$$

where $f : \mathbb{E}_1 \to \mathbb{R}$ is convex, $F : \mathbb{E}_1 \to \mathbb{E}_2$ is *K*-convex and $K \subset \mathbb{E}_2$ is a closed, convex cone. The qualification condition (7) turns into a *generalized Slater condition*

$$\operatorname{rge} F \cap \operatorname{ri} (-K) \neq \emptyset. \tag{11}$$

▲ロト▲舂▶▲恵▶▲恵▶ 恵 のへで

0 0 0 0 00000000 00 000000 000000 00000 000000 0000 0000 0000 0000		Conjugacy of composite functions via K-convexity and inf-convolution	
	0 00000000 000000 00000 00	0 00 00000 00000	0 000000 0000 000

Consider the general conic program

$$\min f(x) \quad \text{s.t.} \quad F(x) \in -K \tag{9}$$

or equivalently

$$\min_{x \in \mathbb{E}_1} f(x) + (\delta_{-\kappa} \circ F)(x) \tag{10}$$

where $f : \mathbb{E}_1 \to \mathbb{R}$ is convex, $F : \mathbb{E}_1 \to \mathbb{E}_2$ is *K*-convex and $K \subset \mathbb{E}_2$ is a closed, convex cone. The qualification condition (7) turns into a *generalized Slater condition*

$$\operatorname{rge} F \cap \operatorname{ri} (-K) \neq \emptyset. \tag{11}$$

Theorem 25 (Strong duality and dual attainment for conic programming).

Let $f : \mathbb{E}_1 \to \mathbb{R}$ is convex, $K \subset \mathbb{E}_2$ a closed, convex cone, and let $F : \mathbb{E}_1 \to \mathbb{E}_2$ be K-convex with closed K-epigraph. If (11) holds then

$$\inf_{\mathbf{x}\in\mathbb{B}_1} f(\mathbf{x}) + (\delta_{-\kappa}\circ F)(\mathbf{x}) = \max_{\mathbf{v}\in-K^\circ} -f^*(\mathbf{y}) - (\delta_{-\kappa}\circ F)^*(-\mathbf{y}) = \max_{\mathbf{v}\in-K^\circ} \inf_{\mathbf{x}\in\mathbb{B}_1} f(\mathbf{x}) + \langle \mathbf{v}, F(\mathbf{x}) \rangle.$$

	Conjugacy of composite functions via K-convexity and inf-convolution	
0 00000000 000000 00000 00	o oo oo oocoo o	0 000000 0000 000

Proposition 26. For $f_1, \ldots, f_m \in \Gamma_0(\mathbb{E})$ define $f := \max_{i=1,\ldots,m} f_i$. Then $f \in \Gamma_0(\mathbb{E})$ with $f^*(x) = \min_{v \in \Delta m} \left(\sum_{i=1}^m v_i f_i\right)^*(x).$

▲□▶▲□▶▲□▶▲□▶ □ のへで

 ${}^{4}\Delta_{m} = \left\{ \lambda \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} \lambda_{i} = 1, \lambda_{i} \ge 0 \ (i1, \dots, m) \right\}$

	Conjugacy of composite functions via K-convexity and inf-convolution	
000000 00000 00	00 0000 ⊙●	0000

Proposition 26.

For $f_1, \ldots, f_m \in \Gamma_0(\mathbb{E})$ define $f := \max_{i=1,\ldots,m} f_i$. Then $f \in \Gamma_0(\mathbb{E})$ with

$$f^*(x) = \min_{v \in \Delta_m} \left(\sum_{i=1}^m v_i f_i \right)^* (x).$$

Proof.

We have $f = g \circ F$ for $F : x \mapsto \begin{cases} (f_1(x), \dots, f_m(x)) & \text{if } x \in \bigcap_{i=1}^m \text{dom } f_i, \\ +\infty_{\bullet} & \text{otherwise}, \end{cases} \text{ and } g : y \mapsto \max_{i=1,\dots,m} x_i.$

	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		000000
	00	

Proposition 26.

For $f_1, \ldots, f_m \in \Gamma_0(\mathbb{E})$ define $f := \max_{i=1,\ldots,m} f_i$. Then $f \in \Gamma_0(\mathbb{E})$ with

$$f^*(x) = \min_{v \in \Delta_m} \left(\sum_{i=1}^m v_i f_i \right)^* (x).$$

Proof.

We have $f = g \circ F$ for

$$F: x \mapsto \begin{cases} (f_1(x), \dots, f_m(x)) & \text{if } x \in \bigcap_{i=1}^m \operatorname{dom} f_i, \\ +\infty_{\bullet} & \text{otherwise}, \end{cases} \text{ and } g: y \mapsto \max_{i=1,\dots,m} x_i.$$

Then *F* is \mathbb{R}^m_+ -convex and *g* is \mathbb{R}^m_+ -increasing with dom $g = \mathbb{R}^m$, and $g^* = \delta_{\Delta m}{}^4$.

 ${}^{4}\Delta_{m} = \left\{ \lambda \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} \lambda_{i} = 1, \lambda_{i} \ge 0 \ (i1, \dots, m) \right\}$

▲□▶▲圖▶▲≣▶▲≣▶ ■ ●のへの

	Conjugacy of composite functions via K-convexity and inf-convolution	
000000 00000 00	00 0000 0	0000

Proposition 26.

For $f_1, \ldots, f_m \in \Gamma_0(\mathbb{E})$ define $f := \max_{i=1,\ldots,m} f_i$. Then $f \in \Gamma_0(\mathbb{E})$ with

$$f^*(x) = \min_{v \in \Delta_m} \left(\sum_{i=1}^m v_i f_i \right)^* (x).$$

Proof.

We have $f = g \circ F$ for

$$F: x \mapsto \begin{cases} (f_1(x), \dots, f_m(x)) & \text{if } x \in \bigcap_{i=1}^m \operatorname{dom} f_i, \\ +\infty_{\bullet} & \text{otherwise}, \end{cases} \text{ and } g: y \mapsto \max_{i=1,\dots,m} x_i$$

Then *F* is \mathbb{R}^m_+ -convex and *g* is \mathbb{R}^m_+ -increasing with dom $g = \mathbb{R}^m$, and $g^* = \delta_{\Delta m}{}^4$. Hence

 $(g \circ F)^*(x)$

 ${}^{4}\Delta_{m} = \left\{ \lambda \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} \lambda_{i} = 1, \lambda_{i} \ge 0 \ (i1, \dots, m) \right\}$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000	00	000000
00000	0000	0000
	0•	

Proposition 26.

For $f_1, \ldots, f_m \in \Gamma_0(\mathbb{E})$ define $f := \max_{i=1,\ldots,m} f_i$. Then $f \in \Gamma_0(\mathbb{E})$ with

$$f^*(x) = \min_{v \in \Delta_m} \left(\sum_{i=1}^m v_i f_i \right)^* (x).$$

Proof.

We have $f = g \circ F$ for

$$F: x \mapsto \begin{cases} (f_1(x), \dots, f_m(x)) & \text{if } x \in \bigcap_{i=1}^m \operatorname{dom} f_i, \\ +\infty_{\bullet} & \text{otherwise}, \end{cases} \quad \text{and} \quad g: y \mapsto \max_{i=1,\dots,m} x_i$$

Then *F* is \mathbb{R}^m_+ -convex and *g* is \mathbb{R}^m_+ -increasing with dom $g = \mathbb{R}^m$, and $g^* = \delta_{\Delta m}{}^4$. Hence

 $(g \circ F)^*(x) = \min_{v \in \mathbb{R}^m_+} g^*(v) + \langle v, F \rangle^*(x)$

 ${}^{4}\Delta_{m} = \left\{ \lambda \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} \lambda_{i} = 1, \lambda_{i} \ge 0 \ (i1, \dots, m) \right\}$

・ロト・日本・日本・日本・日本・日本

	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		000000
	0•	

Proposition 26.

For $f_1, \ldots, f_m \in \Gamma_0(\mathbb{E})$ define $f := \max_{i=1,\ldots,m} f_i$. Then $f \in \Gamma_0(\mathbb{E})$ with

$$f^*(x) = \min_{v \in \Delta_m} \left(\sum_{i=1}^m v_i f_i \right)^* (x).$$

Proof.

We have $f = g \circ F$ for

$$F: x \mapsto \begin{cases} (f_1(x), \dots, f_m(x)) & \text{if } x \in \bigcap_{i=1}^m \operatorname{dom} f_i, \\ +\infty_{\bullet} & \text{otherwise}, \end{cases} \text{ and } g: y \mapsto \max_{i=1,\dots,m} x_i$$

Then *F* is \mathbb{R}^m_+ -convex and *g* is \mathbb{R}^m_+ -increasing with dom $g = \mathbb{R}^m$, and $g^* = \delta_{\Delta m}{}^4$. Hence

$$(g \circ F)^*(x) = \min_{v \in \mathbb{R}^m_+} g^*(v) + \langle v, F \rangle^*(x) = \min_{v \in \mathbb{R}^m_+} \delta_{\Delta m}(v) + \langle v, F \rangle^*(x)$$

 ${}^{4}\Delta_{m} = \left\{ \lambda \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} \lambda_{i} = 1, \lambda_{i} \ge 0 \ (i1, \dots, m) \right\}$

・ロト・日本・日本・日本・日本・日本

	Conjugacy of composite functions via K-convexity and inf-convolution	
0000000		000000
	00	

Proposition 26.

For $f_1, \ldots, f_m \in \Gamma_0(\mathbb{E})$ define $f := \max_{i=1,\ldots,m} f_i$. Then $f \in \Gamma_0(\mathbb{E})$ with

$$f^*(x) = \min_{v \in \Delta_m} \left(\sum_{i=1}^m v_i f_i \right)^* (x).$$

Proof.

We have $f = g \circ F$ for

$$F: x \mapsto \begin{cases} (f_1(x), \dots, f_m(x)) & \text{if } x \in \bigcap_{i=1}^m \operatorname{dom} f_i, \\ +\infty_{\bullet} & \text{otherwise}, \end{cases} \quad \text{and} \quad g: y \mapsto \max_{i=1,\dots,m} x_i$$

Then *F* is \mathbb{R}^m_+ -convex and *g* is \mathbb{R}^m_+ -increasing with dom $g = \mathbb{R}^m$, and $g^* = \delta_{\Delta m}{}^4$. Hence

$$(g \circ F)^*(x) = \min_{v \in \mathbb{R}^m_+} g^*(v) + \langle v, F \rangle^*(x) = \min_{v \in \mathbb{R}^m_+} \delta_{\Delta m}(v) + \langle v, F \rangle^*(x) = \min_{v \in \Delta m} \left(\sum_{i=1}^m v_i f_i \right)^*(x)$$

 ${}^{4}\Delta_{m} = \left\{ \lambda \in \mathbb{R}^{m} \mid \sum_{i=1}^{m} \lambda_{i} = 1, \lambda_{i} \geq 0 \ (i1, \dots, m) \right\}$

▲□▶▲舂▶▲恵▶▲恵▶ 恵 のQ@

		A new class of matrix support functionals
		•
0000000		000000
000000	00	0000
00000	0000	

3. A new class of matrix support functionals

		A new class of matrix support functionals
		0
0000000	00	0000
00	00	

Motivation I: Nuclear norm minimization/smoothing

Rank minimization (→ Netflix recommender problem)

$$\min_{X \in \mathbb{R}^{n \times m}} \operatorname{rank} X \quad \text{s.t.} \quad MX = B \quad \left(M \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}\right)$$
(12)

	A new class of matrix support functionals
0000000	00000

Motivation I: Nuclear norm minimization/smoothing

Rank minimization (→ Netflix recommender problem)

$$\min_{X \in \mathbb{R}^{n \times m}} \operatorname{rank} X \quad \text{s.t.} \quad MX = B \quad (M \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m})$$
(12)

■ Approximating the rank function (→ combinatorial)

rank $X = \|\sigma(X)\|_0 \overset{\text{Convex approx.}}{\sim} \|\sigma(X)\|_1 =: \|X\|_* \quad (nuclear \ norm)^5$

	A new class of matrix support functionals
0000000	00000

Motivation I: Nuclear norm minimization/smoothing

Rank minimization (→ Netflix recommender problem)

$$\min_{X \in \mathbb{R}^{n \times m}} \operatorname{rank} X \quad \text{s.t.} \quad MX = B \quad (M \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m})$$
(12)

■ Approximating the rank function (→ combinatorial)

 $\operatorname{rank} X = \|\sigma(X)\|_0 \overset{\text{Convex approx.}}{\sim} \|\sigma(X)\|_1 =: \|X\|_* \quad (\textit{nuclear norm})^5$

Convex approximation of (12)

$$\min_{X \in \mathbb{R}^{n \times m}} \|X\|_* \quad \text{s.t.} \quad MX = B$$

 ${}^{5}\sigma(X) = (\sigma_{1}, \dots, \sigma_{n})$ is the vector of positive singular values of *X*.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

	A new class of matrix support functionals
0000000	00000

Motivation I: Nuclear norm minimization/smoothing

Rank minimization (→ Netflix recommender problem)

$$\min_{X \in \mathbb{R}^{n \times m}} \operatorname{rank} X \quad \text{s.t.} \quad MX = B \quad (M \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m})$$
(12)

■ Approximating the rank function (→ combinatorial)

 $\operatorname{rank} X = \|\sigma(X)\|_0 \overset{\text{Convex approx.}}{\sim} \|\sigma(X)\|_1 =: \|X\|_* \quad (\textit{nuclear norm})^5$

Convex approximation of (12)

$$\min_{X \in \mathbb{R}^{n \times m}} ||X||_* \quad \text{s.t.} \quad MX = B$$

$$H \text{sieh/Olsen '14:} \quad ||X||_* = \min_{V \in \mathbb{S}^n_{++}} \frac{1}{2} \text{tr} (V) + \frac{1}{2} \text{tr} (X^T V^{-1} X) \quad (X \in \mathbb{R}^{n \times m})$$

	A new class of matrix support functionals
0000000	00000

Motivation I: Nuclear norm minimization/smoothing

Rank minimization (→ Netflix recommender problem)

$$\min_{X \in \mathbb{R}^{n \times m}} \operatorname{rank} X \quad \text{s.t.} \quad MX = B \quad (M \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m})$$
(12)

■ Approximating the rank function (→ combinatorial)

 $\operatorname{rank} X = \|\sigma(X)\|_0 \overset{\text{Convex approx.}}{\sim} \|\sigma(X)\|_1 =: \|X\|_* \quad (\textit{nuclear norm})^5$

Convex approximation of (12)

$$\min_{X \in \mathbb{R}^{n \times m}} ||X||_* \quad \text{s.t.} \quad MX = B$$
Hsieh/Olsen '14: $||X||_* = \min_{V \in \mathbb{S}^n_{++}} \frac{1}{2} \operatorname{tr} (V) + \frac{1}{2} \operatorname{tr} (X^T V^{-1} X) \quad (X \in \mathbb{R}^{n \times m})$

Smooth approximation of (12)

$$\min_{(X,V)\in\mathbb{R}^{n\times n}\times\mathbb{S}^{n}_{++}}\frac{1}{2}\mathrm{tr}(V)+\frac{1}{2}\mathrm{tr}(X^{T}V^{-1}X) \quad \text{s.t.} \quad MX=B$$

 ${}^{5}\sigma(X) = (\sigma_{1}, \dots, \sigma_{n})$ is the vector of positive singular values of *X*.

・ロト・西ト・日下・日・ 日・ シタぐ

		A new class of matrix support functionals
		0
000000	00 0000	0000
00	00	

Motivation II: Maximum likelihood estimation

Let $y_i \in \mathbb{R}^n$ (i = 1, ..., N) be measurements of

 $y \sim N(\mu, \Sigma) \quad (\mu \in \mathbb{R}^n, \Sigma \in \mathbb{S}^n_{++} \rightarrow \text{unknown})$

▲□▶▲御▶★臣▶★臣▶ 臣 のへで

	A new class of matrix support functionals
0000000	00000

Motivation II: Maximum likelihood estimation

Let $y_i \in \mathbb{R}^n$ (i = 1, ..., N) be measurements of

 $y \sim N(\mu, \Sigma) \quad (\mu \in \mathbb{R}^n, \Sigma \in \mathbb{S}^n_{++} \rightarrow \text{unknown})$

Likelihood function:

$$\ell(\mu, \Sigma) := \frac{1}{(2\pi)^{n/2}} \prod_{i=1}^{N} \frac{1}{(\det \Sigma)^{1/2}} \exp\left(-\frac{1}{2}(y_i - \mu)^T \Sigma^{-1}(y_i - \mu)\right)$$

	A new class of matrix support functionals
0000000	00000

Motivation II: Maximum likelihood estimation

Let $y_i \in \mathbb{R}^n$ (i = 1, ..., N) be measurements of

$$y \sim N(\mu, \Sigma) \quad (\mu \in \mathbb{R}^n, \Sigma \in \mathbb{S}^n_{++} \rightarrow \text{unknown})$$

Likelihood function:

$$\ell(\mu, \Sigma) := \frac{1}{(2\pi)^{n/2}} \prod_{i=1}^{N} \frac{1}{(\det \Sigma)^{1/2}} \exp\left(-\frac{1}{2}(y_i - \mu)^T \Sigma^{-1}(y_i - \mu)\right)$$

log-likelihood function

$$\log \ell(\mu, \Sigma) = -\frac{N}{2} \log(\det \Sigma) - \frac{1}{2} \sum_{i=1}^{N} (y_i - \mu)^T \Sigma^{-1}(y_i - \mu) - \frac{n}{2} \log(2\pi)$$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

	A new class of matrix support functionals
0000000	00000

Motivation II: Maximum likelihood estimation

Let $y_i \in \mathbb{R}^n$ (i = 1, ..., N) be measurements of

$$y \sim N(\mu, \Sigma) \quad (\mu \in \mathbb{R}^n, \Sigma \in \mathbb{S}^n_{++} \rightarrow \text{unknown})$$

Likelihood function:

$$\ell(\mu, \Sigma) := \frac{1}{(2\pi)^{n/2}} \prod_{i=1}^{N} \frac{1}{(\det \Sigma)^{1/2}} \exp\left(-\frac{1}{2}(y_i - \mu)^T \Sigma^{-1}(y_i - \mu)\right)$$

log-likelihood function

$$\log \ell(\mu, \Sigma) = -\frac{N}{2} \log(\det \Sigma) - \frac{1}{2} \sum_{i=1}^{N} (y_i - \mu)^T \Sigma^{-1}(y_i - \mu) - \frac{n}{2} \log(2\pi)$$

Maximum likelihood estimation

$$\max_{(\mu, \Sigma)} \ell(\mu, \Sigma) \quad \Leftrightarrow \quad \min_{(\mu, \Sigma)} -\log \ell(\mu, \Sigma)$$
$$\underset{(X, \Sigma) \in \mathbb{R}^{n \times N} \times \mathbb{S}_{++}^n}{\min} \frac{1}{2} \operatorname{tr} (X^T \Sigma^{-1} X) + \frac{N}{2} \log(\det \Sigma)$$

▲□▶▲御▶▲臣▶▲臣▶ 臣 のなぐ

	A new class of matrix support functionals
0000000	00000

The Moore-Penrose pseudoinverse

Theorem 27 (Moore-Penrose pseudoinverse).

Let $A \in R^{m \times n}$ with rank A = r and the singular value decomposition

 $A = U\Sigma V^T$ with $\Sigma = \text{diag}(\sigma_i)$, U, V orthogonal.

	A new class of matrix support functionals
0000000	00000

The Moore-Penrose pseudoinverse

Theorem 27 (Moore-Penrose pseudoinverse).

Let $A \in R^{m \times n}$ with rank A = r and the singular value decomposition

$$A = U\Sigma V^T$$
 with $\Sigma = \text{diag}(\sigma_i)$, U, V orthogonal.

The matrix

$$A^{\dagger} := V \Sigma^{\dagger} U^{T} \quad \text{with} \quad \Sigma^{\dagger} := \begin{pmatrix} \sigma_{1}^{-1} & & \\ & \ddots & \\ & \sigma_{r}^{-1} & \\ & & 0 \\ & & \ddots & \\ & & & \ddots \end{pmatrix},$$

called the (Moore-Penrose) pseudoinverse of A is the unique matrix with the following properties.

	A new class of matrix support functionals
0000000	00000

The Moore-Penrose pseudoinverse

Theorem 27 (Moore-Penrose pseudoinverse).

Let $A \in R^{m \times n}$ with rank A = r and the singular value decomposition

$$A = U\Sigma V^T$$
 with $\Sigma = \text{diag}(\sigma_i)$, U, V orthogonal.

The matrix

$$\mathsf{A}^{\dagger} := \mathsf{V} \Sigma^{\dagger} \mathsf{U}^{\mathsf{T}} \quad \text{with} \quad \Sigma^{\dagger} := \begin{pmatrix} \sigma_{1}^{-1} & & \\ & \ddots & \\ & \sigma_{r}^{-1} & \\ & & 0 \\ & & \ddots & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix},$$

called the (Moore-Penrose) pseudoinverse of A is the unique matrix with the following properties.

a) $AA^{\dagger}A = A$ and $A^{\dagger}AA^{\dagger} = A^{\dagger}$

b)
$$(AA^{\dagger})^{T} = AA^{\dagger}$$
 and $(A^{\dagger}A)^{T} = A^{\dagger}As$

	A new class of matrix support functionals
0000000	00000

The Moore-Penrose pseudoinverse

Theorem 27 (Moore-Penrose pseudoinverse).

Let $A \in R^{m \times n}$ with rank A = r and the singular value decomposition

$$A = U\Sigma V^T$$
 with $\Sigma = \text{diag}(\sigma_i)$, U, V orthogonal.

The matrix

$$\mathsf{A}^{\dagger} := \mathsf{V} \Sigma^{\dagger} \mathsf{U}^{\mathsf{T}} \quad \text{with} \quad \Sigma^{\dagger} := \begin{pmatrix} \sigma_1^{-1} & & \\ & \ddots & \\ & & \sigma_r^{-1} & \\ & & & 0 \\ & & & \ddots \\ & & & & \ddots \\ & & & & 0 \end{pmatrix},$$

called the (Moore-Penrose) pseudoinverse of A is the unique matrix with the following properties.

a) $AA^{\dagger}A = A$ and $A^{\dagger}AA^{\dagger} = A^{\dagger}$

b)
$$(AA^{\dagger})^{T} = AA^{\dagger}$$
 and $(A^{\dagger}A)^{T} = A^{\dagger}As$

Moreover:

- c) A invertible \Rightarrow $A^{\dagger} = A^{-1}$
- d) $A > 0 \Rightarrow A^{\dagger} > 0$

▲□▶▲@▶▲≣▶▲≣▶ ≣ めぬぐ

		A new class of matrix support functionals
		0
0000000	00	0000

The closure of the matrix-fractional function

 $\begin{aligned} \mathsf{Put} \ \mathbb{E} &:= \mathbb{R}^{n \times m} \times \mathbb{S}^{n}. \\ \phi &: (X, V) \in \mathbb{E} \mapsto \begin{cases} \frac{1}{2} \mathrm{tr} \left(X^T V^{-1} X \right) & \text{if} \quad V > 0, \\ +\infty & \text{else.} \end{cases} \end{aligned}$ (matrix-fractional function)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

		A new class of matrix support functionals
0000000	00	000000
000000	000	0000
00	00	

The closure of the matrix-fractional function

Put
$$\mathbb{E} := \mathbb{R}^{n \times m} \times \mathbb{S}^n$$
.
 $\phi : (X, V) \in \mathbb{E} \mapsto \left\{ \begin{array}{cc} \frac{1}{2} \operatorname{tr} (X^T V^{-1} X) & \text{if} & V > 0, \\ +\infty & \text{else.} \end{array}$ (matrix-fractional function)
 $\stackrel{\text{Schur}}{\Rightarrow} & \operatorname{epi} \phi = \left\{ (X, V, \alpha) | \exists Y \in \mathbb{S}^m : \begin{pmatrix} V & X \\ X^T & Y \end{pmatrix} \ge 0, \ V > 0, \ \frac{1}{2} \operatorname{tr} (Y) \le \alpha \right\}$

▲□▶▲□▶▲□▶▲□▶ ■ のへの

	A new class of matrix support functionals
0000000	000000

The closure of the matrix-fractional function

Put
$$\mathbb{E} := \mathbb{R}^{n \times m} \times \mathbb{S}^n$$
.
 $\phi : (X, V) \in \mathbb{E} \mapsto \begin{cases} \frac{1}{2} \operatorname{tr} (X^T V^{-1} X) & \text{if } V > 0, \\ +\infty & \text{else.} \end{cases}$ (matrix-fractional function)
 $\stackrel{\text{Schur}}{\Rightarrow} \quad \text{epi } \phi = \begin{cases} (X, V, \alpha) | \exists Y \in \mathbb{S}^m : \begin{pmatrix} V & X \\ X^T & Y \end{pmatrix} \ge 0, \ V > 0, \ \frac{1}{2} \operatorname{tr} (Y) \le \alpha \end{cases}$

 $\Rightarrow \phi$ proper, sublinear and <u>not</u> lsc.

		A new class of matrix support functionals
0000000	00	000000
000000	0000	0000
00	00	

The closure of the matrix-fractional function

Put
$$\mathbb{E} := \mathbb{R}^{n \times m} \times \mathbb{S}^{n}$$
.
 $\phi : (X, V) \in \mathbb{E} \mapsto \left\{ \begin{array}{cc} \frac{1}{2} \operatorname{tr} (X^{T} V^{-1} X) & \text{if } V > 0, \\ +\infty & \text{else.} \end{array} \right.$ (matrix-fractional function)
 $\stackrel{\text{Schur}}{\Rightarrow} & \text{epi } \phi = \left\{ (X, V, \alpha) | \exists Y \in \mathbb{S}^{m} : \begin{pmatrix} V & X \\ X^{T} & Y \end{pmatrix} \ge 0, V > 0, \frac{1}{2} \operatorname{tr} (Y) \le \alpha \right\}$
 $\Rightarrow & \phi \text{ proper, sublinear and not lsc.}$
 $\Rightarrow & \operatorname{cl} \phi : (X, V) \in \mathbb{E} \mapsto \left\{ \begin{array}{cc} \frac{1}{2} \operatorname{tr} (X^{T} V^{\dagger} X) & \text{if } V \ge 0, \operatorname{rge} X \in \operatorname{rge} V, \\ +\infty & \operatorname{else} \end{array} \right.$

▲□▶▲□▶▲□▶▲□▶ □ のへで
	A new class of matrix support functionals
0000000	000000

The closure of the matrix-fractional function

Put
$$\mathbb{E} := \mathbb{R}^{n \times m} \times \mathbb{S}^{n}$$
.
 $\phi : (X, V) \in \mathbb{E} \mapsto \left\{ \begin{array}{cc} \frac{1}{2} \operatorname{tr} (X^{T} V^{-1} X) & \text{if} & V > 0, \\ +\infty & \text{else.} \end{array} \right.$ (matrix-fractional function)
 $\stackrel{\text{Schur}}{\Rightarrow} \qquad \operatorname{epi} \phi = \left\{ (X, V, \alpha) | \exists Y \in \mathbb{S}^{m} : \begin{pmatrix} V & X \\ X^{T} & Y \end{pmatrix} \ge 0, V > 0, \frac{1}{2} \operatorname{tr} (Y) \le \alpha \right\}$
 $\Rightarrow \qquad \phi \text{ proper, sublinear and not lsc.}$
 $\Rightarrow \qquad \operatorname{cl} \phi : (X, V) \in \mathbb{E} \mapsto \left\{ \begin{array}{cc} \frac{1}{2} \operatorname{tr} (X^{T} V^{\dagger} X) & \text{if} \\ +\infty & \text{else} \end{array} \right. \quad V \ge 0, \operatorname{rge} X \in \operatorname{rge} V,$
is proper, lsc and sublinear
 $\stackrel{\text{Hörmander's Theorem}}{\Rightarrow} \qquad \operatorname{cl} \phi \text{ is a support function}$

▲□▶▲御▶▲臣▶▲臣▶ 臣 のへ⊙

		A new class of matrix support functionals
		0
000000	00 0000	0000
00	00	

Motivation III: Quadratic programming

For $A \in \mathbb{R}^{p \times n}$ and $V \in \mathbb{S}^n$ put

$$M(V) := \begin{pmatrix} v \ A^T \\ A \ 0 \end{pmatrix} \text{ and } \mathcal{K}_A := \left\{ V \in \mathbb{S}^n \mid u^T V u \ge 0 \ (u \in \ker A) \right\}.$$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

	A new class of matrix support functionals
0000000	000000

Motivation III: Quadratic programming

For $A \in \mathbb{R}^{p \times n}$ and $V \in \mathbb{S}^n$ put

$$M(V) := \begin{pmatrix} V & A^T \\ A & 0 \end{pmatrix} \text{ and } \mathcal{K}_A := \left\{ V \in \mathbb{S}^n \mid u^T V u \ge 0 \ (u \in \ker A) \right\}.$$

Theorem 28 (Burke, H. '15).

For $b \in \operatorname{rge} A$, we have

$$\inf_{u\in\mathbb{R}^n}\left\{\frac{1}{2}u^T V u - x^T u \mid A u = b\right\} = \begin{cases} -\frac{1}{2} \begin{pmatrix} x \\ b \end{pmatrix}^T M(V)^{\dagger} \begin{pmatrix} x \\ b \end{pmatrix} & \text{if } x \in \operatorname{rge}\left[V A^T\right], \ V \in \mathcal{K}_A, \\ -\infty & \text{else.} \end{cases}$$

		A new class of matrix support functionals
0000000	00	000000
000000	0000	0000
00	00	

Motivation III: Quadratic programming

For $A \in \mathbb{R}^{p \times n}$ and $V \in \mathbb{S}^n$ put

$$M(V) := \begin{pmatrix} V & A^T \\ A & 0 \end{pmatrix} \text{ and } \mathcal{K}_A := \left\{ V \in \mathbb{S}^n \mid u^T V u \ge 0 \ (u \in \ker A) \right\}.$$

Theorem 28 (Burke, H. '15).

For $b \in \operatorname{rge} A$, we have

$$\inf_{u\in\mathbb{R}^n}\left\{\frac{1}{2}u^T V u - x^T u \mid A u = b\right\} = \begin{cases} -\frac{1}{2} \begin{pmatrix} x \\ b \end{pmatrix}^T M(V)^{\dagger} \begin{pmatrix} x \\ b \end{pmatrix} & \text{if } x \in \operatorname{rge}\left[V A^T\right], \ V \in \mathcal{K}_A, \\ -\infty & \text{else.} \end{cases}$$

Question: For $A \in \mathbb{R}^{p \times n}$, $B \in \mathbb{R}^{p \times m}$, is

$$\varphi_{A,B}: (X, V) \in \mathbb{E} \mapsto \begin{cases} \frac{1}{2} \operatorname{tr} \left(\begin{pmatrix} X \\ B \end{pmatrix}^T M(V)^{\dagger} \begin{pmatrix} X \\ B \end{pmatrix} \right) & \text{if } \operatorname{rge} \begin{pmatrix} X \\ B \end{pmatrix} \subset \operatorname{rge} M(V), \ V \in \mathcal{K}_A, \\ +\infty & \text{else} \end{cases}$$

a support function?

▲□▶▲□▶▲□▶▲□▶ □ のへの

	A new class of matrix support functionals
0000000	000000

A new class of matrix support functions

Define

$$\mathcal{D}(A,B) := \left\{ \left(Y, -\frac{1}{2} \, Y Y^T \right) \in \mathbb{E} \, \left| \, Y \in \mathbb{R}^{n \times m} : \, AY = B \right. \right\} \quad (A \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}).$$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

	A new class of matrix support functionals
0000000	000000

A new class of matrix support functions

Define

$$\mathcal{D}(A,B) := \left\{ \left(Y, -\frac{1}{2} Y Y^T \right) \in \mathbb{E} \ \middle| \ Y \in \mathbb{R}^{n \times m} : \ AY = B \right\} \quad (A \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}).$$

Theorem 29 (Burke, H. '15).

For rge $B \subset$ rge A

$$\sigma_{\mathcal{D}(A,B)}(X,V) = \begin{cases} \frac{1}{2} \operatorname{tr}\left(\binom{X}{B}^{\mathsf{T}} M(V)^{\dagger}\binom{X}{B}\right) & \text{if } \operatorname{rge}\binom{X}{B} \subset \operatorname{rge} M(V), \ V \in \mathcal{K}_{A}, \\ +\infty & \text{else} \end{cases}$$
((X,V) \in \mathbb{E})

with

$$\operatorname{int} (\operatorname{dom} \sigma_{D(A,B)}) = \{ (X, V) \in \mathbb{E} \mid V \in \operatorname{int} \mathcal{K}_A \}.$$

	A new class of matrix support functionals
0000000	000000

A new class of matrix support functions

Define

$$\mathcal{D}(A,B) := \left\{ \left(Y, -\frac{1}{2} Y Y^T \right) \in \mathbb{E} \ \middle| \ Y \in \mathbb{R}^{n \times m} : \ AY = B \right\} \quad (A \in \mathbb{R}^{p \times n}, B \in \mathbb{R}^{p \times m}).$$

Theorem 29 (Burke, H. '15).

For rge $B \subset$ rge A

$$\sigma_{\mathcal{D}(A,B)}(X,V) = \begin{cases} \frac{1}{2} \operatorname{tr}\left(\binom{X}{B}^{\mathsf{T}} M(V)^{\dagger}\binom{X}{B}\right) & \text{if } \operatorname{rge}\binom{X}{B} \subset \operatorname{rge} M(V), \ V \in \mathcal{K}_{A}, \\ +\infty & \text{else} \end{cases}$$
((X,V) \in \mathbb{E})

with

$$\operatorname{int} (\operatorname{dom} \sigma_{D(A,B)}) = \{ (X, V) \in \mathbb{E} \mid V \in \operatorname{int} \mathcal{K}_A \}.$$

In particular,

$$\sigma_{\mathcal{D}(0,0)}(X,V) = \begin{cases} \frac{1}{2} \operatorname{tr} \left(X^{\mathcal{T}} V^{\dagger} X \right) & \text{if } V \ge 0, \operatorname{rge} X \subset \operatorname{rge} V, \\ +\infty & \text{else} \end{cases} = \operatorname{cl} \phi(X,V)$$

Blackboard/Notes.

▲□▶▲舂▶▲臣▶▲臣▶ 臣 のへで

	A new class of matrix support functionals
	0000

Closed convex hull of $\mathcal{D}(A, B)$: Carathéodory-based description

Recall

$$\partial \sigma_{\mathcal{D}(A,B)}(X,V) = \left\{ (Y,W) \in \overline{\text{conv}} \, \mathcal{D}(A,B) \mid (X,V) \in N_{\overline{\text{conv}} \, \mathcal{D}(A,B)}(Y,W) \right\} \quad \text{and} \quad \sigma_{\mathcal{D}(A,B)} = \delta^*_{\overline{\text{conv}} \, \mathcal{D}(A,B)}$$

where

$$\mathcal{D}(A,B) := \left\{ \left(Y, -\frac{1}{2} Y Y^T\right) \in \mathbb{E} \ \middle| \ Y \in \mathbb{R}^{n \times m} : \ AY = B \right\}.$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ = 臣 = のへで

 ${}^{6}d \otimes I_{m} = (d_{i}I_{m}) \in \mathbb{R}^{m(\kappa+1)}$ ${}^{7}\kappa := \dim \mathbb{E}$

	A new class of matrix support functionals
	0000

Closed convex hull of $\mathcal{D}(A, B)$: Carathéodory-based description

Recall

$$\partial \sigma_{\mathcal{D}(A,B)}(X,V) = \left\{ (Y,W) \in \overline{\operatorname{conv}} \mathcal{D}(A,B) \mid (X,V) \in N_{\overline{\operatorname{conv}} \mathcal{D}(A,B)}(Y,W) \right\} \text{ and } \sigma_{\mathcal{D}(A,B)} = \delta^*_{\overline{\operatorname{conv}} \mathcal{D}(A,B)}$$

where

$$\mathcal{D}(A,B) := \left\{ \left(Y, -\frac{1}{2} Y Y^T \right) \in \mathbb{E} \ \middle| \ Y \in \mathbb{R}^{n \times m} : \ AY = B \right\}.$$

Proposition 30 (Burke, H. '15).

$$\overline{\operatorname{conv}}\,\mathcal{D}(A,B) = \left\{ (Z(d \otimes I_m), -\frac{1}{2}ZZ^{\mathsf{T}}) \mid (d,Z) \in \mathcal{F}(A,B) \right\}.^6$$

where

$$\mathcal{F}(A,B) := \left\{ (d,Z) \in \mathbb{R}^{\kappa+1} \times \mathbb{R}^{n \times m(\kappa+1)} \middle| \begin{array}{l} d \ge 0, \ \|d\| = 1, \\ AZ_i = d_i B \ (i = 1, \dots, \kappa+1) \end{array} \right\}.^7$$

 ${}^{6}d \otimes I_{m} = (d_{i}I_{m}) \in \mathbb{R}^{m(\kappa+1)}$ ${}^{7}\kappa := \dim \mathbb{E}$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

	Conjugacy of composite functions via K-convexity and inf-convolution	A new class of matrix support functionals
0000000		000000
		0000
00000	0000	000

Closed convex hull of $\mathcal{D}(A, B)$: A new description

$$\Omega(A,B) := \left\{ (Y,W) \in \mathbb{E} \ \middle| \ AY = B \ \text{and} \ \frac{1}{2} YY^{T} + W \in \mathcal{K}_{A}^{\circ} \right\},$$
(13)

and observe that

$$\mathcal{K}_{A}^{\circ} = \mathbb{R}_{+} \operatorname{conv} \left\{ -vv^{T} \mid v \in \ker A \right\}.$$

	A new class of matrix support functionals
	0000

Closed convex hull of $\mathcal{D}(A, B)$: A new description

$$\Omega(A,B) := \left\{ (Y,W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^{T} + W \in \mathcal{K}_{A}^{\circ} \right\},$$
(13)

and observe that

$$\mathcal{K}_{A}^{\circ} = \mathbb{R}_{+} \mathrm{conv} \left\{ -vv^{\mathcal{T}} \mid v \in \ker A \right\}.$$

Theorem 31 (Burke, Gao, H. '17).

We have

$$\overline{\operatorname{conv}} \mathcal{D}(A, B) = \Omega(A, B).$$

In particular,

$$\overline{\operatorname{conv}}\,\mathcal{D}(0,0) = \left\{ (Y,W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \le 0 \right\}$$

Proof.

Notes.

	A new class of matrix support functionals
	0000

Closed convex hull of $\mathcal{D}(A, B)$: A new description Define

$$\Omega(A,B) := \left\{ (Y,W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^{T} + W \in \mathcal{K}_{A}^{\circ} \right\},$$
(13)

and observe that

$$\mathcal{K}_{A}^{\circ} = \mathbb{R}_{+} \mathrm{conv} \left\{ -vv^{\mathcal{T}} \mid v \in \ker A \right\}.$$

Theorem 31 (Burke, Gao, H. '17).

We have

$$\overline{\operatorname{conv}} \mathcal{D}(A, B) = \Omega(A, B).$$

In particular,

$$\overline{\operatorname{conv}}\,\mathcal{D}(0,0) = \left\{ (Y,W) \in \mathbb{E} \ \middle| \ AY = B \ and \ \frac{1}{2}\,YY^T + W \le 0 \right\}$$

Proof.

Notes.

Corollary 32 (Conjugate of GMF).

We have

$$\sigma^*_{\mathcal{D}(A,B)} = \delta_{\Omega(A,B)}$$

		A new class of matrix support functionals
0 0000000 000000 00000 00	0 00 00000 0000	0 000000 0000 000

▲□▶▲御▶★臣▶★臣▶ 臣 のへで

The closed convex hull of $\mathcal{D}(A, B)$ with applications

Convex geometry of $\Omega(A, B)$

Recall that $\Omega(A, B) := \{(Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \mathcal{K}_A^\circ\}$

	Conjugacy of composite functions via K-convexity and inf-convolution	A new class of matrix support functionals
0000000		000000
		0000
00000	0000	000

▲□▶▲□▶▲□▶▲□▶ □ のへで

The closed convex hull of $\mathcal{D}(A, B)$ with applications

Convex geometry of $\Omega(A, B)$

Recall that $\Omega(A, B) := \{(Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \mathcal{K}_A^\circ\}$

Proposition 33 (Burke, Gao, H. '17).

a)
$$\operatorname{ri} \Omega(A, B) = \{(Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \operatorname{ri}(\mathcal{K}_A^\circ)\}.$$

	A new class of matrix support functionals
0000000	000000
	0000

Convex geometry of $\Omega(A, B)$

Recall that $\Omega(A, B) := \{(Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \mathcal{K}_A^\circ\}$

Proposition 33 (Burke, Gao, H. '17).

a)
$$\operatorname{ri} \Omega(A, B) = \{(Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \operatorname{ri}(\mathcal{K}_A^\circ)\}.$$

b) aff
$$\Omega(A, B) = \{(Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \operatorname{span} \mathcal{K}^\circ_A\}$$
.

	A new class of matrix support functionals
0000000	000000
	0000

Convex geometry of $\Omega(A, B)$

Recall that $\Omega(A, B) := \{(Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \mathcal{K}_A^\circ\}$

Proposition 33 (Burke, Gao, H. '17).

a)
$$\operatorname{ri} \Omega(A, B) = \{(Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \operatorname{ri}(\mathcal{K}_A^\circ)\}.$$

b) aff
$$\Omega(A, B) = \{(Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \operatorname{span} \mathcal{K}_A^\circ \}$$
.

c)
$$\Omega(A,B)^{\circ} = \left\{ (X,V) \mid \operatorname{rge} {X \choose B} \subset \operatorname{rge} M(V), V \in \mathcal{K}_A, \frac{1}{2} \operatorname{tr} {X \choose B} \leq 1 \right\}.$$

		A new class of matrix support functionals
00000000	00	000000
000000	0000	0000

Convex geometry of $\Omega(A, B)$

Recall that $\Omega(A, B) := \{(Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \mathcal{K}_A^\circ\}$

Proposition 33 (Burke, Gao, H. '17).

a)
$$\operatorname{ri} \Omega(A, B) = \{ (Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2} YY^T + W \in \operatorname{ri} (\mathcal{K}_A^\circ) \}.$$

b) aff
$$\Omega(A, B) = \{(Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \operatorname{span} \mathcal{K}_A^\circ \}.$$

c)
$$\Omega(A,B)^{\circ} = \left\{ (X,V) \mid \operatorname{rge} {X \choose B} \subset \operatorname{rge} M(V), V \in \mathcal{K}_A, \frac{1}{2} \operatorname{tr} {X \choose B} \leq 1 \right\}.$$

d)
$$\Omega(A,B)^{\infty} = \{0_{n \times m}\} \times \mathcal{K}^{\circ}_{A}$$
.

	A new class of matrix support functionals
0000000	000000
	0000

Convex geometry of $\Omega(A, B)$

Recall that $\Omega(A, B) := \{(Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \mathcal{K}_A^\circ\}$

Proposition 33 (Burke, Gao, H. '17).

Let $\Omega(A, B)$ be given as above. Then:

a)
$$\operatorname{ri} \Omega(A, B) = \{ (Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2} YY^T + W \in \operatorname{ri} (\mathcal{K}_A^\circ) \}.$$

b) aff
$$\Omega(A, B) = \{(Y, W) \in \mathbb{E} \mid AY = B \text{ and } \frac{1}{2}YY^T + W \in \operatorname{span} \mathcal{K}_A^\circ \}.$$

c)
$$\Omega(A,B)^{\circ} = \left\{ (X,V) \mid \operatorname{rge} \binom{X}{B} \subset \operatorname{rge} M(V), \ V \in \mathcal{K}_A, \ \frac{1}{2} \operatorname{tr} \left(\binom{X}{B}^T M(V)^{\dagger}\binom{X}{B}\right) \leq 1 \right\}.$$

d)
$$\Omega(A,B)^{\infty} = \{0_{n \times m}\} \times \mathcal{K}^{\circ}_{A}$$
.

Proposition 34 (Burke, Gao, H. '17).

Let
$$\Omega(A, B)$$
 be given as above and let $(Y, W) \in \Omega(A, B)$. Then

$$N_{\Omega(A,B)}(Y, W) = \begin{cases} (X, V) \in \mathbb{E} \\ and \operatorname{rge} (X - VY) \subset (\ker A)^{\perp} \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ ■ のみの

	A new class of matrix support functionals
0000000	000000
	0000

Subdifferentiation of the GMF

For any set C recall that

$$\partial \sigma_C(x) = \left\{ z \in \overline{\text{conv}} C \mid x \in N_{\overline{\text{conv}}C}(z) \right\}$$
(14)

▲□▶▲御▶★臣▶★臣▶ 臣 のへで

Conjugacy of composite functions via K-convexity and inf-convolution	A new class of matrix support functionals
	0000

Subdifferentiation of the GMF

For any set C recall that

$$\partial \sigma_C(x) = \left\{ z \in \overline{\text{conv}} \ C \ \middle| \ x \in N_{\overline{\text{conv}} \ C}(z) \right\}$$
(14)

Corollary 35 (The subdifferential of $\sigma_{\mathcal{D}(A,B)}$).

For all $(X, V) \in \operatorname{dom} \sigma_{\mathcal{D}(A,B)}$, we have

$$\partial \sigma_{\mathcal{D}(A,B)} = \left\{ (Y,W) \in \Omega(A,B) \middle| \begin{array}{l} \exists Z \in \mathbb{R}^{p \times m} : X = VY + A^T Z, \\ \left\langle V, \frac{1}{2} Y Y^T + W \right\rangle = 0 \end{array} \right\}$$

Conjugacy of composite functions via K-convexity and inf-convolution	A new class of matrix support functionals
	0000

Subdifferentiation of the GMF

For any set C recall that

$$\partial \sigma_C(x) = \left\{ z \in \overline{\text{conv}} C \mid x \in N_{\overline{\text{conv}} C}(z) \right\}$$
(14)

Corollary 35 (The subdifferential of $\sigma_{\mathcal{D}(A,B)}$).

For all $(X, V) \in \operatorname{dom} \sigma_{\mathcal{D}(A,B)}$, we have

$$\partial \sigma_{\mathcal{D}(A,B)} = \left\{ (\mathbf{Y}, W) \in \Omega(A, B) \middle| \begin{array}{l} \exists Z \in \mathbb{R}^{p \times m} : X = V\mathbf{Y} + A^T Z, \\ \left\langle V, \frac{1}{2} \mathbf{Y} \mathbf{Y}^T + W \right\rangle = 0 \end{array} \right\}.$$

Corollary 36.

The GMF $\sigma_{\mathcal{D}(A,B)}$ is (continuously) differentiable on the interior of its domain with

$$\nabla \sigma_{\mathcal{D}(A,B)}(X,V) = \left(Y, -\frac{1}{2}YY^{T}\right) \quad ((X,V) \in \operatorname{int} (\operatorname{dom} \sigma_{\mathcal{D}(A,B)}))$$

where $Y := A^{\dagger}B + (P(P^{T}VP)^{-1}P^{T})(X - A^{\dagger}X), P \in \mathbb{R}^{n \times (n-p)}$ is any matrix whose columns form an orthonormal basis of ker A and $p := \operatorname{rank} A$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

	Conjugacy of composite functions via K-convexity and inf-convolution	A new class of matrix support functionals
0 00000000 000000 00000 00	0 00 00000 00000	o oooooo oooo ●oo
00	00	

Conjugate of variational Gram functions

For $M \subset \mathbb{S}^n_+$ (w.lo.g.) closed, convex, the associated variational Gram function (VGF) is given by

$$\Omega_M: \mathbb{R}^{n \times m} \to \mathbb{R} \cup \{+\infty\}, \quad \Omega_M(X) = \frac{1}{2} \sigma_M(XX^T).$$

With

$$F: \mathbb{R}^{n \times m} \to \mathbb{S}^n, \quad F(X) = \frac{1}{2} X X^T.$$
(15)

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

3

 $\Omega_M = \sigma_M \circ F$ fits the composite scheme studied in Section 2.

	Conjugacy of composite functions via K-convexity and inf-convolution	A new class of matrix support functionals
0 00000000 000000 00000 00	0 00 00000 00000	o oooooo oooo ●oo
00	00	

Conjugate of variational Gram functions

For $M \subset S^n_+$ (w.lo.g.) closed, convex, the associated variational Gram function (VGF) is given by

$$\Omega_M: \mathbb{R}^{n \times m} \to \mathbb{R} \cup \{+\infty\}, \quad \Omega_M(X) = \frac{1}{2} \sigma_M(XX^T).$$

With

$$F: \mathbb{R}^{n \times m} \to \mathbb{S}^n, \quad F(X) = \frac{1}{2} X X^T.$$
(15)

 $\Omega_M = \sigma_M \circ F$ fits the composite scheme studied in Section 2.

■ \mathbb{S}^n_+ is the smallest closed convex cone in \mathbb{S}^n with respect to which *F* is convex;

■ $-hzn \sigma_M \supset S^n_+$. In particular, *F* is $(-hzn \sigma_M)$ -convex.

・ロト・母ト・ヨト・ヨー うくで

	Conjugacy of composite functions via K-convexity and inf-convolution	A new class of matrix support functionals
0 00000000 000000 00000 00	o oo ooco oo	o oooooo oooo ● oo

Conjugate of variational Gram functions

For $M \subset S^n_+$ (w.lo.g.) closed, convex, the associated variational Gram function (VGF) is given by

$$\Omega_M: \mathbb{R}^{n \times m} \to \mathbb{R} \cup \{+\infty\}, \quad \Omega_M(X) = \frac{1}{2} \sigma_M(XX^T).$$

With

$$F: \mathbb{R}^{n \times m} \to \mathbb{S}^n, \quad F(X) = \frac{1}{2} X X^T.$$
(15)

イロト 不得 トイヨト イヨト

 $\Omega_M = \sigma_M \circ F$ fits the composite scheme studied in Section 2.

■ \mathbb{S}^n_+ is the smallest closed convex cone in \mathbb{S}^n with respect to which *F* is convex;

■ $-hzn \sigma_M \supset S^n_+$. In particular, *F* is $(-hzn \sigma_M)$ -convex.

Theorem 37 (Jalali et al. '17/ Burke, Gao, H. '19).

Let $M \subset S^n_+$ be nonempty, convex and compact. Then Ω^*_M is finite-valued and given by

$$\Omega^*(X) = \frac{1}{2} \min_{V \in M} \left\{ \operatorname{tr} \left(X^T V^{\dagger} X \right) \mid \operatorname{rge} X \subset \operatorname{rge} V \right\}.$$

Proof.

Blackboard/Notes.

500

o o o o o o o o o o o o o o o o o o o		Conjugacy of composite functions via K-convexity and inf-convolution	A new class of matrix support functionals
	0 0000000 000000 00000 00		

Nuclear norm smoothing

For $A \in \mathbb{R}^{p \times n}$ set

Ker $A := \{V \in \mathbb{R}^{n \times n} \mid AV = 0\}$ and Rge $A := \{W \in \mathbb{R}^{n \times n} \mid \operatorname{rge} W \subset \operatorname{rge} A\}.$

		A new class of matrix support functionals
0000000	00	000000
00000	0000	000

Nuclear norm smoothing

For $A \in \mathbb{R}^{p \times n}$ set

Ker
$$A := \{ V \in \mathbb{R}^{n \times n} \mid AV = 0 \}$$
 and Rge $A := \{ W \in \mathbb{R}^{n \times n} \mid \operatorname{rge} W \subset \operatorname{rge} A \}$.

Theorem 38.

Let $p : \mathbb{R}^{n \times m} \to \overline{\mathbb{R}}$ be defined by

$$p(X) = \inf_{V \in \mathbb{S}^n} \sigma_{\Omega(A,0)}(X, V) + \left\langle \bar{U}, V \right\rangle$$

for some $\overline{U} \in \mathbb{S}^n_+ \cap$ Ker A and set $C(\overline{U}) := \{Y \mid \frac{1}{2} YY^T \leq \overline{U}\}$. Then we have:

- a) $p^* = \delta_{C(\bar{U}) \cap \text{Ker } A}$ is closed, proper, convex.
- b) p = σ_{C(Ū)∩Ker A} = γ_{C(Ū)°+Rge A}τ is sublinear, finite-valued, nonnegative and symmetric (i.e. a seminorm).
- c) If $\overline{U} > 0$ with $2\overline{U} = LL^T$ ($L \in \mathbb{R}^{n \times n}$) and A = 0 then $p = \sigma_{C(\overline{U})} = ||L^T(\cdot)||_*$, i.e. p is a norm with $C(\overline{U})^\circ$ as its unit ball and $\gamma_{C(\overline{U})}$ as its dual norm.

・ロア・雪と・ヨア・ヨア

Proof.

Blackboard/Notes.

o o o o o o o o o o o o o o o o o o o		A new class of matrix support functionals
00000 000 000 000 000 000 000 000 000	0 0000000 000000 00000 00000	o ocococo ococo ococo ococo ococo

Current and future directions

- K-convexity
 - When is $\overline{\text{conv}}(\text{gph } F) = K \text{-epi } F$ for F K-convex ?

		A new class of matrix support functionals
0 0000000 000000 00000 00	0 00 00 00000 00	o oooooo oooo oo●

Current and future directions

K-convexity

- When is $\overline{\text{conv}}(\text{gph } F) = K \text{-epi } F$ for F K -convex?
- Subdifferential analysis for convex convex-composites, unification with the nonconvex convex-composite case (BCQ etc.)

0 0000000 000000 000000 00000 00000	0 00000 0000 000

Current and future directions

K-convexity

- When is $\overline{\text{conv}}(\text{gph } F) = K \text{-epi } F$ for F K -convex?
- Subdifferential analysis for convex convex-composites, unification with the nonconvex convex-composite case (BCQ etc.)

・ロト ・四ト ・ヨト ・ヨトー

∃ \0<</p> \0

Learn more about existing literature!

		A new class of matrix support functionals
000000	00	0000
00000	0000 00	000

Current and future directions

K-convexity

- When is $\overline{\text{conv}}(\text{gph } F) = K \text{-epi } F$ for F K -convex?
- Subdifferential analysis for convex convex-composites, unification with the nonconvex convex-composite case (BCQ etc.)
- Learn more about existing literature!
- Generalized matrix-fractional function
 - Systematic study of (partial) infimal projections

$$p(X) = \inf_{V \in \mathbb{S}^n} \sigma_{\Omega(A,B)}(X,V) + h(V).$$

for $h \in \Gamma_0(\mathbb{S}^n)$. \rightarrow SIOPT article to appear.

		A new class of matrix support functionals
0000000	00	00000
00000	0000	000

Current and future directions

- K-convexity
 - When is $\overline{\text{conv}}(\text{gph } F) = K \text{-epi } F$ for F K -convex?
 - Subdifferential analysis for convex convex-composites, unification with the nonconvex convex-composite case (BCQ etc.)
 - Learn more about existing literature!
- Generalized matrix-fractional function
 - Systematic study of (partial) infimal projections

$$p(X) = \inf_{V \in \mathbb{S}^n} \sigma_{\Omega(A,B)}(X,V) + h(V).$$

for $h \in \Gamma_0(\mathbb{S}^n)$. \rightarrow SIOPT article to appear.

Numerical methods based on GMF.

		A new class of matrix support functionals
000000	00	0000
00000	0000 00	000

Current and future directions

- K-convexity
 - When is $\overline{\text{conv}}(\text{gph } F) = K \text{-epi } F$ for F K -convex?
 - Subdifferential analysis for convex convex-composites, unification with the nonconvex convex-composite case (BCQ etc.)
 - Learn more about existing literature!
- Generalized matrix-fractional function
 - Systematic study of (partial) infimal projections

$$p(X) = \inf_{V \in \mathbb{S}^n} \sigma_{\Omega(A,B)}(X,V) + h(V).$$

for $h \in \Gamma_0(\mathbb{S}^n)$. \rightarrow SIOPT article to appear.

- Numerical methods based on GMF.
- Compute (analytically/numerically) the projection onto Ω(*A*, *B*) (→ projection/proximal-based algorithms).

		A new class of matrix support functionals
000000	00	0000
00000	0000 00	000

Current and future directions

- K-convexity
 - When is $\overline{\text{conv}}(\text{gph } F) = K \text{-epi } F$ for F K -convex?
 - Subdifferential analysis for convex convex-composites, unification with the nonconvex convex-composite case (BCQ etc.)
 - Learn more about existing literature!
- Generalized matrix-fractional function
 - Systematic study of (partial) infimal projections

$$p(X) = \inf_{V \in \mathbb{S}^n} \sigma_{\Omega(A,B)}(X,V) + h(V).$$

for $h \in \Gamma_0(\mathbb{S}^n)$. \rightarrow SIOPT article to appear.

- Numerical methods based on GMF.
- Compute (analytically/numerically) the projection onto Ω(*A*, *B*) (→ projection/proximal-based algorithms).

	Conjugacy of composite functions via K-convexity and inf-convolution	A new class of matrix support functionals
000000 0000 000	0 00 00 00000 00	0 000000 0000 00●

References

- H. Attouch and H. Brézis: Duality for the Sum of Convex Functions in General Banach Spaces. In Aspects of Mathematics and its Applications, Eds. I.A. Barroso, North Holland, Amsterdam, 1986, pp.125–133.
- H.H. Bauschke and P.L. Combettes: *Convex analysis and Monotone Operator Theory in Hilbert Spaces*. CMS Books in Mathematics, Springer-Verlag, New York, 2011.

J.V. BURKE AND T. HOHEISEL: Matrix support functionals for inverse problems, regularization, and learning. SIAM Journal on Optimization 25(2), 2015, pp. 1135–1159.

J.V. BURKE, T. HOHEISEL, AND Y. GAO: *Convex geometry of the generalized matrix-fractional function*. SIAM Journal on Optimization 28(3), 2018, pp. 2189–2200.

J.V. BURKE, T. HOHEISEL, AND Y. GAO: Variational properties of matrix functions via the generalized matrix-fractional function. SIAM Journal on Optimization, to appear.

J.V. BURKE, T. HOHEISEL, AND Q.V. NGUYEN: A note on the Fenchel conjugate of composite functions via infimal convolution. Working paper, McGill University, 2019.

 M. FAZEL, H. HINDI, AND S. BOYD: A Rank Minimization Heuristic with Application to Minimum Order

 System Approximation. Proceedings of the American Control Conference, Arlington, Virginia, June

 2001.

 CD ≥ <
 CD ≥
 CD ≥ </

Fundamentals fro 00000000 000000 00000 00000		Conjugacy of composite functions via K-convexity O OO OO OOOO OO	y of composite functions via K-convexity and inf-convolution A new class of matrix support function ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	
Applications of th	ne GMF			
	L. Hörmander: Sun convexe. Arkiv för	r la fonction d'appui des ensembles c Matematik 21(3), 1955, pp. 181–186.	onvexes dans un es	space localement
	CJ. HSIEH AND P. OLSEN: Nuclear norm minimization via active subspace selection. Proceedings of the 31st International Conference on Machine Learning (ICML-14), 2014, pp. 575-583.			<i>lection</i> . Proceedings of pp. 575-583.
	A. Jalali, M. Fazel, and L. Xiao: Variational Gram functions: Convex analysis and optimization. SIAM Journal on Optimimization 27(4), 2017, pp. 2634–2661.			
	TEEMU PENNANEN: Graph-Convex Mappings and K-Convex Functions. Journal of Convex Analysis 6(2), 1999, pp. 235–266.			
	R.T. Rockafellar: Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.			
	R.T. ROCKAFELLAR AND R.JB. WETS: Variational Analysis. A Series of Comprehensive Studies in Mathematics, Vol. 317, Springer, Berlin, Heidelberg, 1998.			
	J.F. TOLAND: A duality principle for non-convex optimisation and the calculus of variations. Archive for Rational Mechanics and Analysis 71(1), 1979, pp. 41-61.			