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Abstract. This paper studies well-posedness and parameter sensitivity of the Square Root
LASSO (SR-LASSO), an optimization model for recovering sparse solutions to linear inverse prob-
lems in finite dimension. An advantage of the SR-LASSO (e.g., over the standard LASSO) is that the
optimal tuning of the regularization parameter is robust with respect to measurement noise. This
paper provides three point-based regularity conditions at a solution of the SR-LASSO: the weak,
intermediate, and strong assumptions. It is shown that the weak assumption implies uniqueness
of the solution in question. The intermediate assumption yields a directionally differentiable and
locally Lipschitz solution map (with explicit Lipschitz bounds), whereas the strong assumption gives
continuous differentiability of said map around the point in question. Our analysis leads to new
theoretical insights on the comparison between SR-LASSO and LASSO from the viewpoint of tuning
parameter sensitivity: noise-robust optimal parameter choice for SR-LASSO comes at the “price”
of elevated tuning parameter sensitivity. Numerical results support and showcase the theoretical
findings.
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1. Introduction. In this paper we study the Square Root LASSO (SR-LASSO)

(1.1) min
xPRn

}Ax´ b} ` λ}x}1,

which was introduced in [10] as an optimization model for computing sparse solutions
to the linear inverse problem Ax « b. Here, A P Rmˆn is a design or sensing matrix,
b P Rm is a vector of observations or measurements, λ ą 0 is a tuning parameter, and
} ¨ } and } ¨ }1 denote the Euclidean and the ℓ1-norm, respectively. We refer to }Ax´b}
and λ}x}1 as the data fidelity and the regularization term, respectively. Seeking an
optimal balance between data fidelity and regularization, the SR-LASSO is a powerful
sparse regularization technique, widely adopted in statistics and increasingly popular
in scientific computing and machine learning (see § 1.1). The SR-LASSO is a close
relative of the well-known LASSO (Least Absolute Shrinkage and Selection Opera-
tor) [44], whose unconstrained formulation is obtained from (1.1) by squaring (and,
optionally, rescaling) the data fidelity term, thus also explaining the terminology.

This seemingly minor algebraic transformation corresponds to a major benefit for
the SR-LASSO: optimal tuning strategies for the parameter λ are robust to unknown
errors (i.e., noise) corrupting the observations (see [1, 10, 48] and Figure 2a). This
is a key practical advantage of (1.1). For example, in the context of sparse recovery,
when A and b arise from noisy linear measurements of a sparse or compressible vector
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x7, i.e., b “ Ax7 ` e (e P Rm), x7 can be successfully recovered via the SR-LASSO for
values of λ independent of the noise e under mild conditions on A (such as the robust
null space property; see e.g., [4, Theorem 6.29] for more details). In contrast, an order-
optimal choice of tuning parameter for LASSO is sensitive to the noise scale [17, 39].
This attractive property has made the SR-LASSO increasingly popular over the last
decade in a variety of contexts beyond statistics, such as compressed sensing, high-
dimensional function approximation, and deep learning (see § 1.1).

In this paper, building upon a line of work initiated by the authors [14], we inspect
the SR-LASSO through the lens of variational analysis [24, 32, 33, 38], which leads
to a full picture of well-posedness and stability of the solution mapping of (1.1).

1.1. Motivation. The SR-LASSO was initially proposed by Belloni et al. [10]
as a sparse high-dimensional linear regression technique. Since then, it has had a
significant impact in the statistical community, e.g., see [11, 20, 36, 41, 43] and the
book [48]. The SR-LASSO is also closely related to other statistical estimation tech-
niques, such as the scaled LASSO [42][48, Chapter 3] and SPICE (SParse Iterative
Covariance-based Estimation) [8, 9, 40].

On top of its impact in statistics, the SR-LASSO (and its weighted formulation,
where the ℓ1-norm in the regularization term of (1.1) is replaced with a weighted ℓ1-
norm) has been gaining increasing popularity in other fields such as compressed sens-
ing [23], high-dimensional function approximation, and deep learning. The (weighted)
SR-LASSO was applied and studied in the compressed sensing context by Adcock et
al. [1], motivated by applications to high-dimensional function approximation and
parametric differential equations [4]. Further studies and applications of the SR-
LASSO in compressed sensing include [3, 6, 25, 31, 35]. In addition, the SR-LASSO
was recently employed to analyze and develop deep learning techniques. Training
strategies based on the SR-LASSO were used to prove so-called practical existence
theorems for deep neural networks [2, 5] and to develop stable and accurate neural
networks for image reconstruction [21]. A thorough variational analysis has, to the
best of our knowledge, been lacking thus far.

1.2. Main contributions. Our first contribution concerns well-posedness of the
SR-LASSO. Concretely, given a solution x̄ of (1.1) with data pA, b, λq, we establish (in
Theorem 3.4) that x̄ (with support I) is the unique minimizer if the following holds:

Assumption 1 (Weak). We have:
(i) kerAI “ t0u and b R rgeAI ;

(ii) Dz P kerAT
I X

!

b´Ax̄
}Ax̄´b}

)K

:
›

›

›
AJ

IC

´

b´Ax̄
}Ax̄´b}

` z
¯
›

›

›

8
ă λ.

We then introduce two stronger regularity conditions for the SR-LASSO: the first,
which we call the intermediate condition, reads as follows for some solution x̄ and

J :“
!

i P t1, . . . , nu

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
AT

i
b´Ax̄

}Ax̄´b}

ˇ

ˇ

ˇ
“ λ

)

.

Assumption 2 (Intermediate). We have kerAJ “ t0u, Ax̄ ‰ b, and b R rgeAJ .

We show in Proposition 3.7 that this condition implies Assumption 1. On the other
hand, we find in Proposition 3.10 that it is implied by the strong condition at x̄.

Assumption 3 (Strong). We have:
(i) kerAI “ t0u and b R rgeAI ;
(ii) }AJ

IC pb´Ax̄q}8 ă λ}Ax̄´ b}.

This analysis on uniqueness and the study of the relationships between the different
regularity conditions relies heavily on classical convex analysis [37].
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Our second main contribution concerns sensitivity of solutions of (1.1) to the
data, i.e., we investigate the (solution) mapping S : Rm ˆ R`` Ñ Rn,

S : pb, λq ÞÑ argmin
xPRn

t}Ax´ b} ` λ}x}1u .(1.2)

To this end, we bring to bear the powerful machinery of variational analysis and
the set-valued implicit function theorems built around graphical differentiation à la
Rockafellar and Wets [38], Mordukhovich [32, 33], and Dontchev and Rockafellar [24].

We show in Theorem 4.3 that S is locally Lipschitz (hence single-valued) and
directionally differentiable at pb̄, λ̄q if Assumption 2 holds at x̄ :“ Spb̄, λ̄q. Comple-
menting this, in Proposition 3.8 we furnish an analytic expression for the (unique)
solution under said intermediate condition. Moreover, in Theorem 5.3, we show that
S is continuously differentiable at pb̄, λ̄q if Assumption 3 holds at x̄. These theoretical
findings are summarized in Figure 1.

Assumption 3
(Strong)

S continuously differentiable at pb̄, λ̄q

Assumption 2
(Intermediate)

S Lipschitz & directionally diff. at pb̄, λ̄q

Explicit formula for Spb̄, λ̄q

Assumption 1
(Weak)

Spb̄, λ̄q “ tx̄u

Theorem 5.3

Theorem 4.3

Proposition 3.8

Theorem 3.4

Fig. 1: Ordering of regularity assumptions and their implications

Our third main contribution is a comparison of SR-LASSO and (unconstrained)
LASSO (cf. (6.1)). It is well known that SR-LASSO optimal parameter choice is
noise scale robust, but not so for LASSO (cf. Figure 2a). However, we elaborate in §6
on the differences in sensitivity between the two programs and suggest the “price”
for robustness is increased parameter sensitivity. For instance, Figure 2b portrays the
Lipschitz behavior of both programs, displaying elevated parameter sensitivity for SR-
LASSO. A theoretical argument supporting this behavior is given in § 6.1 (see (6.2)
and (6.3)). Our insights on this robustness-sensitivity trade off for SR-LASSO’s pa-
rameter tuning strategies are, to the best of our knowledge, a novel contribution.

Our final contribution, in § 7, is a numerical exploration of SR-LASSO solution
uniqueness and sensitivity, as well as an empirical verification of the tightness of our
Lipschitz bounds in § 5 using synthetic experiments. In particular, Figures 4 and 5
demonstrate a wide neighborhood in which the sufficient condition for uniqueness is
empirically satisfied. Moreover, Figure 6 supports the notion that our theoretical
bounds on the Lipschitz constant for SR-LASSO are relatively tight (at least in the
regime considered in the experiment).

1.3. Related work. The well-posedness study presented in this paper is inspired
by the one for the LASSO problem in Zhang et al. [49], Gilbert [27] and Tibshirani [45],
as well as the one for nuclear norm minimization by Hoheisel and Paquette [29]. The
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Fig. 2: Comparison between SR-LASSO (SR) and (unconstrained) LASSO (UC):
recovery of an unknown sparse signal x7 P Rn from noisy underdetermined linear
measurements (cf. (6.4)). For λ ą 0, denote by x̄SRpλq, x̄UCpλq P Rn respective
solutions to SR-LASSO and LASSO. The optimal parameter values λSRbest, λ

UC
best ą 0

for each program minimize the ℓ2 approximation error between the solution and x7.
See § 6 for further details and discussion.

stability analysis executed here is similar to a study on the LASSO problem carried out
by the authors of this paper [14]. Stability analysis for linear least-squares problems
(i.e., quadratic fidelity term) with general, partially smooth regularizers can be found
in the body of work by Vaiter et al., e.g., [46, 47]. This embeds in the more general
and more recent studies (which do not cover the SR-LASSO) by Bolte et al. [18, 19].
A sensitivity analysis of the proximal operator using tools similar to our study can
be found in Friedlander et al. [26]. Tuning parameter sensitivity has previously been
examined for other LASSO formulations [15] and for proximal denoising [16].

Further studies that tackle the SR-LASSO explicitly, albeit not from a variational-
analytic perspective, were discussed in § 1.1. They include contributions in the fields
of statistics [10, 11, 20, 36, 41, 43, 48], sparse recovery, compressed sensing [1, 4, 3,
25, 31, 35], and deep learning [2, 5, 21].

1.4. Notation. In what follows, the Euclidean norm is denoted by } ¨ }, the
ℓ1-norm (on Rn) is given by }x}1 :“

řn
i“1 |xi|, while the ℓ8-norm (or maximum

norm) is given by }x}8 :“ maxi“1,...,n |xi|. The corresponding unit balls have the
respective subscripts, i.e., B, B1 and B8. The support of a vector x P Rn is given
by supppxq :“ ti P t1, . . . , nu | xi ‰ 0u. The first n positive integers are denoted
rns :“ t1, 2, . . . , nu. Define the projection operator onto a closed, convex set C Ď Rn

by PCpxq :“ argminzPRn }z ´ x}. Write the orthogonal complement of a subspace
V Ď Rm as V K. The identity matrix is denoted by I. The spectral norm of a matrix
X P Rmˆn is denoted by }X}. For a set K Ď rns, XM P Rmˆ|K| is the matrix whose
columns are the columns Xi of X for i P K. For x P Rn, we let LKpxq P Rn be the
vector whose elements are xi if i P K and 0 otherwise.

2. Preliminaries. We start with some basic results from matrix analysis. De-
note the (Moore-Penrose) pseudoinverse of X by X:. For a symmetric matrix S P

Rdˆd, let λmaxpSq be its maximum eigenvalue. For a matrix X P Rmˆs, let σminpXq

be its smallest nonzero singular value, and let σmaxpXq be its maximum singular value.
Recall that

σmaxpXq “ }X} “

b

λmaxpXTXq “ max
vPB

vTXv.
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We commence with a result that is ubiquitous in our study and is, in essence, the
famous Sherman-Morrison-Woodbury formula [30, (0.7.4.1)].

Lemma 2.1 (Sherman-Morrison-Woodbury). LetM P Rmˆs such that rankM “

s, and let v P Rm with }v} “ 1. For the matrix W :“ MJpI´vvJqM the following
hold:

(a) W is invertible (in fact, symmetric positive definite) if (and only if) v R rgeM
with

W´1 “ pMJMq´1 `
M :vpM :vqJ

1 ´ vJMM :v
.

(b) In the invertible case, we have

λmaxpW´1q ď
1

σminpMq2
`

}M :v}2

1 ´ vJMM :v
ă

1

σminpMq2
`

1

1 ´ vJMM :v
.

Proof. (a) First, observe that with the invertible matrix A :“ MJM , x :“ ´MJv,
and y :“ ´x, we have

1 ` xJA´1y “ 0 ðñ 1 “ vJMpMJMq´1MJv “ vJMM :v “ }MM :v}2

ðñ }MM :v} “ }v}

ðñ v P rgeM.

The last equivalence follows from the fact that MM : is the projection onto rgeM
and the Cauchy-Schwarz inequality. Hence, by the Sherman-Morrison-Woodbury for-
mula [30, (0.7.4.1)] with A, x, y as above, and assuming that v R rgeM , we have

W´1 “ pMJMq´1 `
pMJMq´1MJvvJMpMJMq´1

1 ´ vJMpMJMq´1MJv
“ pMJMq´1 `

M :vpM :vqJ

1 ´ vJMM :v
.

(b) By Weyl’s theorem [30, Theorem 4.3.1], it follows from (a) that

λmaxpW´1q ď λmaxppMJMq´1q ` λmax

ˆ

M :vpM :vqJ

1 ´ vJMM :v

˙

“
1

σminpMq2
`

}M :v}2

1 ´ }MM :v}2
.

We record an immediate consequence.

Corollary 2.2. Let M P Rmˆs and let v P Rs with }v} “ 1. Then the following
are equivalent:

(i) kerM “ t0u and v R rgeM ;
(ii) kerMJpI´vvJqM “ t0u;
(iii) kerpI ´ vvJqM “ t0u.

Proof.
‘piq ñ piiq’: This follows immediately from Lemma 2.1(a).
‘piiq ñ piiiq’: This is obvious.
‘piiiq ñ piq’: Assume (i) were false. Then kerM is nontrivial, in which case so is
kerpI´vvJqM , or v P rgeM . The latter, however, implies that there exists y P Rszt0u

such that pI´vvJqMy “ pI´vvJqv “ 0, hence, also in this case, kerpI´vvJqM is
nontrivial.
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2.1. Tools from variational analysis. We provide in this section the neces-
sary tools from variational analysis, and we follow here the notational conventions of
Rockafellar and Wets [38], but the reader can find the objects defined here also in the
books by Mordukhovich [32, 33] or Dontchev and Rockafellar [24].

Let S : E1 Ñ E2 be a set-valued map. The domain and graph of S, respectively,
are domS :“ tx P E1 | Spxq ‰ Hu and gphS :“ tpx, yq P E1 ˆ E2 | y P Spxqu. The
outer limit of S at x̄ P E1 is

Lim sup
xÑx̄

Spxq :“ ty P E2 | Dtxku Ñ x̄, tyk P Spxkqu Ñ y u .

Now let A Ď E. The tangent cone of A at x̄ P A is TApx̄q :“ Lim suptÓ0
A´x̄
t . The

regular normal cone of A at x̄ P A is the polar of the tangent cone, i.e.,

N̂Apx̄q :“ TApx̄q˝ “ tv P E | xv, yy ď 0 @y P TApx̄qu .

The limiting normal cone of A at x̄ P A is NApx̄q :“ Lim supxÑx̄ N̂Apxq. The coderiva-
tive of S at px̄, ȳq P gphS is the map D˚Spx̄ | ȳq : E2 Ñ E1 defined via

(2.1) v P D˚Spx̄ | ȳqpyq ðñ pv,´yq P NgphSpx̄, ȳq.

The graphical derivative of S at px̄, ȳq is the map DSpx̄ | ȳq : E1 Ñ E2 given by

(2.2) v P DSpx̄ | ȳqpuq ðñ pu, vq P TgphSpx̄, ȳq.

The strict graphical derivative of S at px̄, ȳq is D˚Spx̄ | ȳq : E1 Ñ E2 given by

D˚Spx̄ | ȳqpwq “

$

&

%

z P E1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

$

&

%

ttku Ó 0, twku Ñ w,

tzku Ñ z,
tpxk, ykq P gphSu Ñ px̄, ȳq

,

.

-

: zk P
Spxk ` tkwkq ´ yk

tk

,

.

-

.

We adopt the convention to set D˚Spx̄q :“ D˚Spx̄ | ȳq if Spx̄q is a singleton, and
proceed analogously for the graphical derivatives. We point out that if S is single-
valued and continuously differentiable at x̄, then DSpx̄q “ D˚Spx̄q coincides with its
derivative at x̄. Moreover, in this case D˚Spx̄q “ DSpx̄q˚. Therefore, there is, in this
case, no ambiguity in notation. More generally, we will employ the following sum rule
for the derivatives introduced above frequently in our study.

Lemma 2.3 ([38, Exercise 10.43 (b)]). Let S “ f `F for f : E1 Ñ E2, F : E1 Ñ

E2, and px̄, ūq P gphS. Assume that f is continuously differentiable at x̄. Then:
(a) DSpx̄|ūqpwq “ Dfpx̄qw `DF px̄|ū´ fpx̄qqpwq, @w P E1;
(b) D˚Spx̄|ūqpwq “ Dfpx̄qw `D˚F px̄|ū´ fpx̄qqpwq, @w P E1;
(c) D˚Spx̄|ūqpyq “ Dfpx̄q˚y `D˚F px̄|ū´ fpx̄qqpyq, @y P E2.

2.2. Convex analysis tools. We first present some fundamental concepts as-
sociated with convex sets [37]. For a convex set C Ď Rn and x̄ P C we define:

(a) the affine hull of C, i.e., is the smallest affine set that contains C, by aff C;
(b) the subspace parallel to C by parC :“ span pC ´ x̄q “ aff C ´ x̄;
(c) its relative interior by riC :“ tx P C | Dε ą 0 : Bεpxq X aff C Ď C u .

We note that intC ‰ H if and only if parC “ Rn, in which case riC “ intC. We call
a function f : Rn Ñ RYt`8u proper if dom f :“ tx P Rn | fpxq ă `8u is nonempty.
It is called convex if its epigraph epi f :“ tpx, αq P Rn ˆ R | fpxq ď αu is a convex
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set. As a first, yet central, example of an extended real-valued function, we consider
the indicator (function) δC : Rn Ñ R Y t`8u of C Ď R given by

δCpxq “

#

0 x P C

`8 else,

which is proper and convex if and only if C is nonempty and convex. The (convex)
subdifferential of f : Rn Ñ R Y t`8u at x̄ P dom f is given by

Bfpx̄q “ tv P Rn | fpx̄q ` xv, x´ x̄y ď fpxq @x P dom f u .

For instance, the subdifferential of the indicator function of a convex set C Ď Rn at
x̄ P C is the normal cone of C at x̄, i.e.,

BδCpx̄q “ tv P Rn | xv, x´ x̄y ď 0 @x P C u “ NCpx̄q.

The two most important examples to our study are the Euclidean norm } ¨ } whose
subdifferential is given by

(2.3) B} ¨ }pzq “

#

!

z
}z}

)

z ‰ 0

B z “ 0,

and the ℓ1-norm whose subdifferential is presented in the next result.

Lemma 2.4 (Subdifferential of ℓ1-norm). Let z P Rn and set I :“ supppzq :

(a) B} ¨ }1pzq “
Śn

i“1

#

sgnpziq, zi ‰ 0,

r´1, 1s, zi “ 0

+

;

(b) ri B} ¨ }1pzq “
Śn

i“1

#

sgnpziq, zi ‰ 0,

p´1, 1q, zi “ 0

+

;

(c) par B} ¨ }1pzq “ tv P Rn | vI “ 0u.

The (Fenchel) conjugate of f : Rn Ñ RY t`8u is the function f˚ : Rn Ñ RY t`8u,

f˚pyq :“ sup
xPdom f

txy, xy ´ fpxqu.

If f is proper and convex, then so is f˚ (which is always lower semicontinuous). Of
special interest is the conjugacy relation between indicator and support functions.
For any set C Ď Rn, its support function is σCpyq :“ supxPC xx, yy “ δ˚

Cpyq. We have
σ˚
Cpyq “ δCpxq if (and only if) C is nonempty, closed and convex. This is relevant to

our study as every norm is the support function of a symmetric, convex, compact set
C with 0 P intC. In particular, } ¨ }p “ σBq for all 1 ď p, q ď 8 and 1

p ` 1
q “ 11, eg

see [38, 11(12)]. Consequently, we have

(2.4) } ¨ }˚ “ δB and } ¨ }˚
1 “ δB8

.

3. Uniqueness of solutions and regularity conditions for SR-LASSO.
This section establishes a sufficient condition for SR-LASSO solution uniqueness, then
introduces two stronger point-based regularity conditions and their relationship.

1Formally setting 1{8 :“ 0.
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3.1. Uniqueness of solutions. In this section, we provide conditions that guar-
antee a given solution of SR-LASSO is unique. The key observation is that the nor-
malized residual is, in essence, an invariant for a given problem instance. This fact
can be seen through (Fenchel-Rockafellar) duality (e.g., see [38, Chapter 11]), which
we establish for the SR-LASSO (1.1) here.

Proposition 3.1 (Fenchel-Rockafellar duality scheme for (1.1)). We have:
(a) The (Fenchel-Rockafellar) dual problem to (1.1) is

(3.1) max
yPRm

xb, yy s.t. AJy P λB8, y P B.

(b) For px̄, ȳq the following are equivalent:
(i) x̄ solves (1.1), ȳ solves (3.1).
(ii) }Ax̄´ b}2 ` λ}x̄}1 “ xb, ȳy, and ȳ is feasible for (3.1).
(iii) AJȳ P λB} ¨ }1px̄q, ´ȳ P B}p¨q ´ b}2pAx̄q.
(iv) x̄ P NλB8

pAJȳq, b´Ax̄ P NBpȳq.

Proof. Apply [38, Example 11.41] in combination with Lemma 2.4, (2.3) and (2.4),
and realize that strong duality holds (as the the primal functions are finite-valued),
i.e., primal and dual optimal value are identical, which explains the equivalence of (i)
and (ii).

We now present the advertised invariance of the normalized residual.

Corollary 3.2. If there exists a solution x̂ of (1.1) with Ax̂´ b ‰ 0, then:
(a) The dual problem (3.1) has a unique solution ȳ with }ȳ} “ 1.
(b) Every solution x̄ of (1.1) satisfies b´Ax̄ “ }Ax̄´ b}ȳ.

Proof. (a) Observe that every dual solution ȳ, by Proposition 3.1(b), must satisfy

´ȳ P B} ¨ }pAx̂´ bq “

"

Ax̂´ b

}Ax̂´ b}

*

.

(b) Let ȳ be the unique dual solution. Pick any x̄ that solves (1.1) such that Ax̄´b ‰ 0.
Then, by Proposition 3.1 (b), it follows that ȳ “ b´Ax̄

}Ax̄´b}
.

We record a simple linear-algebraic fact.

Lemma 3.3. Let 0 P A Ď Rn and let U Ď Rn be a subspace. Then span pU `Aq “

U ` spanA.

Proof. First, observe that U `A Ď U ` spanA, hence span pU `Aq Ď U ` spanA.
In turn, observe that U Ď U ` A Ď span pU ` Aq and spanA Ď span pU ` Aq

(since both U and A contain 0). Consequently, we have

U ` spanA “ span pU Y spanAq Ď span pU `Aq.

The main result on uniqueness relies on the following regularity condition that we
impose at a solution x̄ of (1.1).

Assumption 1 (Weak). For a solution x̄ of (1.1) with I :“ supppx̄q we have:
(i) kerAI “ t0u and b R rgeAI ;

(ii) Dz P

!

b´Ax̄
}Ax̄´b}

)K

X kerAJ
I :

›

›

›
AJ

IC

´

b´Ax̄
}Ax̄´b}

` z
¯›

›

›

8
ă λ.

We are now in a position to present the advertised uniqueness result.

Theorem 3.4 (Uniqueness of solutions). Under Assumption 1, x̄ is the unique
solution of (1.1).
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Proof. Let ȳ :“ b´Ax̄
}Ax̄´b}

denote the unique dual solution and consider the auxiliary

problem with S :“ NBpȳq “ R`tȳu:

(3.2) min
xPRn

ψpxq :“ λ}x}1 ´
@

AJȳ, x
D

` δSpb´Axq.

The optimality conditions for (3.2) read

0 P Bψpxq “ λB} ¨ }1pxq ´AJȳ ´AJNSpb´Axq, b´Ax P S.

Using Corollary 3.2(b) and the fact that 0 P NSpb ´ Axq, we see that every solution
of (1.1) solves (3.2). Now, x̄ is the unique solution of (3.2) if (and only if) 0 P

int Bψpx̄q [27, Lemma 3.2]. Since Ax̄´b ‰ 0, we find that NSpb´Ax̄q “ tȳuK “ rgeP ,
where P :“ I´ȳȳJ is the orthogonal projection onto tȳuK. We now observe that
0 P int Bψpx̄q if and only if the following two conditions hold:

span Bψpx̄q “ Rn and 0 P ri Bψpx̄q.

Since our assumptions imply that NSpb´Ax̄q “ rgeP , we find that

span Bψpx̄q “ Rn ðñ par B} ¨ }1px̄q ` rge pAJP q “ Rn

ðñ ppar B} ¨ }1px̄qq
K

X kerpPAq “ t0u

ðñ kerpPAIq “ t0u

ðñ kerAI “ t0u and b R rgeAI .

Here the first identity uses Lemma 3.3 and the fact that AJȳ P λB} ¨ }1px̄q. The
second one follows by taking orthogonal complements on both sides. The penultimate
equivalence uses Lemma 2.4 (b), and the last equivalence uses Corollary 2.2.

In addition, we observe that

0 P ri Bψpx̄q ðñ Dz P tȳuK : AJ
i ȳ P λri B| ¨ |px̄iq ´AJ

i z,

which can be seen to be equivalent to (ii) by Lemma 2.4 (b).

Remark 3.5. Note that for I “ H (i.e., x̄ “ 0), condition (i) is vacuously satisfied,
so the sufficient conditions collapse to

(3.3) Dz P tbuK : }AJ
IC pb{}b} ` zq}8 ă λ.

The former corresponds to the fact that for x̄ “ 0, we have par Bψpx̄q “ Rn. ˛

3.2. Stronger regularity conditions. We now introduce two additional regu-
larity conditions, both of which (will be seen to) imply Assumption 1, and hence also
guarantee well-posedness of the SR-LASSO. As we will see in §4 and §5, respectively,
these conditions in fact yield stability of the solution function.

3.2.1. Intermediate condition. We start with what we call the intermediate
condition. This condition is based on the notion of the (SR-LASSO) equicorrelation
set, which is an analog to the one in the LASSO setting [45].

Assumption 2 (Intermediate). For a minimizer x̄ of (1.1), we have Ax̄ ‰ b
and for

J :“

"

i P rns

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

AT
i

b´Ax̄

}Ax̄´ b}

ˇ

ˇ

ˇ

ˇ

“ λ

*

,

we have kerAJ “ t0u and b R rgeAJ .
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Observe that if x̄ is minimizer of (1.1) with Ax̄ ‰ b, then we have I :“ supppx̄q Ď J
by first-order optimality conditions; a fact that is frequently used from here on.

We will now show that Assumption 2 implies Assumption 1 as advertised. To
this end, we employ the following lemma, whose proof is deferred to Appendix A.

Lemma 3.6 (Shrinking property). Let B P Rmˆℓ, C P Rmˆs, ȳ P Rm and ε ą 0
such that rank rB Cs “ ℓ` s and ȳ R rge rB Cs. Set T :“ tȳuK X kerCJ and

p˚ :“ inf
zPεBXT

}BJpȳ ` zq}8.

Then, p˚ ă }BJȳ}8, and the infimum is attained.

We are now in a position to present the advertised implication.

Proposition 3.7. Assumption 2 implies Assumption 1.

Proof. Let x̄ solve (1.1), set I :“ supppx̄q and s :“ |I|. Note that b R rgeAJ ,
thus, in particular, b R rgeAI and Ax̄ ‰ b, so ȳ :“ b´Ax̄

}Ax̄´b}
is the unique dual solution

(cf. Corollary 3.2). Thus, to establish the result, we show that

D z P tȳuK X kerAT
I : }AJ

IC pȳ ` zq}8 ă λ.

Now, set T :“ tȳuK X kerAJ
I . Since one already has }AJ

JC ȳ}8 ă λ by definition of J ,
choose any ε ą 0 satisfying

sup
zPεBXT

}AJ
JC pȳ ` zq}8 ă λ,

and seek z P εBXT satisfying }AJ
JzIpȳ` zq}8 ă λ. We select such a z via Lemma 3.6

with B :“ AJzI , C :“ AI and ℓ :“ |JzI| “ |J | ´ s. Thus, one has rank rAJzI AI s “

rankAJ “ |J |, and ȳ R rgeAJ “ rge rAJzI AI s. Therefore, the lemma yields z̄ P εBXT
satisfying }AJ

JzIpȳ`z̄q}8 ă }AJ
JzI ȳ}8 “ λ. Consequently, there exists z̄ P T satisfying

}AJ
IC pȳ ` z̄q}8 ă λ, completing the proof.

An immediate consequence of the above result and Theorem 3.4 is that the intermedi-
ate condition from Assumption 2 yields uniqueness of the solution in question. This is
complemented by the following result, the proof of which is postponed to Appendix B.
Under Assumption 2, it establishes uniqueness and gives an analytic expression for
the unique solution, analogous to a result for unconstrained LASSO [45, Lemma 2].

Proposition 3.8 (Analytic solution formula). Let x̄ be a solution of (1.1) such
that Assumption 2 holds at x̄. Then x̄ is the unique solution and

x̄ “ LJ

`

BAJ
J pI´ȳȳJqb

˘

, B :“
“

AJ
J pI´ȳȳJqAJ

‰´1
.(3.4)

3.2.2. The strong condition. We present a third regularity condition to which
we will refer as the ‘strong’ condition as it implies the intermediate condition from
Assumption 2 (and thus the weak one) as we will see shortly.

Assumption 3 (Strong). For a minimizer x̄ of (1.1) with I :“ supppx̄q we have:
(i) kerAI “ t0u and b R rgeAI ;
(ii) }AJ

IC pb´Ax̄q}8 ă λ}Ax̄´ b}.

Remark 3.9 (On Assumption 3). Note that part (ii) is automatically satisfied
if }AJ

IC }2Ñ8 ă λ, where } ¨ }2Ñ8 denotes the induced matrix norm defined by
}M}2Ñ8 :“ sup}z}2“1 }Mz}8. In particular, (ii) is implied by }AJ

IC } ă λ since
}M}2Ñ8 ď }M} for any matrix M . ˛
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We now address the advertised (and trivial) implication.

Proposition 3.10. Assumption 3 implies Assumption 2.

Proof. If Assumption 3 holds at x̄, then part (ii) yields that I “ J , hence part
(ii) implies that AJ “ AI has full rank.

3.2.3. Overview of regularity conditions. From Proposition 3.7 and Propo-
sition 3.10 it follows that:

Assumption 3 ùñ Assumption 2 ùñ Assumption 1.

The reverse implications do not generally hold as the following examples show.

Example 3.11. Consider the SR-LASSO (1.1) with

A “

ˆ

1 0 0
0 1 1

˙

, and b “

ˆ

1

2

˙

.

For λ “ 2?
5
, we find that x̄ “ 0 is a solution (with I “ H) as

AT b´Ax̄

}Ax̄´ b}
“ AT b

}b}
“

¨

˝

λ{2
λ
λ

˛

‚P λB} ¨ }1px̄q.

We also see that J “ t2, 3u, so AJ “

ˆ

0 0
1 1

˙

. Consequently, Assumption 2 is violated

at x̄. In turn, let z̄ :“ λ
6

`

2
´1

˘

P tbuK. Then, with AIC “ A, we find

›

›

›

›

AT
IC

ˆ

b

}b}
` z̄

˙
›

›

›

›

8

“

›

›

›

›

›

›

¨

˝

λ{2
λ
λ

˛

‚`

¨

˝

λ{3
´λ{6
´λ{6

˛

‚

›

›

›

›

›

›

8

ă λ.

Therefore, in view of (3.3), Assumption 1 holds at x̄. ˛

Example 3.12. Consider the SR-LASSO (1.1) with

A :“

ˆ

1 0 2
0 2 ´2

˙

and b :“

ˆ

1
1

˙

.

For λ “
?
2, we find that x̄ “ 0 is a solution (with I “ H) as

AT b´Ax̄

}Ax̄´ b}
“ AT b

}b}
“

¨

˝

1
λ
λ
0

˛

‚P λB} ¨ }1px̄q.

In particular, J “ t2u, thus AJ “
`

0
2

˘

, hence Assumption 2 is satisfied. In turn,
Assumption 3 is violated as I Ĺ J . ˛

4. Lipschitz stability under the intermediate condition. In this section,
we show that the intermediate condition Assumption 2 yields directional differentia-
bility and local Lipschitz continuity of the solution function of the SR-LASSO (1.1)
at the point in question, and we provide explicit Lipschitz bounds. The key result
is that, under Assumption 2, the subdifferential map of the objective function of
the SR-LASSO is strongly metrically regular [24, 38] at the point in question, i.e.,
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it is invertible with locally Lipschitz inverse there. To this end, given a positively
homogenous map H : Rn Ñ Rm, its outer norm given by

|H|` :“ sup
}x}ď1

sup
yPHpxq

}y}.

Proposition 4.1. Let A P Rmˆn, b P Rm and let x̄ P Rn be a solution of (1.1)
such that b ‰ Ax̄. Define T : Rn Ñ Rn by T pxq :“ 1

λB p}Ap¨q ´ b}q pxq`B}¨}1pxq. Un-

der Assumption 2,
ˇ

ˇD˚T px̄ | 0q´1
ˇ

ˇ

`
ă 8. Moreover, T is strongly metrically regular

at px̄, 0q.

Proof. Define r̄ :“ b´Ax̄ and ȳ :“ r̄{}r̄}. Let G :“ ∇}Ap¨q ´ b} and observe that
G has the form G “ ϕpA, b, 1, ¨q for ϕ as defined in Lemma C.1. By Lemma 2.3(c),
Lemma C.1(d) and the symmetry of DGpx̄q, one has

D˚T px̄ | 0qpyq “
1

λ
DGpx̄qy `D˚ pB} ¨ }1q

ˆ

x̄ |
1

λ
AJȳ

˙

pyq

“
1

λ}r̄}
AJ

`

I´ȳȳJ
˘

Ay `D˚ pB} ¨ }1q

ˆ

x̄ |
1

λ
AJȳ

˙

pyq.

Thus, we have

y P D˚T px̄ | 0q´1pzq

ðñ z P D˚T px̄ | 0q pyq

ðñ z ´
1

λ}r̄}
AJ

`

I´ȳȳJ
˘

Ay P D˚ pB} ¨ }1q

ˆ

x̄ |
1

λ
AJȳ

˙

pyq

ðñ

ˆ

z ´
1

λ}r̄}
AJ

`

I´ȳȳJ
˘

Ay,´y

˙

P Ngph B}¨}1

ˆ

x̄,
1

λ
AJȳ

˙

ùñ

$

’

’

’

&

’

’

’

%

´

zi ´ 1
λ}r̄}

AJ
i

`

I´ȳȳJ
˘

Ay,´yi

¯

P R ˆ t0u, @i P JC ,
´

zi ´ 1
λ}r̄}

AJ
i

`

I´ȳȳJ
˘

Ay,´yi

¯

P t0u ˆ R, @i P I,
´

zi ´ 1
λ}r̄}

AJ
i

`

I´ȳȳJ
˘

Ay,´yi

¯

P R´ ˆ R` Y R` ˆ R´, @i P JzI.

The third equivalence holds by definition of the coderivative, and the final implication
can be obtained, for instance, from [14, Lemma 4.9]. The first two conditions, for JC

and I, respectively, yield yJC “ 0 and λ}r̄}zI “ AJ
I

`

I´ȳȳJ
˘

AJyJ . Notice that the
third condition (using yJC ” 0) implies

yi

ˆ

zi ´
1

λ}r̄}
AJ

i

`

I´ȳȳJ
˘

AJyJ

˙

ě 0 @i P JzI.

Combining this observation with the first two conditions yields

(4.1) yJ
J zJ ´

1

λ}r̄}
yJ
JA

J
J pI´ȳȳJqAJyJ ě 0 @z P D˚T px̄ | 0q pyq.

Therefore, we find that
ˇ

ˇD˚T px̄ | 0q´1
ˇ

ˇ

`
“ sup

pz,yqPRnˆRn

␣

}y} | }z} ď 1, y P D˚T px̄ | 0q´1pzq
(

ď sup
pz,uqPRnˆR|J|

"

}u}

ˇ

ˇ

ˇ

ˇ

}z} ď 1, uJzJ ě
1

λ}r̄}
uJAJ

J pI´ȳȳJqAJu

*

ă `8.
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Here the finiteness is due to the fact that the second supremum is attained by com-
pactness of the constrained set which, in turn, relies on the positive definiteness of
AJ

J pI´ȳȳJqAJ due to Assumption 2 and Lemma 2.1. Hence, by [24, Theorem 4C.2]
it follows that T is metrically regular at px̄, 0q. In addition, a subdifferential of a
closed, proper convex function, T is globally (maximally) monotone, so by [24, The-
orem 3G.5], it follows that T is strongly metrically regular at px̄, 0q.

We use the strong metric regularity result under Assumption 2 to bootstrap our
way to directional differentiability and obtain a (local) Lipschitz modulus for the
solution map that depends on J . For this, we need the following preparatory result.

Lemma 4.2. Let x̄ be the (unique) solution of (1.1) such that (given pA, b, λq)
Assumption 2 holds at x̄. Suppose that x̄k solves (1.1) given pAk, bk, λkq Ñ pA, b, λq

and assume x̄k Ñ x̄. Then, Assumption 2 holds at x̄k (for pAk, bk, λkq).

Proof. First, note that Ax̄ ‰ b. As pAk, bkq Ñ pA, bq and x̄k Ñ x̄, by continuity
we find that Akx̄k ‰ bk for all k sufficiently large. In particular, the equicorrelation
set Jk associated to x̄k and pAk, bk, λkq is well-defined for such k, and by continuity,
Jk Ď J for all k sufficiently large. Since AJ has full rank, so does AJk

for all k
sufficiently large.

We are now in a position to state the main result of this section. Recall that we
already know from Proposition 3.7 and Theorem 3.4 that the intermediate condition
in Assumption 2 implies uniqueness of solutions at the point in question.

Theorem 4.3. Let pb̄, λ̄q P Rm ˆ R`` and suppose that Assumption 2 holds at
x̄ :“ Spb̄, λ̄q, where S is defined as in (1.2). Then:

(a) S is locally Lipschitz at pb̄, λ̄q with (local) Lipschitz modulus

L ď

«

1

σminpAJq2
`

1

1 ´ }AJA
:

J ȳ}

ff

¨

„

σmax pAJq `

›

›

›

›

AJ
J pAx̄´ b̄q

λ̄

›

›

›

›

ȷ

.

(b) S is directionally differentiable at pb̄, λ̄q and the directional derivative
S1ppb̄, λ̄q; p¨, ¨qq : Rm ˆ R Ñ Rn is locally Lipschitz. Moreover, for pq, αq P

Rm ˆ R there exists K “ Kpq, αq Ď J with supppx̄q Ď K such that

S1ppb̄, λ̄q; pq, αqq “ LK

´

B
´

AJ
KpI´ȳȳJqq `

α

λ̄
AJ

KpASpb̄, λ̄q ´ b̄q
¯¯

,

where B :“
`

AJ
KAK

˘´1
`

A:

K ȳpA:

K ȳqJ

1 ´ ȳJAKA
:

K ȳ
.

Proof. We apply [14, Proposition 4.10] for f : pRm ˆ Rq ˆ Rn Ñ Rn with

fppb, λq, xq “
1

λ
AJB} ¨ }2pAx´ bq, @b P Rm, @λ ą 0, @x P Rn,

and F : Rn Ñ Rn, F :“ B} ¨ }1. Throughout, to simplify notation, we make the
identification fpb, λ, xq :“ fppb, λq, xq (and perform this unnesting elsewhere, where
appropriate). Under Assumption 2, it holds that Ax̄ ‰ b̄, hence, f is continuously
differentiable in a neighborhood of pb̄, λ̄, x̄q. Additionally, f and F are monotone, be-
cause the (sub)differential operator of a convex function is (maximally) monotone [38,
Chapter 12]. We organize the proof into three steps.
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Step 1. Local Lipschitz continuity of S. By construction, pb̄, λ̄, x̄q P gphS with
0 P fpb̄, λ̄, x̄q `F px̄q. For T pxq :“ fpb̄, λ̄, xq `F pxq, as in Proposition 4.1, Lemma 2.3
yields

D˚T px̄ | 0q “ Dxfpb̄, λ̄, x̄q˚ `D˚F px̄ | ´fpb̄, λ̄, x̄qq.

Hence, Proposition 4.1 establishes finiteness of
ˇ

ˇ

ˇ
pD˚T px̄ | 0qq

´1
ˇ

ˇ

ˇ

`

, giving local Lip-

schitz continuity of S at pb̄, λ̄q by [14, Proposition 4.10(b)] and showing the validity
of the first claim in part (a).

Step 2. Directional differentiability of S at pb̄, λ̄q. Observe that

Spb, λq “ tx P Rn : 0 P Gpb, λ, xqu, with Gpb, λ, xq :“ fpb, λ, xq ` F pxq.

Moreover, F is proto-differentiable at px̄,´fpb̄, λ̄, x̄qq by [26, Remark 1 and Lemma 4].
Hence, by [14, Proposition 4.10(c)], the graphical derivative DSpb̄, λ̄q is (single-valued
and) locally Lipschitz with

DSpb̄, λ̄qpq, αq “
␣

w P Rn : 0 P DGpb̄, λ̄, x̄ | 0qpq, α, wq
(

, @pq, αq P Rm ˆ R.

Using the graphical derivative sum rule in Lemma 2.3(a) gives

DGpb̄, λ̄, x̄ | 0qpq, α, wq “ Dfpb̄, λ̄, x̄qpq, α, wq `DF px̄ | ´fpb̄, λ̄, x̄qqpwq,

where Dfpb̄, λ̄, x̄ | 0qpq, α, wq “ Dbfpb̄, λ̄, x̄qq`Dλfpb̄, λ̄, x̄qα`Dxfpb̄, λ̄, x̄qw. Letting
r̄ :“ b̄´Ax̄ and ȳ :“ r̄{}r̄}, we use Lemma C.1 to compute:

Dfpb̄, λ̄, x̄qpq, α, wq “ ´
1

λ̄}r̄}

„

AJ ´AJr̄r̄J

}r̄}2

ȷ

q `
α

λ̄2}r̄}
AJr̄ `

1

λ̄}r̄}

„

AJA´AJ r̄r̄
J

}r̄}2
A

ȷ

w

“ ´
AJ

λ̄}r̄}

”

`

I´ȳȳJ
˘

pq ´Awq ´
α

λ̄
r̄
ı

.

Altogether, we obtain that

0 P DGpb̄, λ̄, x̄ | 0qpq, α, wq

“ ´
AJ

λ̄}r̄}

”

`

I´ȳȳJ
˘

pq ´Awq ´
α

λ̄
r̄
ı

`DpB} ¨ }1q
`

x̄ | AJȳ
˘

pwq

is equivalent to

AJ

λ̄}r̄}

”

`

I´ȳȳJ
˘

pq ´Awq ´
α

λ̄
r̄
ı

P DpB} ¨ }1q
`

x̄ | AJȳ
˘

pwq.

This, in turn, by the definition of the graphical derivative, is equivalent to
ˆ

w,
AJ

λ̄}r̄}

”

`

I´ȳȳJ
˘

pq ´Awq ´
α

λ̄
r̄
ı

˙

P Tgph B}¨}1

`

x̄, AJȳ
˘

.(4.2)

Let I “ supppx̄q and recall [14, Lemma 4.9], namely,

Tgph B}¨}1px̄, ūq Ď

n
ą

i“1

$

’

’

’

&

’

’

’

%

R ˆ t0u, x̄i ‰ 0, ūi “ sgnpx̄iq,

R´ ˆ t0u Y t0u ˆ R`, x̄i “ 0, ūi “ ´1,

t0u ˆ R´ Y R` ˆ t0u, x̄i “ 0, ūi “ `1,

t0u ˆ R, x̄i “ 0, |ūi| ă 1.

(4.3)



SQUARE ROOT LASSO 15

Using that }AJ
JC ȳ}8 ă λ and }AJ

J ȳ}8 “ λ with I Ď J as well as x̄JC “ 0, the
inclusion (4.3) and the membership (4.2) together imply

$

’

’

’

&

’

’

’

%

´

wi,
AJ

i

λ̄}r̄}

“

pI´ȳȳJqpq ´Awq ´ α
λ̄
r̄
‰

¯

P R ˆ t0u, @i P I,
´

wi,
AJ

i

λ̄}r̄}

“

pI´ȳȳJqpq ´Awq ´ α
λ̄
r̄
‰

¯

P t0u ˆ R, @i P JC ,
´

wi,
AJ

i

λ̄}r̄}

“

pI´ȳȳJqpq ´Awq ´ α
λ̄
r̄
‰

¯

P t0u ˆ R Y R ˆ t0u, @i P JzI.

In particular, for any pq, αq, wJC “ 0. Thus, AJ
I

“

pI´ȳȳJqpq ´AJwJq ´ α
λ̄
r̄
‰

“ 0.

Likewise, for all i P JzI we have wiA
J
i

“

pI´ȳȳJqpq ´AJwJq ´ α
λ̄
r̄
‰

“ 0. Now, set
K :“ I Y ti P JzI | wi ‰ 0u and note that I Ď K Ď J and wKC ” 0. Consequently,
AJ

K

“

pI´ȳȳJqpq ´AKwKq ´ α
λ̄
r̄
‰

“ 0, which is equivalent to AJ
KpI´ȳȳJqAKwK “

AJ
KpI´ȳȳJqq ´ α

λ̄
AJ

K r̄. Note that AK has full column rank because AJ does (by

Assumption 2). Using that ȳ R rgeAK because b̄ R rgeAJ , Lemma 2.1 yields

B :“
“

AJ
KpI´ȳȳJqAK

‰´1
“
`

AJ
KAK

˘´1
`

A:

K ȳpA:

K ȳqJ

1 ´ ȳJAKA
:

K ȳ
.

In particular, using that wKC ” 0 (by definition of K), we see that w and K are
uniquely defined for a given pq, αq with w “ DSpb̄, λ̄qpq, αq, where

wK “ B
´

AJ
KpI´ȳȳJqq ´

α

λ̄
AJ

K r̄
¯

, wKC ” 0.(4.4)

We conclude that S is directionally differentiable at pb̄, λ̄q with directional derivative
S1ppb̄, λ̄q; pq, αqq “ w, where w “ wpq, αq is defined as in (4.4). This proves part (b).

Step 3. Estimation of the Lipschitz modulus of S. To infer the Lipschitz bound
claimed in part (a) first note that, by Lemma 4.2 combined with the fact that S is
(Lipschitz) continuous near x̄, we can infer that Assumption 2 holds at every point
x “ Spb, λq for all pb, λq sufficiently close to pb̄, λ̄q. Therefore, we can reiterate the
whole argument above to infer that S is directionally differentiable at pb, λq with the
corresponding expression for the directional derivative which is, in addition, (locally
Lipschitz) continuous as a function of the direction for all pb, λq sufficiently close to
pb̄, λ̄q. Hence, by [14, Proposition 4.10(c)], S is locally Lipschitz at pb̄, λ̄q with modulus

L :“ lim sup
pb,λqÑpb̄,λ̄q

max
}pq,αq}ď1

}S1ppb, λq; pq, αqq}.

Let pbk, λkq Ñ pb̄, λ̄q with max}pq,αq}ď1 }S1ppbk, λkq; pq, αqq} Ñ L. As S1ppbk, λkq; p¨, ¨qq

is continuous (as mentioned above) for all k P N (sufficiently large), there exists pq̄, ᾱq P

B and tpqk, αkqukPN Ď B with pqk, αkq Ñ pq̄, ᾱq such that }S1ppbk, λkq; pqk, αkqq} Ñ L.
Let the associated index sets be Kk. By finiteness, we may assume without loss of
generality that Kk ” K Ď J . Thus, we have

›

›S1ppbk, λkq; pqk, αkqq
›

› “

›

›

›

›

LK

ˆ

Bk

ˆ

AJ
KpI´ȳkȳ

J
k qqk ´

αk

λk
AJ

Krk

˙˙
›

›

›

›

ď λmaxpBkq ¨

›

›

›

›

AJ
KpI´ȳkȳ

J
k qqk ´

αk

λk
AJ

Krk

›

›

›

›

,

using that }LK} ď 1 and where rk :“ bk ´ ASpbk, λkq, ȳk :“ rk{}rk}, Bk :“
“

AJ
KpI´ȳkȳ

J
k qAK

‰´1
. Here, observe that Bk is well-defined as rgeAK Ď rgeAJ and
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ȳ R AJ , thus ȳk R rgeAK (for all k sufficiently large). Passing to the limit yields

L ď λmaxpBq ¨

›

›

›
AJ

KpI´ȳȳJqq̄ ´
ᾱ

λ̄
AJ

K r̄
›

›

›

ď

«

1

σminpAKq2
`

}AJ
K ȳ}2

1 ´ ȳJAKA
:

K ȳ

ff

¨

„

σmax

`

AJ
KpI´ȳȳJq

˘

`

›

›

›

›

AJ
KpAx̄´ b̄q

λ̄

›

›

›

›

ȷ

ď

«

1

σminpAKq2
`

1

1 ´ }AKA
:

K ȳ}

ff

¨

„

σmax pAKq `

›

›

›

›

AJ
KpAx̄´ b̄q

λ̄

›

›

›

›

ȷ

ď

«

1

σminpAJq2
`

1

1 ´ }AJA
:

J ȳ}

ff

¨

„

σmax pAJq `

›

›

›

›

AJ
J pAx̄´ b̄q

λ̄

›

›

›

›

ȷ

.

Here, the second inequality uses Lemma 2.1(b) for the first factor, and that }pq̄, ᾱq} ď

1 for the second. The penultimate inequality uses that }ȳ} “ 1, hence I´ȳȳT

is a projection, and thus σmaxpAT
KpI´ȳȳT qq ď }AK} ¨ } I´ȳȳT } ď }AK}. The

last inequality uses that σminpAJq ď σminpAKq and σmaxpAJq ě σmaxpAKq; note

}AKA
:

K ȳ} ď }AJA
:

J ȳ}: projecting onto a larger subspace does not decrease norm.

Remark 4.4. An inspection of the proof of Theorem 4.3 reveals that the claim of
Theorem 4.3(b) can be strengthened: the argument used at the beginning of Step 3 of
the proof shows that S is directionally differentiable (with locally Lipschitz directional
derivative) not only at pb̄, λ̄q, but in a whole neighborhood. ˛

5. Continuous differentiability of the solution function. In this section,
we show that, under Assumption 3, the solution map is continuously differentiable in
a neighborhood of the (unique) solution. This is essentially a direct corollary of the
directional differentiability result from Theorem 4.3 (b) once we establish that the
support of solutions is locally constant. To this end, recall from [14, (2.4)] that, for a
(closed) proper, convex function f : Rn Ñ R Y t`8u, one has

y P ri pBfpx̄qq ðñ py,´1q P riNepi f px̄, fpx̄qq.(5.1)

Lemma 5.1 (Constancy of support). For pĀ, b̄, λ̄q P Rmˆn ˆ Rm ˆ R`` let x̄
be the unique minimizer of (1.1) such that Assumption 3(ii) holds. Assume that
pAk, bk, λkq Ñ pĀ, b̄, λ̄q and that xk is a solution of (1.1) given pAk, bk, λkq such that
xk Ñ x̄. Then supppxkq “ supppx̄q for all k sufficiently large.

Proof. Set z̄ :“ px̄, }x̄}1q, Ω :“ epi } ¨ }1 and ϕpx, tq :“ 1
λ̄

}Āx ´ b̄} ` t. The proof
follows the same reasoning as the proof of [14, Lemma 4.7], and all that needs to
be observed is the fact that, by Assumption 3(ii), and (5.1), z̄ is nondegenerate, i.e.,
´∇ϕpz̄q P riNΩpz̄q.

We record the fact that Assumption 3 is a local property.

Remark 5.2 (Assumption 3 is local property). Assume that Assumption 3 holds
at x̄ “ Spb̄, λ̄q. Since S is (locally Lipschitz) continuous around pb̄, λ̄q, Lemma 5.1
yields a neighborhood V of pb̄, λ̄q such that supppSpb, λqq ” supppSpb̄, λ̄qq and, conse-
quently, Assumption 3 holds at Spb, λq for all pb, λq P V. ˛

Theorem 5.3. For pb̄, λ̄q P Rm ˆ R`` let x̄ be a solution of (1.1) with I :“
supppx̄q such that Assumption 3 holds. Then S, defined as in (1.2), is continuously
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differentiable at pb̄, λ̄q with derivative

DSpb̄, λ̄qpq, αq “ LI

˜«

`

AJ
I AI

˘´1
`

A:

I ȳpA:

I ȳqJ

1 ´ ȳJAIA
:

I ȳ

ff

¨

”

AJ
I pI´ȳȳJqq ´

α

λ̄
AJ

I r̄
ı

¸

,

for r̄ :“ b̄´Ax̄, ȳ :“ r̄{}r̄}. In particular, S is locally Lipschitz at pb̄, λ̄q with constant

L ď

«

1

σminpAIq2
`

1

1 ´ }AIA
:

I ȳ}

ff

¨

„

σmax pAIq `

›

›

›

›

AJ
I r̄

λ̄

›

›

›

›

ȷ

.

Proof. Recalling that Assumption 3 implies Assumption 2 (due to I “ J), we can
already infer the Lipschitz bound from Theorem 4.3. In addition, we can revisit the
proof of the directional differentiability of S under this premise to infer

S1ppb̄, λ̄q; pq, αqq “ LI

˜«

`

AJ
I AI

˘´1
`

A:

I ȳpA:

I ȳqJ

1 ´ ȳJAIA
:

I ȳ

ff

¨

”

AJ
I pI´ȳȳJqq ´

α

λ̄
AJ

I r̄
ı

¸

.

This directional derivative is linear in the direction pq, αq, because I “ Kpq, αq “ J
here, and thus (see [12, Proposition 4.10(c)]) S is, in fact, differentiable at pb̄, λ̄q. Now,
Remark 5.2 yields a neighborhood V of pb̄, λ̄q such that Assumption 3 holds at Spb, λq

with supppSpb, λqq “ I for all pb, λq P V. Therefore, reiterating the above argument, S
is differentiable at pb, λq P V with the respective derivative which, by the constancy of
the support, can be seen to be continuous. This proves continuous differentiability.

Remark 5.4. In practice, it is reasonable to expect b̄ R rgeAI in cases of interest
to compressed sensing. There, it is interesting to consider |I| ! m. Under mild as-
sumptions, if b̄ has been corrupted by random noise then it will be “full dimensional”,
in the sense of not being contained in any of the possible subspaces rgeAI . ˛

Corollary 5.5. For pb̄, λ̄q P Rm ˆR`` let x̄ be a solution of (1.1) such that As-
sumption 3 holds and let I :“ supppx̄q. Then

S : λ P R`` ÞÑ argmin
xPRn

␣

}Ax´ b̄} ` λ}x}1
(

is continuously differentiable at λ̄ with derivative

DSpλ̄qpαq “
α

λ̄

«

A:

I r̄ `
A:

I ȳpA:

I ȳqJAJ
I r̄

1 ´ ȳJAIA
:

I ȳ

ff

, @α P R,

where r̄ :“ b̄´Ax̄, ȳ :“ r̄{}r̄}. In particular, S is locally Lipschitz at λ̄ with constant

L ď
1

λ̄

›

›

›
A:

I r̄
›

›

›
¨ |1 ´ V |

´1
ď

}Ax̄´ b̄}

λ̄ ¨ σminpAIq ¨ |1 ´ V |
, V :“ ȳJAIA

:

I ȳ.(5.2)

Proof. In the proof of Theorem 5.3, the expression for the derivative, when S is
a function of λ only, clearly reduces to S1pλ̄;αq “ DSpλ̄qpαq “ LI

`

α
λ̄
BAJ

I r̄
˘

where B

is defined as in Theorem 4.3(b). Accordingly, recalling that V “ ȳJAIA
:

I ȳ,

BAJ
I r̄ “

«

`

AJ
I AI

˘´1
`
A:

I ȳpA:

I ȳqJ

1 ´ V

ff

AJ
I r̄ “ A:

I r̄ `
A:

I ȳpA:

I ȳqJAJ
I r̄

1 ´ V
“ A:

I r̄ `
A:

I r̄V

1 ´ V
.

In particular,

L ď
1

λ̄

›

›LI

`

BAT
I r̄

˘
›

› ď
1

λ̄

›

›

›
A:

I r̄
›

›

›
¨

ˇ

ˇ

ˇ

ˇ

1 `
V

1 ´ V

ˇ

ˇ

ˇ

ˇ

“
1

λ̄

›

›

›
A:

I r̄
›

›

›
¨ |1 ´ V |

´1
.
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6. SR-LASSO vs. LASSO. In this section we compare the Lipschitz behavior
for the SR-LASSO solution map with that of the (unconstrained) LASSO. We draw
theoretical comparisons (in § 6.1) using the Lipschitz bound in Corollary 5.5 and an
analogous bound derived in [14]; and numerical comparisons in § 6.2.

6.1. Comparison of Lipschitz bounds. Let us recall that, for given pA, b, λq P

Rmˆn ˆ Rm ˆ R``, the (unconstrained) LASSO is given by

min
zPRn

1

2
}Az ´ b}2 ` λ}z}1.(6.1)

As mentioned in the introduction, the vital difference with respect to the SR-LASSO
is the square on the data fidelity term. A variational analysis of its solution map
is carried out in [14]. Here, we want to compare Lipschitz bounds for SR-LASSO
and LASSO from a theoretical viewpoint. For the sake of simplicity, we focus on the
regularity of the solution map with respect to the tuning parameter λ, although a
similar comparison can be made when the solution map is considered as a function of
pb, λq. To denote Lipschitz constants associated with SR-LASSO and (unconstrained)
LASSO, we shall use the subscripts SR and UC, respectively.

Corollary 5.5 states that, under Assumption 3 with associated pb̄, λ̄q P Rm ˆR``,
a Lipschitz bound for the SR-LASSO solution map at the point λ̄ (corresponding to
the unique solution x̄SR) is

(6.2) LSR ď
1

λ̄
}A:

ISR
r̄SR} ¨

ˇ

ˇ

ˇ
1 ´ ȳJAISRA

:

ISR
ȳ
ˇ

ˇ

ˇ

´1

,

where ISR :“ supppx̄SRq, ȳ :“ r̄SR{}r̄SR} and r̄SR :“ b̄´Ax̄SR.
An analogous version of this bound for the LASSO can be derived from results

in [14]. Under [14, Assumption 4.4] with associated pb̄, λ̄q P Rm ˆ R`` (which is
the analogue of Assumption 3 for the LASSO case), i.e., for x̄UC solving (6.1) with
pb, λq “ pb̄, λ̄q such that

AI has full column rank and
›

›AJ
IC pb̄´Ax̄UCq

›

›

8
ă λ,

where IUC :“ supppx̄UCq. In this case, an inspection of the proof of [14, Corollary 4.16]
reveals that the derivative of the LASSO solution map SUC at λ̄ satisfies }S1

UCpλ̄q} ď
›

›

›

1
λ̄
A:

IUC
r̄UC

›

›

›
, where r̄UC :“ b̄´Ax̄UC, x̄UC is the unique LASSO solution, and IUC :“

supppx̄UCq. This leads, in turn, to the following Lipschitz bound:

(6.3) LUC ď
1

λ̄
}A:

IUC
r̄UC}.

We are now in a position to compare the two Lipschitz bounds (6.2) and (6.3). Under
the respective “strong” assumptions (i.e., Assumption 3 and [14, Assumption 4.4])
and supposing that x̄SR « x̄UC (which, in turn, implies ISR « IUC and r̄SR « r̄UC), the

only difference between the two bounds is the multiplicative term |1´ȳJAISRA
:

ISR
ȳ|´1

present in the SR-LASSO case. Since }ȳ} “ 1 and recalling that AISRA
:

ISR
is an or-

thogonal projection onto a subspace, we have 0 ă ȳJAISRA
:

ISR
ȳ ď }ȳ}}AISRA

:

ISR
ȳ} ď

}ȳ}2 “ 1. This implies that |1´ ȳJAISR
A:

ISR
ȳ|´1 ą 1, which shows that the Lipschitz

bound for SR-LASSO is strictly larger than the one for the LASSO.
Since we are comparing upper bounds, strictly speaking we cannot conclude that

the actual Lipschitz constant of the SR-LASSO is larger than that of the LASSO.
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However, the fact that these two upper bounds arise from the application of analogous
proof techniques suggests this to be a reasonable conjecture. This theoretical insight
aligns with numerical evidence provided by Figure 2b and the next subsection.

6.2. Numerical Lipschitz comparison. Here, we numerically examine the
solution sensitivity of SR-LASSO and LASSO, complementing the theoretical obser-
vations of the previous subsection. After providing implementation details in § 6.2.1,
we provide extended discussion and details on Figure 2 in § 6.2.2 and then compare
the two programs in §6.2.3 in the context of varying measurement size and noise scale.

6.2.1. Implementation details. All numerical aspects, including solvers for
(1.1) and (6.1) were implemented in Python using CVXPY v1.2 [7, 22] with the MOSEK

solver [34]. Default parameter settings were used. Some code and extended discussion
for the experiments in this work are available in our code repository [13].

The elements of the experimental setup are as follows: the ground-truth signal
x7 P Rn, n “ 200, and measurements b P Rm are given by

x7

j :“

#

m`Wj

?
m, j P rss,

0 j P rnszrss
and b :“ Ax7 ` γw,(6.4)

where Wj
iid
„ N p0, 1q, Aij

iid
„ N p0,m´1q, and wi

iid
„ N p0, 1q are all mutually indepen-

dent. Here N pµ, σ2q denotes the normal distribution with mean µ P R and variance

σ2 ą 0 and, e.g., wi
iid
„ N p0, 1q means that the random vector w has entries that are

indpendent identically distributed standard normal random variables. Above, s and
m are positive integers. In Figure 2a we set pm,n, sq “ p50, 100, 5q and vary the
noise scale γ; in Figure 2b we set pm,n, s, γq “ p100, 200, 5, 0.5q. In § 6.2.3 we fix the
sparsity to s “ 7 and vary the noise scale γ and measurement size m.

Recall that we use SR and UC to refer to SR-LASSO and unconstrained LASSO,
respectively. For P P tSR,UCu and Λ P 2N ` 1, suppose that pλPi qiPrΛs is a grid of
values for the regularization parameter, logarithmically spaced about asymptotically
order-optimal parameter choices (e.g., see [10, (6)] and [17, Theorem 6.1], respectively)

λSR˚ :“ 1.1 ¨ Φ´1

ˆ

1 ´
0.05

2n

˙

λUC
˚ :“

a

2 logpnq,

where Φ is the cdf of the normal distribution (refer to numpy.logspace for details of

the grid generation [28]). Define x̄P pλq “ x̄P pA, b, λq P Rn to be a solution to P for
given parameters pA, b, λq. We use this notation to refer to the numerical solutions
computed in Python throughout our experiments, and may safely overlook any issues
related to non-uniqueness. For P P tSR,UCu, define

λ̄Pbest :“ argmin
λPpλP

i qiPrΛs

}x̄P pλq ´ x7}2; x̄Pbest :“ x̄P pλ̄Pbestq,

and define the normalized parameters λnmz by λPnmz :“
`

λPi {λ̄Pbest
˘

iPrΛs
. If we could

be referring to either program or if clear from context, then we may omit the su-
perscript. For example, we may simply refer to λ̄best, rather than λ̄

P
best, where λ̄best

could correspond to either program P P tSR,UCu. Finally, we refer to the quantity
}x̄pλq´x̄pλ̄q}{}x̄pλ̄q} as relative error (viewed as a function of λ, with a fixed reference
value λ̄).

https://github.com/asberk/srlasso_revolutions


20 A. BERK, S. BRUGIAPAGLIA, AND T. HOHEISEL

6.2.2. Robustness-sensitivity trade off for parameter tuning. In Figure 2
we presented two graphics that serve to orient and motivate our work, in particular
suggesting that there is a trade off for parameter tuning between robustness and sen-
sitivity. In Figure 2a we demonstrated graphically the known fact that λUC

best depends
on the noise scale γ ą 0, whereas λSRbest is relatively robust (i.e., agnostic) to vari-
ation in the noise scale. Five independent trials were performed for each program
using parameter values pm,n, sq “ p50, 100, 5q. Aspects of the experimental setup not
already detailed in § 1.2, including the definition of the sensing matrix A P Rmˆn,
measurements b P Rm and ground-truth signal x7, are detailed in § 6.2.1.

On the other hand, in Figure 2b we plot the empirical local Lipschitz behavior of
the SR-LASSO and LASSO solution maps — namely, }x̄pλq ´ x̄pλ̄q}. Here, λ̄ « λbest
and λnmz :“ λ{λ̄ so that the two programs can be plotted about the same reference
point on the horizontal axis. LSR, given in (5.2), corresponds to a theoretical upper
bound on the local Lipschitz constant for x̄SRpλq, established in Corollary 5.5; LUC

to that for LASSO, obtained by the current authors in a previous work (in particular,
a tighter version of [14, Theorem 4.13]). Interestingly, there is a clear connection to
be drawn between the pair LSR and LUC, which is made precise in § 6.1. There, and
in Corollary 5.5 we define a quantity V (appearing in the legend of Figure 2b), which
appears to serve as a good characterization for how the two local Lipschitz constants
differ, namely LUC « LSR|1 ´ V |. Note that we chose λ̄ to correspond with a good
estimate of the ground truth signal x7, because this is perhaps the most interesting
region of parameter space in practice; however, the observations made here apply to
a much larger range of λ values.

6.2.3. Effect of noise scale and measurement size. We next examine empir-
ically the effect of noise scale and measurement size pγ,mq on the solution sensitivity
between (1.1) and (6.1) in Figure 3. In particular, we first investigate empirical Lip-
schitz behavior of the solution function for (1.1) (see Figure 3a). Again, as a reference
we compare with that for (6.1). In addition, we numerically examine the parameter
sensitivity of the relative error for both (1.1) and (6.1) (see Figure 3b). In both
cases, this is done about the empirically optimal parameter values λ̄ “ λ̄best. Be-
low, we set Λ :“ 501. The logarithmically spaced grid pλi{λ˚q ranges from 10´3 to
100 (and includes the point 1). In this experiment we fix ps, nq “ p7, 200q and use
γ P t0.1, 0.5, 1, 5, 10u, m P t50, 100, 150, 200u. Plotted results are depicted in 5 ˆ 4
grids with each grid cell corresponding to a pγ,mq pair.

We readily observe from Figure 3a that for any selected pairing of pγ,mq, the
empirical Lipschitzness of (1.1) is worse than that of (6.1). Interestingly, we observe
that increasing noise scale tends to worsen the empirical Lipschitz behavior of (1.1),
while it remains (locally) similar for (6.1) about the selected reference value.

In Figure 3b we compare the relative errors of each program as a function of λ. We
observe in Figure 3b that, for m fixed, λ̄SRbest is generally less sensitive to variation in
γ than is λ̄UC

best. This observation is consistent with the “tuning robustness” property
characteristic of (1.1) (cf. Figure 2a). From Figure 3, we observe for all choices of
pγ,mq that (1.1) is more sensitive to its parameter choice than (6.1), again consistent
with a comparison of the Lipschitz upper bounds (cf. § 6.1).

7. Numerical investigation of our SR-LASSO theory. We present numer-
ical simulations supporting the theoretical results of the previous sections pertaining
to solution uniqueness and local Lipschitz moduli. Specifically, we examine the sat-
isfiability of Assumption 1 in § 7.1 with a graphical demonstration of Theorem 3.4,
visualizing for a given set of parameters when Theorem 3.4(ii) holds as a function of λ.
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(a) Lipschitzness: λ ´ λ̄best vs. }x̄pλq ´ x̄pλ̄bestq}.
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Fig. 3: Effect of noise scale on error sensitivity for (1.1) (sr) and (6.1) (uc) faceted by
pγ,mq P t0.1, 0.5, 1, 5, 10u ˆ t50, 100, 150, 200u with ps, nq “ p7, 200q.

We investigate the tightness of the Lipschitz bound (5.2) under Assumption 3 in §7.2.
Refer to § 6.2.1 for an overview of implementation details and relevant notation. For
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‖A>
IC(ȳ+ z̄)‖∞

‖x̄− x]‖2

Fig. 4: Visualizing uniqueness sufficiency for pm,n, s, γq “ p100, 200, 2, 0.1q. Upper
solid line: error }x̄pλq ´ x7}2 where x̄pλq solves (1.1). Lower solid line: empirical
version of Assumption 1(ii) that partially suffices for uniqueness, }AJ

IC ȳ}8, where ȳ
solves (3.1) and z̄ solves (7.1). Grey shaded vertical rectangles correspond with λ for
which Z˚ “ 8. Diagonal dashed line y “ λ serves as reference for lower solid line.
Horizontal position of vertical dashed line denotes λ̄SRbest.

greater detail beyond this, refer to our code repository [13].

7.1. Empirical investigation of uniqueness sufficiency. We begin with an
empirical investigation of when the sufficient conditions for uniqueness hold, serving
to establish an intuitive understanding of the behavior underlying Theorem 3.4. To
this end, we fix a dual pair px̄, ȳq for (1.1) (i.e., x̄ solves (1.1) and ȳ solves (3.1);
see Proposition 3.1) and numerically solve the convex program

min
zPRm

}AJ
IC pȳ ` zq}8 s.t. rAI ȳsJz “ 0.(7.1)

We denote the optimal value of the program by Z˚ and any solution to the program
by z̄. Then, Assumption 1(ii) is satisfied if Z˚ ă λ. We visualize Z˚ as a function
of λ in Figure 4 by plotting Z˚ “ Z˚pλq and the diagonal line “y “ λ”. The former
line is given by the lower solid line, the latter by the diagonal dashed line. The
upper solid line corresponds to the error }x̄pλq ´ x7}2. The horizontal position of the
vertical dashed line indicates λ̄SRbest The plot is shown on a log-log scale. Above, the
numerical solution for Z˚ was computed using CVXPY v1.2 [7, 22] with the MOSEK

solver [34]. Values of λ for which Z˚ “ 8 are shown as grey shaded vertical rectangles.
The relative error between the primal (1.1) and dual (3.1) optimal values was 8.88 ˆ

10´7, meaning that the two are comfortably within numerical tolerance, given the
optimization parameter settings.

In addition, we present a heatmap in Figure 5 demonstrating the relative fre-
quency that the sufficient condition for uniqueness is satisfied for a range of 31 ˆ 7
logarithmically spaced parameter values pλ, γq P r0.1, 10s ˆ r0.01, 10s (horizontal and
right axis, respectively). Each pixel displays a mean of 20 independent repetitions with
1 corresponding to the sufficient condition being satisfied for all trials; 0 correspond-
ing to the condition being satisfied for none of the trials. Apart from the changing
noise scale γ, the signal/measurement model is the same as described above. We
also compute Z˚ “ Z˚pi, γ, λq as described above, where i P r20s is the trial number.
White regions in the heatmap correspond none of the 20 trials yielding an inexact

https://github.com/asberk/srlasso_revolutions
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Fig. 5: Background: uniqueness sufficiency heatmap displaying the proportion of 20
independent trials for which }AJ

IC pȳ ` z̄q}8 ă λ is satisfied, where ȳ solves (3.1) and
z̄ solves (7.1). Voxels correspond to λ (horizontal axis) and noise scale γ (right axis).
White regions: no data. Foreground: error }x̄pλq ´ x7}2 (left axis) as a function of λ
for four choices of the noise scale γ (see legend). Vertical dashed lines are drawn at
λ̄best for each.

solution, violating a tenet of our theory that Ax̄ ‰ b. Superposed on the heatmap is
a plot of the recovery error (left vertical axis) as a function of λ for 4 of the values
of γ (see legend). Figure 5 reveals a sizable region where the sufficient condition for
uniqueness is empirically assured. Moreover, this region encompasses all λ̄best values
with a comfortable margin, and it is relatively insensitive to γ.

7.2. Empirical investigation of Lipschitz upper bound. Finally, we com-
pare the Lipschitz upper bound (5.2) to the empirical Lipschitz quantity }x̄pλq´ x̄pλ̄q}

where λ̄ :“ λ̄best. To this end, we investigate two settings where the dimensional
parameters are varied, with results displayed in Figure 6. Throughout, we choose
n “ 200. In the first experiment, shown in Figure 6a, we set γ “ 0.1 and choose
pm, sq P t50, 100, 150, 200uˆt3, 7, 15u; in the second, shown in Figure 6b, we set s “ 7
and choose pm, γq P t50, 100, 150, 200u ˆ t0.1, 0.5, 1, 5u. Generally, we observe that
the Lipschitz upper bound Lpλ̄q given by (5.2) is a tight local approximation to the
true Lipschitz behavior of the solution x̄pλq about λ̄.

8. Conclusion. In this paper, we studied the Square Root LASSO (SR-LASSO)
(1.1). We established sufficient conditions for its well-posedness, namely Assump-
tion 1, and linked it to two stronger regularity conditions, the intermediate condition
Assumption 2 and the strong condition Assumption 3, respectively. The intermediate
condition is shown to imply local Lipschitzness and directional differentiability of the
solution map as a function of the right-hand side and the tuning parameter (around a
reference point); the strong condition, in turn, guarantees continuous differentiability
of said solution map. We then leveraged these results to compare the SR-LASSO to
its close relative, the (unconstrained) LASSO from a theoretical perspective. This
comparison suggests that the celebrated robustness of optimal parameter tuning to
noise of the SR-LASSO comes at the price of elevated sensitivity of the solution map
to the tuning parameter itself. Our numerical experiments confirmed the presence of
this robustness-sensitivity trade off for parameter tuning, and illustrated the sharp-
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Fig. 6: Effect of varying dimensional parameters on the Lipschitz upper bound:
Lpλ̄q|λ ´ λ̄| vs. the empirical Lipschitz quantity }x̄pλq ´ x̄pλ̄q} as a function of λnmz.
Lpλ̄q is computed as in (5.2). Top: pm, sq P t50, 100, 150, 200u ˆ t3, 7, 15u; Bottom:
pm, γq P t50, 100, 150, 200u ˆ t0.1, 0.5, 1, 5u.
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ness of our Lipschitz bounds and the validity of the main assumptions upon which
the theory relies on.

We conclude by discussing possible extensions of this work and open problems:
although we focused on the dependence of the solution map in b and λ, we point out
that it is straightforward (at the cost of more computational overhead) to extend all
stability results to the case where also the design matrix A is a parameter. Moreover,
similarly to [14], our results could be explicitly applied to compressed sensing theory
by combining our Lipschitz bounds with explicit estimates of the sparsity of SR-
LASSO solutions [25]. Finally, in the LASSO case it is known [49] that the analogous
sufficient condition to Assumption 1 is also necessary for uniqueness. At this point,
whether this is also true for the SR-LASSO, is an open question and we challenge the
reader to clarify it.

Appendix A. Proof of shrinking property.
Here, we furnish proof of Lemma 3.6. Note that, for f, g : Rn Ñ R, their infimal
convolution [37] is denoted by pf # gqpxq :“ infu fpx´ uq ` gpuq.

Proof of Lemma 3.6. The (primal) problem defining p˚ reads

min
zPRm

}BJpȳ ` zq}8 ` δεBXT pzq.(A.1)

The minimum is attained due to compactness and lower semicontinuity. Now, set
f :“ δεBXT and g :“ }BJȳ ` p¨q}8. With dT K , the Euclidean distance to T K, we find

f˚puq “ δ˚
εBXT puq

“ pδεB ` δT q˚puq

“ pσεB # σT qpuq

“ inf
y
ε}y} ` δT K pu´ yq

“ εdT K puq,

where in the third line, we have used [37, Theorem 16.4] combined with the fac that
0 P pint εBq X T . We also have g˚puq “ δB1

puq ´
@

BJȳ, u
D

. Hence, with ϕpuq :“

´
@

BJȳ, u
D

´ εdT K pBuq, the (Fenchel-Rockafellar) dual problem of (A.1) is

max´f˚pBuq ´ g˚p´uq ðñ max
uPB1

ϕpuq.(A.2)

Now, observe that (see e.g., [30]) ´
@

BJȳ, u
D

ď }BJȳ}8}u}1. Hence, for every feasible
point of (A.2), we have

ϕpuq ď }BJȳ}8 ´ εdT K pBuq.(A.3)

We claim that ϕpuq ă }BJȳ}8 for all u P B1. Indeed, assume to the contrary the
existence of a û feasible for (A.2) such that ϕpûq “ }BJȳ}8. Then (A.3) implies

dT K pBûq “ 0 ðñ Bû P T K “ R ¨ tȳu ` rgeC

ùñ ȳ P rgeC ` rgeB “ rge rB Cs,

contradicting an assumption of the lemma. Consequently, since the dual problem
admits a solution, ū say, we find by strong duality that p˚ “ ϕpūq ă }BJȳ}8.

Appendix B. Proof of analytic solution formula under Assumption 2.
Here, we provide the proof for the analytic expression for the (unique) solution under
the intermediate condition from Assumption 2.
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Proof of Proposition 3.8. By assumption, the dual problem (3.1) has a unique
solution ȳ “ b´Ax̄

}Ax̄´b}
. Therefore, using the optimality conditions for x̄, there exists a

unique subgradient v P B} ¨ }1px̄q such that AJȳ “ λv. By definition of v and the fact
that I Ď J , we have }x̄}1 “ xv, x̄y “ xvJ , x̄Jy. We thus rewrite the strong duality
expression Proposition 3.1(b)(ii) as

}Ax̄´ b} “ xb, ȳy ´ λ xvJ , x̄Jy .(B.1)

Using Corollary 3.2(b), we can rewrite the optimality conditions as AJpb ´ Ax̄q “

λ}Ax̄´ b}v. Restricting to J and using (B.1) gives

AJ
J pb´AJ x̄Jq “ λ pxb, ȳy ´ λ xvJ , x̄Jyq vJ “ λ xb, ȳy vJ ´ λ2vJv

J
J x̄J .

After rearranging, we obtain
`

AJ
JAJ ´ λ2vJv

J
J

˘

x̄J “ AJ
J b´λ xb, ȳy vJ . It remains to

verify that the matrix AJ
JAJ ´ λ2vJv

J
J satisfies the desired identity and is invertible.

To this end, the J-restricted optimality conditions AJ
J ȳ “ λvJ imply

AJ
JAJ ´ λ2vJv

J
J “ AJ

J

`

I´ȳȳJ
˘

AJ .

To obtain invertibility of this matrix, we apply Lemma 2.1, using that AJ has full
column rank and ȳ R rgeAJ (because b R rgeAJ). In particular,

x̄J “ B
`

AJ
J b´ λ xb, ȳy vJ

˘

, B :“
“

AJ
J pI´ȳȳJqAJ

‰´1
.

An explicit expression for B is provided by Lemma 2.1. Notice that uniqueness of ȳ
implies that of v and J , and hence too of xJ . Finally, xJC ” 0 because I Ď J . Hence,

x̄ “ LJ

`

B
`

AJ
J b´ xb, ȳyAJ

J ȳ
˘˘

“ LJ

`

BAJ
J pI´ȳȳJqb

˘

.

Appendix C. Auxiliary results.

Lemma C.1. Let Ā P Rmˆn, b̄ P Rm, x̄ P Rn such that Āx̄ ‰ b̄ and let λ̄ ą 0.
Then, there exists a neighborhood U of pĀ, b̄, λ̄, x̄q such that the function ϕ : U Ñ Rn,

ϕpA, b, λ, xq :“
AJpAx´ bq

λ}Ax´ b}
,

is well defined and continuously differentiable on U with partial derivatives:

(a) DAϕpA, b, λ, xqpW q “ 1
λ}Ax´b}

”

pAJW `WJAqx´WJb´
AJ

pAx´bqpAx´bq
JWx

}Ax´b}2

ı

;

(b) DbϕpA, b, λ, xq “ ´ 1
λ}Ax´b}

”

AJ
´AJ

pAx´bqpAx´bq
J

}Ax´b}2

ı

;

(c) DλϕpA, b, λ, xq “ ´ 1
λ2}Ax´b}

AJpAx´ bq;

(d) DxϕpA, b, λ, xq “ 1
λ}Ax´b}

”

AJA´AJ Ax´b
}Ax´b}

pAx´bq
J

}Ax´b}
A
ı

.
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