
A NOTE ON EPI-CONVERGENCE OF SUMS UNDER THE

INF-ADDITION RULE

JAMES V. BURKE AND TIM HOHEISEL

Abstract. We consider sums of sequences of extended real-valued functions

focusing on the epigraphical liminf and limsup inequalities. Specifically, we
note a deficiency in the statement of Theorem 7.46 in Variational Analysis,

Springer, Berlin, Heidelberg, 1998. An elementary counterexample is provided,

and a remedy that is well suited to the class of DC functions is established.
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1 Introduction

We consider sums of sequences of extended real-valued functions, i.e., functions that
can take the values +∞ and −∞. For such functions the addition operation can
lead to ambiguities and so rules for this operation need to be given in the infinite
valued cases. In some cases, there is no ambiguity in the appropriate definition; for
example,

∞+∞ :=∞, −∞+ (−∞) := −∞, a+∞ :=∞, a+ (−∞) := −∞

for all a ∈ R. The troublesome cases are ∞ + (−∞) and −∞ +∞. In the opti-
mization community, the so-called inf-addition rule,

∞+ (−∞) :=∞ (1)

is broadly used, e.g., see [4, Page 15]. This rule is usually applied in the context of
minimization where it has a number of useful consequences. The rule is particularly
useful in dealing with DC (difference of convex) functions , where the case∞+(−∞)
naturally occurs, e.g., see [2] or [5].

The primary issue addressed by this note concerns the analysis of the liminf
and limsup inequalities for sums of extended real-valued functions. Specifically, we
observe a flaw in the statement of [4, Theorem 7.46] in the case of the epi-liminf
inequality for sums (see Example 3.3). The focus of this note is to suggest a remedy
that is well suited to the class of DC functions (see Theorem 3.2).
The notation we employ follows that given in [4].

2 Extended real-valued sequences and inf-addition

We begin by first considering such limits for sequences of extended real-valued
numbers.
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Lemma 2.1 (Extended lim inf and lim sup inequalities under inf-addition). Let
{ak ∈ R}, {bk ∈ R}. Then the following hold:

a) We have lim sup
k→∞

ak + bk ≤ lim sup
k→∞

ak + lim sup
k→∞

bk.

b) Defining

a := lim inf
k→∞

ak, b := lim inf
k→∞

bk, and c := lim inf
k→∞

ak + bk

then either

lim inf
k→∞

ak + bk ≥ lim inf
k→∞

ak + lim inf bk. (2)

or

c <∞ = max{a, b} (3)

holds true, but not both. In particular, the inequality (2) holds under any
of the conditions

a ∈ R, b ∈ R and a 6= −b. (4)

Proof. a) For the cases that no inf-addition rule is needed for the right-hand side
of the inequality in a), this is covered by [1, Propositions 5.6 and 4.5]. For the case
that inf-addition occurs, the follows trivially, since in this case the right-hand side
is ∞.
b) If (3) holds then, obviously, (2) is violated.

On the other hand, suppose that (3) is violated: If c = +∞, then (5) trivially
holds; otherwise, max{a, b} <∞, and the inf-addition rule does not apply in which
case (2) follows from [1, Propositions 5.6 and 4.5].

The remainder is also covered by the latter reference, but can also be obtained
by showing that (4) implies the negation of (3).

�

The fact that there is an asymmetry in Lemma 2.1 with respect to liminf and limsup
(no assumptions needed in a)) is due to the fact that inf-addition is an asymmetric
notion.

The necessity of the assumptions in Lemma 2.1 b) is illustrated by the following
example.

Example 2.2. Consider the sequences {ak ∈ R}, {bk ∈ R} with ak := k, bk :=
−k (k ∈ N). Then we have limk→∞ ak = +∞, limk→∞ bk = −∞, hence, by inf-
addtion,

lim
k→∞

ak + lim
k→∞

bk =∞ > 0 = lim
k→∞

ak + bk.

3 Epi-convergence of sequences of sums

Let fk, f : Rn → R and x̄ ∈ Rn (k ∈ N). We define the epigraphical limit inferior
and limit superior, repsectively, of {fk} at x̄ by

(e− lim inf
k→∞

fk)(x̄) := min
{
α
∣∣ ∃{xk} → x̄ : lim inf fk(xk) = α

}
, (5)

(e− lim sup
k→∞

fk)(x̄) := min
{
α
∣∣ ∃{xk} → x̄ : lim sup fk(xk) = α

}
. (6)

Clearly, we always have

(e− lim inf
k→∞

fk)(x̄) ≤ (e− lim sup
k→∞

fk)(x̄).
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The sequence {fk} is said to converge epigraphically at x̄ to the function f if

(e− lim inf
k→∞

fk)(x̄) ≥ f(x̄) ≥ (e− lim sup
k→∞

fk)(x̄)

and we write fk
e→ f at x̄. In view of (5) and (6) this can be characterized by

∀{xk} → x̄ : lim inf
k→∞

fk(xk) ≥ f(x̄),

∃{xk} → x̄ : lim sup
k→∞

fk(xk) ≤ f(x̄).

Moreover, we say that {fk} converges continuously to f (and write fk
c→ f) at x̄ if

∀{xk} → x̄ : lim
k→∞

fk(xk) = f(x̄).

In addition, we say that {fk} converges pointwise to f (and write fk
p→ f) at x̄ if

lim
k→∞

fk(x̄) = x̄.

Proposition 3.1. Let φk, φ, ρk, ρ : Rn → R. If

lim inf
k→∞

φk(xk) + ρk(xk) ≥ lim inf
k→∞

φk(xk) + lim inf
k→∞

ρk(xk) ∀ {xk} → x̄,

then
(e− lim inf

k→∞
φk + ρk)(x̄) ≥ (e− lim inf

k→∞
φk)(x̄) + (e− lim inf

k→∞
ρk)(x̄).

Proof. Take xk → x̄ such that

lim inf
k→∞

φk(xk) + ρk(xk) = (e− lim inf
k→∞

φk + ρk)(x̄).

It follows that

(e− lim inf
k→∞

φk + ρk)(x̄) = lim inf
k→∞

φk(xk) + ρk(xk)

≥ lim inf
k→∞

φk(xk) + lim inf
k→∞

ρk(xk)

≥ (e− lim inf
k→∞

φk)(x̄) + (e− lim inf
k→∞

ρk)(x̄).

Here the equality is due to the choice of {xk}, the first inequality follows by as-
sumption and the second one from (5). �

The main contribution of this note now follows.

Theorem 3.2 ([4], Theorem 7.46 revisited). Let φ, φk, ρ, ρk : Rn → R (k ∈ N) and
x̄ ∈ Rn such that

φk
e→ φ at x̄ and ρk

e→ ρ at x̄.

Then
(e− lim inf

k→∞
φk + ρk)(x̄) ≥ φ(x̄) + ρ(x̄)

if one of the following two conditions holds:

(I) φ(x̄), ρ(x̄) > −∞.
(II) x̄ ∈ domφ and ρ(x̄) = −∞ (or x̄ ∈ dom ρ and φ(x̄) = −∞)

Moreover, we have φk + ρk
e→ φ+ ρ at x̄ if, in addition to (I) or (II) holding, one

the following conditions holds:

(i) φk
c→ φ at x̄ or ρk

c→ ρ at x̄.

(ii) both φk
p→ φ and ρk

p→ ρ at x̄.
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Proof. First note that the assumption (II) implies that (φ + ρ)(x̄) = −∞, hence,
trivially, lim infk→∞(φk + ρk)(xk) ≥ (φ+ ρ)(x̄) for any sequence {xk} → x̄.

Now, assume that (I) holds, and let {xk} → x̄ be given. Then, in view of the
respective epi-convergence properties, we have

lim inf
k→∞

φk(xk) ≥ φ(x̄) and lim inf
k→∞

ρk(xk) ≥ ρ(x̄).

Due to assumption (I), we can apply Lemma 2.1 to infer that

lim inf
k→∞

(φk + ρk)(xk) ≥ lim inf
k→∞

φk(xk) + lim inf
k→∞

ρk(xk) ≥ (φ+ ρ)(x̄).

In order to complete the proof, we follow the approach taken in [4, Theorem 7.46]
where it is observed that it suffices to show that there exists {xk} → x̄ such that

lim sup
k→∞

(φk + ρk)(xk) ≤ (φ+ ρ)(x̄) = φ(x̄) + ρ(x̄). (7)

in either of the cases (i) or (ii).
For these purposes, first assume that assumption (i) holds. With no loss in

generality, we only consider the case where φk
c→ φ at x̄. Moreover, let {xk} → x̄

such that limk→∞ ρk(xk) = ρ(x̄), which exists as ρk
e→ ρ at x̄. Then it follows that

lim sup
k→∞

φk(xk) = φ(x̄) and lim sup
k→∞

ρk(xk) = ρ(x̄).

Under either (I) or (II), we can invoke Lemma 2.1a) to get (7).
If, in turn, assumption (ii) holds, we consider the constant sequence {xk := x̄},

and get

lim sup
k→∞

φk(xk) = φ(x̄) and lim sup
k→∞

ρk(xk) = ρ(x̄).

Again, under either (I) or (II), we can hence invoke Lemma 2.1 to get (7).
This concludes the proof. �

The following example illustrates the need for the conditions (I) and (II) in Theorem
3.2 and also servers as a counterexample to the current statement of [4, Theorem
7.46].

Example 3.3. Consider the sequences of funtions fk := k, gk := −fk. Then,

obviously fk
c→ +∞ and gk

c→ −∞, hence, in particular e− lim fk + e− lim gk =
+∞−∞ = +∞. On the other hand, e− lim(fk + gk) = e− lim 0 ≡ 0.

4 DC functions

In this section we consider the application of Theorem 3.2 to the important class
of functions known as DC functions, where the inf-addition rule (1) plays a funda-
mental role.

Definition 4.1 (DC Functions). Let

Γ := {ϕ : Rn → R ∪ {+∞} | ϕ is closed proper and convex} .

Given g, h ∈ Γ, define f : Rn → R by

f(x) :=

{
g(x)− h(x), x ∈ dom g ∪ domh,

+∞, else.

We call f a DC function, where DC stands for difference of convex.
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Note that this definition for DC functions makes explicit use of the inf-addition rule
(1). DC functions arise in numerous applications and have been extensively studied
in the literature [2, 3, 5]. Smoothing for DC functions has played an important role
in the development of numerical methods for the minimization of DC objective
functions. It this setting the epi-convergence properties of these approximations is
key to understanding the behavior of these methods. Here we apply Theorem 3.2
to give some insight into what kinds of epi-convergence results are possible.

Lemma 4.2. Let g, h ∈ Γ. Then one the conditions (I) and (II) of Theorem 3.2
hold, with φ := g and ρ := −h, for all x̄ ∈ dom g ∪ domh. Therefore, every DC
function f := g−h satisfies one of conditions (I) and (II) on the set dom g∪domh.

Proof. Let x̄ ∈ dom g ∪ domh. If x̄ ∈ domh, then (I) holds since g, h ∈ Γ. On the
other hand, if x̄ /∈ domh, then x̄ ∈ dom g and −h(x̄) = −∞ so that (II) holds. �

Proposition 4.3. Let g, h ∈ Γ, {gk} ⊂ Γ, {hk} ⊂ Γ and x̄ ∈ dom g ∪ domh such
that either

(i) gk
e→ g at x̄ and hk

c→ h at x̄, or

(ii) gk
e→ g and gk

p→ g at x̄ and hk
e→ h and k

p→ h at x̄.

Then gk − hk
e→ g − h at x̄.

Proof. By Lemma 4.2, one of the conditons (I) and (II) holds at x̄, so Theorem 3.2

applies. If (i) holds, then we also have −hk
e→ −h at x̄ since −hk

c→ −h at x̄, and
the assertion follows from Theorem 3.2 applied to φ(k) := g(k) and ρ(k) := −h(k),
respectively. If (ii) holds, the result again follows from Theorem 3.2 applied to
φ(k) := g(k) and ρ(k) := −h(k), respectively. �

Corollary 4.4. Let g, h ∈ Γ, {gk} ⊂ Γ, {hk} ⊂ Γ and x̄ ∈ dom g∪domh such that

gk
e→ g at x̄ and hk

e→ h at x̄.

If h is finite-valued in a neighborhood of x̄, then gk − hk
e→ g − h at x̄.

Proof. By [4, Theorem 7.17 (c)], the hypotheses imply that hk
c→ h at x̄, hence the

result follows from Proposition 4.3. �
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