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Abstract. In this article we study the connection between proximal point
methods for nonconvex optimization and the backward Euler method from

numerical Ordinary Differential Equations (ODEs). We establish conditions

for which these methods are equivalent. In the case of weakly convex func-
tions, for small enough parameters, the implicit steps can be solved using a

strongly convex objective function. In practice, this method can be faster than

gradient descent. In this paper we find the optimal value of the regularization
parameter.

1. Introduction

Our motivation for this paper is the problem of local optimization of a weakly convex
function f : Rn → R using a first order gradient oracle, cf. e.g. [Bec17]. Proximal
point methods are alternative to gradient descent methods, see e.g. [PB+14]. Often
proximal point methods are used when the objective splits into two functions, one
of which is smooth and another one which is nonsmooth, but allows for an efficient
computation or even an analytical formula for the proximal operator, as in the
case with the l1-regularization, see [PB+14]. Here, we primarily consider a smooth
function, although at many places we nonsmooth mappings as well, and we use an
approximate proximal point method as an inner loop in an optimization algorithm.
The motivation is the empirical evidence that with the same number of gradi-
ent evaluations, the proximal method converges faster than the gradient descent
method, see Figure 2 below. Similar ideas have been used in [LMH15, PLD+17].
In those works, proximal regularization replaces the convex objective function with
a strongly convex auxiliary function.

We take a similar approach, but here we focus on the weakly convex case, and
study the analytical properties of the proximal regularization. In particular we take
the point of view - motivated by Partial Differential Equations (PDEs) - that the
algorithm corresponds to gradient descent on a regularized function. This point of
view was taken in [COO+17] where the emphasis was on the stochastic gradient
case. The rate of convergence for the proximal point method for weakly convex
functions has already been studied in [CDHS16]. Here we focus on exact gradients;
in this simpler setting we can study the weakly convex case using tools from convex
analysis and optimization.
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It is well known in the numerical analysis field that implicit methods can take
large time steps, whereas explicit methods require smaller ones, see e.g. [SH96].
The proximal point methods require the solution of a strongly convex optimization
problem at each step, but allow for much longer time steps. Both the proximal
point and the gradient descent methods can be interpreted as a time discretization
of the Ordinary Differential Equation (ODE)

dx(t)

dt
= −∇f(x(t)) (GD-ODE)

We can also consider the non-differentiable case, where ∇f(x) is replaced by a
subdifferential (regular/limiting/Clarke), see e.g. Section 2 or [RW98, Chapter 8],
and we get the differential inclusion

dx(t)

dt
∈ −∂f(x(t)).

Our starting point is a one-parameter family of discretizations, which appears in
the numerical study of ODEs as the θ-method, cf. [SH96]. These methods are
numerical discretizations of (GD-ODE) which interpolate between gradient descent
(for θ = 0) and the proximal point method (for θ = 1). These are called the forward
and backward Euler method, respectively, in the numerical ODE terminology.

Definition 1.1. The θ-method for (GD-ODE) corresponds to the time discretiza-
tion

xn+1 − xn
λ

= −∇f((1− θ)xn + θxn+1) (1)

where λ is the time step. When θ = 0, 1, the θ-method is called the explicit, implicit
Euler method,

xn+1 − xn
λ

= −∇f(xn),
xn+1 − xn

λ
= −∇f(xn+1),

respectively.

Note that we can generalize (1) to the nonsmooth case by

xn+1 − xn
λ

∈ −∂f((1− θ)xn + θxn+1). (2)

The θ-method from (1) and (2), respectively can be recovered from a proximal
point-type iteration.

Lemma 1.2 (θ-method as θ-proximal point). Let f : Rn → R ∪ {+∞} be proper
(see below), θ ∈ (0, 1] and let {xn} be generated by

xn+1 := argminy∈Rn

{
f((1− θ)xn + θy) +

θ

2λ
‖xn − y‖2

}
. (3)

Then {xn} satisfies (2).

Proof. We observe that the necessary optimality conditions for xn+1 read

0 ∈ θ∂f((1− θ)xn + θxn+1) +
θ

2λ
(xn+1 − xn).

cf. [RW98, Exercise 8.8/10.7 and Theorem 8.15]. For θ 6= 0 this is equivalent to
(2). �
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While the θ-method is implicit for θ 6= 0 (meaning it requires the solution of a
nonlinear equation or nonlinear optimization problem to find xn+1), we can rewrite
it as the gradient descent method on a modified function. In fact, defining the
θ-Moreau envelope (see Section 3.1 for more details)

uθ(x, λ) := inf
y∈Rn

{
f((1− θ)x+ θy) +

θ

2λ
‖x− y‖2

}
,

as we show below, for weakly convex f (see Section 2.1), the sequence (3) is also
equivalent to

xn+1 − xn
λ

= −∇uθ(xn;λ).

Remark 1.3 (PDE interpretation). Our analysis of the θ-Moreau envelope is based
on direct arguments. An alternative approach is using the Hamilton-Jacobi PDE.
It can be shown that the θ-Moreau envelope uθ(x, λ) equals v(x, λ) where v(x, t) is
the solution of the Hamilton-Jacobi equation

∂tv(x, t) = −θ
2
‖∇xv(x, t)‖2

along with initial data

v(x, 0) = f(x).

In the special case θ = 1, we recover the standard Hamilton-Jacobi equation for
the Moreau envelope

∂tu(x, t) = −1

2
‖∇xu(x, t)‖2,

see e.g. [Eva98]. Note that within this remark, we are using PDE notation and
notion of weak solutions for Hamilton-Jacobi equations.

We define c-weak convexity below, and prove the following lemma.

Lemma 1.4. Suppose f is c-weakly convex (see Section 2.1). Then xn+1, solution
of (3), can be found as the solution of a convex optimization problem, provided
λ, θ > 0 satisfy the following (generalized CFL condition/time step restriction):

cλθ ≤ 1.

Proof. To prove the CFL condition, notice that, since f is c-weakly convex, for
all x ∈ Rn, the function y 7→ f((1 − θ)x + θy) is θ2c-weakly convex. Then for λ
satisfying

θ

λ
≥ θ2c ⇐⇒ cλθ ≤ 1,

the mapping y 7→ f((1− θ)x+ θy) + θ
2λ‖x− y‖

2 is convex. �

Notation: The notation used is standard and widely consistent with the one used
in [RW98]. However, here we use ‖ · ‖ to denote the Euclidean norm.

For f : Rn → R ∪ {+∞} we define

argminxf(x) :=
{
x̄ ∈ Rn

∣∣∣ f(x̄) = inf
x
f(x)

}
.

In order to indicate that a function F maps vectors in Rn to subsets in Rm we write
F : Rn ⇒ Rm and call F set-valued. The domain of F is defined by

domF := {x ∈ Rn | F (x) 6= ∅} .



4 TIM HOHEISEL, MAXIME LABORDE, AND ADAM OBERMAN

2. Preliminaries

We first recall standard concepts from nonsmooth analysis where, see [RW98]. A
function f : Rn → R(:= R ∪ {±∞}) is called closed if its epigraph

epi f := {(x, α) | f(x) ≤ α}

is a closed set. We call it proper if f : Rn → R ∪ {+∞} and its domain

dom f := {x | f(x) < +∞}

is nonempty. Moreover, we call f convex if epi f is a convex set.
For a function f : R → R its (regular) subdifferential at x̄ with f(x̄) ∈ R is

defined by

∂f(x̄) := {v ∈ Rn | f(x̄) + 〈v, x− x̄〉+ o(‖x− x̄‖) ≤ f(x) (x ∈ Rn)} .

If f : Rn → R ∪ {+∞} is closed, proper, convex it is well known that we have

∂f(x̄) := {v ∈ Rn | f(x̄) + 〈v, x− x̄〉 ≤ f(x) (x ∈ Rn)} ,

cf. e.g. [RW98, Proposition 8.12]. For f : Rn → R its (Fenchel) conjugate is the
function f∗ : Rn → R defined by

f∗(y) := sup
x∈Rn

{〈x, y〉 − f(x)} .

If f is proper and has an affine minorant its conjugate f∗ is always closed, proper,
convex, see e.g. [RW98, Theorem 11.1] and notice that f is proper and has an affine
minorant if and only if its convex hull is proper.

For f : Rn → R ∪ {+∞} closed, proper, convex, the subdifferential and the
conjugate function interact in the following way:

ȳ ∈ ∂f(x̄) ⇐⇒ x̄ ∈ ∂f∗(ȳ), (4)

see e.g. [RW98, Proposition 11.3].
Given f : Rn → R ∪ {+∞} and λ > 0, the proximal mapping or prox-operator is

the set-valued map Pλf : Rn ⇒ Rn defined by

Pλf(x) = argminu

{
f(u) +

1

2λ
‖x− u‖2

}
,

while the Moreau envelope eλf : Rn → R is given by

eλf(x) = inf
u

{
f(u) +

1

2λ
‖x− u‖2

}
.

2.1. Weakly convex functions. We next introduce a large class of functions for
which Pλf(x) is a singleton for any x ∈ Rn, hence in particular

eλf(x) = f(Pλf(x)) =
1

2λ
‖Pλf(x)− x‖2 (x ∈ Rn).

Definition 2.1 (Weakly and strongly convex functions). A function f : Rn →
R ∪ {+∞} is called c-weakly convex if f + c

2‖ · ‖
2 is closed, proper, convex. We

denote by Γc the c-weakly convex functions, i.e.

Γc :=
{
f : Rn → R ∪ {+∞}

∣∣∣ f +
c

2
‖ · ‖2 closed, proper, convex

}
.

A c-weakly convex function with c < 0 is called c-strongly convex.
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Clearly, Γ0 is the cone of closed, proper, convex functions. Moreover, we have

Γc ⊂ Γd (c ≤ d).

The following result which is due to [KT98] illustrates the richness of the class of
weakly convex function. We would also like to refer to the similar result [RW98,
Theorem 10.33].

Proposition 2.2 ([KT98, Proposition 1]). Let O ⊂ Rn be open, convex and let
fi ∈ C1,1(O) (i ∈ I) such that there exists x̄ ∈

⋂
i∈I dom fi ∩ O 6= 0 such that

supi∈I ‖∇fi(x̄)‖ < ∞. Moreover, assume that ∇fi is Li-Lipschitz on O with L :=
supi∈I Li <∞. Then the function

f : Rn → R ∪ {+∞}, f(x) := sup
i∈I

fi(x)

is L-weakly convex and finite on O.

The central property of weakly convex functions is that if we add a ”large enough”
strongly convex term, the sum becomes strongly convex, hence both coercive, i.e.

lim
‖x‖→∞

f(x)

‖x‖
→ ∞,

in particular, level-bounded and also strictly convex. We state this formally below.

Lemma 2.3. Let c > 0 and f ∈ Γc. Then function

φλ := f +
1

2λ
‖ · ‖2

(
0 < λ <

1

c

)
, (5)

is strongly convex, hence coercive and strictly convex.

Proof. This follows readily from the fact that any closed, proper, convex function
has an affine minorant, see [RW98, Proposition 8.12].

�

The next result is clear from an elementary sum rule.

Proposition 2.4. Let c > 0 and f ∈ Γc. Then for 0 < λ < 1
c we have

∂f(x) = ∂φλ(x)− x

λ
(x ∈ dom f),

where φλ is given by (5).

Proof. See e.g. [RW98, Exercise 10.10]. �

We also point out that weakly convex functions are Clarke regular (see Definition
[RW98, Definition 7.25]) hence their regular and limiting subdifferential coincide.
In particular, for a (finite-valued) weakly convex functions, the (regular) subdiffer-
ential is equal to Clarke’s subdifferential, i.e. can be computed as

∂f(x̄) = conv
{
v ∈ Rn

∣∣ ∃{xk ∈ Df} : ∇f(xk)→ v
}

(6)

where Df is the (full measure) set of differentiability of f and conv is the convex
hull-operator. We use (6) in Example 3.6.
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2.2. DC functions. It is easily seen that Γc (c ≥ 0) is contained in the (much
larger class) of DC functions where a function f is called a DC (difference of convex)
function if f = g−h for some g, h ∈ Γ0. We recall the central duality result for DC
optimization.

Proposition 2.5 (Toland-Singer duality). Let g, h ∈ Γ0. Then the following hold:

a) inf g − h = inf h∗ − g∗.
b) If x̄ ∈ argmin g − h and ȳ ∈ ∂h(x̄) then ȳ ∈ argminh∗ − g∗.
c) If ȳ ∈ argminh∗ − g∗ and x̄ ∈ ∂g∗(ȳ) the x̄ ∈ argmin g − h.

We point out that item a) and b) in Proposition 2.5 remain valid even if the
convexity of g is dropped.

3. The prox-operator and Moreau envelope for weakly convex
functions

In this section we study the Moreau envelope and proximal mapping for weakly
convex functions. Many of the properties follow from more general results in varia-
tional analysis, see [RW98]. We will point out where this is the case. However, we
present a vastly self-contained account only built on convex analysis (except when
the nonconvex subdifferential is involved) and improve some of the existing results
along the way.

Note that, given f ∈ Γc, φλ throughout denotes the function defined in Lemma
2.3.

Proposition 3.1 (Prox-operator of weakly convex functions). We have:

a) Pλf is a single-valued mapping Rn → Rn.
b) Pλf = (∂φλ)−1( ·λ ) = (∇φ∗λ)( ·λ ) (which is single-valued).
c) 0 ∈ ∂f(x) if and only if Pλf(x) = x, i.e. the critical points of f are exactly

the fixed points of the prox-operator of Pλf .

Proof. a) By definition we have

Pλf(x) = argminu

{
f(u) +

1

2λ
‖x− u‖2

}
= argminu

{
φλ(u)− 1

λ
〈x, u〉

}
(x ∈ Rn).

The function u 7→ φλ(u)− 1
λ 〈x, u〉 is strongly convex for every x ∈ Rn, see Lemma

2.3. Hence, the argmin set above is always a singleton.

b) We have

y ∈ (∂φλ)−1
(x
λ

)
⇐⇒ x

λ
∈ ∂φλ(y)

⇐⇒ 0 ∈ ∂
(
φλ −

1

λ
〈x, ·〉

)
(y)

⇐⇒ y ∈ Pλf(x),

where the second equivalence uses the convexity of φλ and the third one follows
from the consideration above in a).

This proves the first equivalence in b). The second one then follows from (4).

c) We have

0 ∈ ∂f(x) ⇐⇒ x

λ
∈ ∂φ(x) ⇐⇒ x = (∂φ)−1

(x
λ

)
.

Here the first equivalence is due to Proposition 2.4. Part b) now gives the claim. �
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Note that part b) is in a similar form given in [RW98, Proposition 12.19].
The following result constitutes a generalization of [BC11, Proposition 12.26] and

its proof follows the same pattern. It is the key for establishing improved Lipschitz
constants for the Moreau envelope.

Lemma 3.2. Let c > 0 and f ∈ Γc, x ∈ Rn, 0 < λc < 1, and put p := Pλf(x).
Then

f(p) +
1

λ
〈x− p, y − p〉 ≤ f(y) +

c

2
‖p− y‖2 (y ∈ Rn).

Proof. Let y ∈ Rn and put pα := αy+(1−α)p for α ∈ (0, 1). Then by the definition
of the prox-operator we have

f(p) +
1

2λ
‖x− p‖2 ≤ f(pα) +

1

2λ
‖x− pα‖2.

This is equivalent to

f(p) +
c

2
‖p‖2 +

(
1

2λ
− c

2

)
‖x− p‖2 − c 〈x, p〉

≤ f(pα) +
c

2
‖pα‖2 +

(
1

2λ
− c

2

)
‖x− pα‖2 − c 〈x, pα〉 ,

which, for φ := f + c
2‖ · ‖

2 ∈ Γ0, is equivalent to

φ(p) ≤ φ(pα) +
1

2

(
1

λ
− c
)(
‖(x− p)− α(y − p)‖2 − ‖x− p‖2

)
+ c 〈x, p− pα〉 .

The convexity of φ and the definition of pα then imply

φ(p) ≤ αφ(y)+(1−α)φ(p)+
1

2

(
1

λ
− c
)(

α2‖y − p‖2 − 2α 〈x− p, y − p〉
)
+αc 〈x, p− y〉 .

Therefore, we have

αφ(p) +
α

λ
〈x− p, y − p〉 ≤ αφ(y) + αc 〈p, p− y〉+

α2

2

(
1

λ
− c
)
‖y − p‖2.

Dividing by α > 0 and letting α ↓ 0 hence yields

f(p) +
c

2
‖p‖2 +

1

λ
〈x− p, y − p〉 ≤ f(y) +

c

2
‖y‖2 + c 〈p, p− y〉 ,

i.e.

f(p) +
1

λ
〈x− p, y − p〉 ≤ f(y) +

c

2

(
‖y‖2 − ‖p‖2 + 2 〈p, p− y〉

)
= f(y) +

c

2
‖p− y‖2.

�

From Lemma 3.2 we infer the following.

Proposition 3.3 (Expansiveness bound of prox). Let c > 0 and f ∈ Γc. Then for
0 < λc < 1 we have

‖Pλf(x)− Pλf(y)‖2 ≤ 1

1− cλ
〈x− y, Pλf(x)− Pλf(y)〉 (x, y ∈ Rn).
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Proof. Let x, y ∈ Rn and put p := Pλf(x) and q := Pλf(y). By Lemma 3.2 we
have

f(p) +
1

λ
〈x− p, q − p〉 ≤ f(q) +

c

2
‖q − p‖2

and

f(q) +
1

λ
〈y − q, p− q〉 ≤ f(p) +

c

2
‖q − p‖2.

Adding the above inequalities yields

1

λ
〈p− q − (x− y), p− q〉 ≤ c‖p− q‖2.

Rearranging gives the desired inequality. �

As an immediate consequence of Proposition 3.3 we recover the well-known result,
see [RW98, Proposition 12.19] that Pλf is 1

1−λc -Lipschitz continuous for any f ∈ Γc
and 0 < cλ.

We now turn our attention to the Moreau envelope. We point out that the
Lipschitz constant for the gradient of the Moreau envelope is, to the best of our
knowledge, sharper than what can be found in the literature.

Corollary 3.4 (Moreau envelope). Let c > 0 and f ∈ Γc. Then the following hold
for 0 < λc < 1:

a) eλf = 1
2λ‖ · ‖

2 − (f + 1
2λ‖ · ‖

2)∗
( ·
λ

)
.

b) ∇eλf = 1
λ (id − Pλf) is L-Lipschitz with

L =

{
c

1−cλ if 1
2 ≤ cλ < 1,

1
λ if 0 < cλ < 1

2 .

.
c) inf f = inf eλf .
d) 0 ∈ ∂f(x) if and only if ∇eλf(x) = 0, i.e. the stationary points of f and

eλf coincide.
e) argmin f = argmin eλf.

Proof. Put φλ := f + 1
2λ‖ · ‖

2.

a) We observe that

eλf(x) =
1

2λ
‖x‖2 − sup

u

{
1

λ
〈x, u〉 − φλ(u)

}
=

1

2λ
‖x‖2 − φ∗λ

(x
λ

)
.

b) By Proposition 3.1, φλ is strongly convex, hence φ∗λ is continuously differentiable
with Lipschitz gradient, see e.g. [RW98, Proposition 12.60]. Thus, by a), we have

∇eλf =
1

λ

(
id −∇φ∗λ

( ·
λ

))
.

Since, by Proposition 3.1 c), Pλf = (∂φλ)−1( ·λ ) = (∇φ∗λ)( ·λ ), this gives the formula
for ∇eλf .
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The Lipschitz modulus can be seen as follows: By Proposition 3.3, we have

‖(x− p)− (y − q)‖2

= ‖x− y‖2 +

(
1

1− cλ
− 2

)
〈p− q, x− y〉+ ‖p− q‖2 − 1

1− cλ
〈p− q, x− y〉

≤ ‖x− y‖2 +

(
1

1− cλ
− 2

)
〈p− q, x− y〉

Now observe that
1

1− cλ
− 2 ≥ 0 ⇐⇒ 1

2
≤ cλ.

As 〈p− q, x− y〉 ≥ 0 (cf. Proposition 3.3), we thus have

‖(x− p)− (y − q)‖2 ≤ ‖x− y‖2
(

1

2
≥ cλ

)
.

On the other hand, for 1
2 ≤ cλ, we can continue the sequence of inequalities from

above using Proposition 3.3 and Cauchy-Schwarz to find

‖(x− p)− (y − q)‖2 ≤ ‖x− y‖2 +

(
1

1− cλ
− 2

)
〈p− q, x− y〉

≤ ‖x− y‖2 +

(
1

1− cλ
− 2

)
‖p− q‖ · ‖x− y‖

≤ ‖x− y‖2 +
1

1− cλ

(
1

1− cλ
− 2

)
‖x− y‖2

=

(
cλ

1− cλ

)2

‖x− y‖2,

All in all, putting

M :=

{ (
cλ

1−cλ

)2
if 1

2 ≤ cλ < 1,

1 if 0 < cλ < 1
2

we see that

‖∇eλf(x)−∇eλf(y)‖ =
1

λ
‖(x− p)− (y − q)‖ ≤ 1

λ

√
M‖x− y‖,

which proves the desired Lipschitz constant.

c) We have

inf
x
f(x) = inf

x

{
φλ(x)− 1

2λ
‖x‖2

}
=

1

λ
inf
x

{
(λφλ)(x)− 1

2
‖x‖2

}
=

1

λ
inf
y

{
1

2
‖y‖2 − (λφλ)∗(y)

}
=

1

λ
inf
y

{
1

2
‖y‖2 − λφ∗λ

( y
λ

)}
= inf

y

{
1

2λ
‖y‖2 − φ∗λ

( y
λ

)}
= inf

y
eλf(y).



10 TIM HOHEISEL, MAXIME LABORDE, AND ADAM OBERMAN

Here the third equality uses Toland-Singer duality (see Proposition 2.5) and the
last equality is due to a).

d) Follows from b) and Proposition 3.1 c).

e) Let λ > 0 such that λc < 1. Then φλ = f + 1
2λ‖ · ‖

2 ∈ Γ0. Using the same
arguments as in c) we find that

argmin f = argminλφλ −
1

2
‖ · ‖2 and argmin eλf = argmin

1

2
‖ · ‖2 − (λφλ)∗.

We now apply Proposition 2.5 to g := λφλ and h := 1
2‖ · ‖

2: Since ∇h = id ,
Proposition 2.5 b) gives the ’⊂’-inclusion immediately.

In turn, let ȳ ∈ argmin eλf . Combining (4) and Proposition 3.1 b), we observe
that ∂g∗(ȳ) = Pλf(ȳ). Therefore, by Proposition 2.5 c), Pλf(ȳ) ∈ argmin f . But
every minimizer of f is a fixed point of the prox-operator, cf. Proposition 3.1 c),
and therefore ȳ = Pλf(ȳ) ∈ argmin f , which proves the remaining inclusion.

�

The fact in Corollary 3.4 c) and e) that the optimal value and minimizers, respec-
tively, of f and its Moreau envelope conincide is well-known, and valid under even
weaker assumptions, see [RW98, Example 1.46]. However, our technique of proof
via DC duality theory remains in the convex realm and merits presentation of said
proof.

Remark 3.5 (Optimal parameter choice for λ). Corollary 3.4 b) provides us with
an ”optimal choice” for the parameter λ: Suppose that

c := inf
{
c ≥ 0

∣∣∣ f +
c

2
‖ · ‖2 convex

}
> 0

Then λ = 1
2c yields L = 2c which is as small as the Lipschitz constant can be for a

given f .

In view of the Lipschitz constant for∇eλf derived in Corollary 3.4 b) the question as
to whether this constant can be improved generally in the class Γc arises naturally.
The following example gives an illustration of Corollary 3.4 and also provides a
negative answer to this question, in that it presents a Γc-function for which the
Lipschitz constant provided by Corollary 3.4 is sharp in either case.

Example 3.6 (Piecewise quadratic). For 0 < a < b consider f : R→ R defined by

f(x) := max

{
a

2
(1− x2),

b

2
(x2 − 1)

}
=

{
a
2 (1− x2) if |x| ≤ 1,
b
2 (x2 − 1) if |x| > 1.

Then, clearly, f is a-weakly convex. Using (6) we find that

∂f(x) =


−ax if |x| < 1,

[−a, b] if x = 1,
[−b, a] if x = −1,

bu if |x| > 1,

Pλf(x) =


x

1−λa if |x| < 1− λa,
1 if x ∈ [1− λa, 1 + λb],
−1 if x ∈ [−(1 + λb), λa− 1)],
x

1+λb if |x| > 1 + λb.

Therefore we have

eλf(x) =


a
2

(
1− x2

(1−λa)2

)
+ 1

2λ

(
x− x

1−λa

)2
if |x| < 1− λa,

1
2λ (x− 1)2 if x ∈ [1− λa, 1 + λb],
1
2λ (x+ 1)2 if x ∈ [−(1 + λb), λa− 1],

b
2

(
x2

(1+λb)2 − 1
)

+ 1
2λ

(
x− x

1+λb

)2
if |x| > 1 + λb
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x
−1 1

f
eλf

x

∇eλf

∂f

Figure 1. Illustration of Example 3.6

and

∇eλf(x) =


− a

1−λax if |x| < 1− λa,
x−1
λ if x ∈ [1− λa, 1 + λb],
x+1
λ if x ∈ [−(1 + λb), λa− 1],

b
1+λbx if |x| > 1 + λb.

In particular, we see that the Lipschitz constant

L =

{
a

1−aλ if 1
2 ≤ aλ,

1
λ if 1

2 > aλ

for ∇eλf provided by Corollary 3.4 b) is sharp.

3.1. The θ-envelopes. We now generalize the notion of the proximal point map-
ping and Moreau envelope by embedding them in a parameterized family of proxi-
mal mappings and envelopes, respectively.

Definition 3.7 (θ-Moreau envelopes). Let f : Rn → R∪ {+∞} and θ, λ > 0. The
θ-proximal point method is the map P θλf : Rn → Rn given by

P θλf(x) = argminy∈Rn

{
f ((1− θ)x+ θy) +

θ

2λ
‖x− y‖2

}
.

The θ-Moreau envelope is the function eθλf : Rn → R defined by

eθλf(x) := inf
y∈Rn

{
f((1− θ)x+ θy) +

θ

2λ
‖x− y‖2

}
.

The following result shows the intimate relation of the θ-envelope and the θ-method
objects to the Moreau envelope and the prox-operator.

Lemma 3.8. Let θ, λ > 0 and f : Rn → R ∪ {+∞}. Then the following hold:

a) eθλf = eλθf ;
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b) P θλf = Pλθf−(1−θ)id
θ , i.e.

Pλθf(x) = (1− θ)x+ θP θλf(x) (x ∈ Rn).

Proof. Let x̄ ∈ Rn be fixed. The mapping

y 7→ (1− θ)x̄+ θy

is bijective on Rn. Therefore, we observe that

eθλf(x̄) = inf
y∈Rn

{
f((1− θ)x̄+ θy) +

θ

2λ
‖x̄− y‖2

}
= inf

u∈Rn

{
f(u) +

θ

2λ

∥∥∥∥x̄− u− (1− θ)x̄
θ

∥∥∥∥2
}

= inf
u∈Rn

{
f(u) +

θ

2λ

∥∥∥∥ x̄− uθ
∥∥∥∥2
}

= inf
u∈Rn

{
f(u) +

1

2λθ
‖x̄− u‖2

}
= eλθf(x̄).

This proves a). In order to prove b) just revisit the above reasoning and observe
that

y ∈ argminy∈Rn

{
f((1− θ)x̄+ θy) +

θ

2λ
‖x̄− y‖2

}
if and only if

(1− θ)x̄+ θy ∈ argminu∈Rn

{
f(u) +

1

2λθ
‖x̄− u‖2

}
.

�

We readily infer the following result.

Corollary 3.9 (θ-envelope). For c > 0 let f ∈ Γc and θ, λ > 0 such that 0 < cθλ <
1. Then the following hold:

a) eθλf = 1
2λθ‖ · ‖

2 −
(
f + 1

2λθ‖ · ‖
)∗ ( ·

λθ

)
.

b) ∇eθλf = 1
λθ (id − Pλθf) = 1

λ

(
id − P θλf

)
is L-Lipschitz with

L =

{
c

1−cλθ if 1
2 ≤ cλθ < 1,

1
λθ if 0 < cλθ < 1

2 .

c) inf f = inf eθλf .
d) 0 ∈ ∂f(x) if and only if ∇eθλf(x) = 0.
e) argmin f = argmin eθλf .

Proof. Follows immediately from combining Corollary 3.4 with Lemma 3.8. �

4. Guaranteed decrease of f

In this section, we study the behavior of a differentiable function f ∈ Γc in the
θ-method discretization for the gradient descent

xk+1 − xk
λ

= −∇f((1− θ)xk + θxk+1). (7)
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We say that ∇f is one-sided Lf -Lipschitz if

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
Lf
2
‖x− y‖2 (x, y ∈ Rn). (8)

Proposition 4.1. f ∈ Γc be such that ∇f is one-sided Lf -Lipschitz and let {xk}
be generated by (7) for θ ∈ [0, 1]. Then

f(xk+1)− f(xk) ≤
(
Lf (1− θ)2 + cθ2

2
− 1

λ

)
|xk+1 − xk|2 (k ∈ N).

In particular, if λ ∈
(

0, 2
Lf (1−θ)2+cθ2

)
, the sequence {f(xk)} is decreasing.

Proof. Denote xθ = (1− θ)xk + θxk+1. By weak convexity and (8), we obtain

f(xk+1)− f(xk) = f(xk+1)− f(xθ) + f(xθ)− f(xk)

≤ 〈∇f(xθ), xk+1 − xθ〉+
Lf
2
|xk+1 − xθ|2

+ 〈∇f(xθ), xθ − xk〉+
c

2
|xθ − xk|2.

By definition of xθ, we have

xk+1 − xθ = (1− θ)(xk+1 − xk) and xθ − xk = θ(xk+1 − xk),

which then yields the desired inequality. �

In addition, given f ∈ Γc, we have already seen that the sequence {xk} generated
by (7) can be interpreted as a sequence obtained from applying the gradient descent
to the θ-envelope eθλf . By Corollary 3.9, we know that ∇eθλf is L-Lipschitz which
implies that eθλf satisfies (8) and thus the following result follows readily.

Proposition 4.2. Let f ∈ Γc, θ ∈ (0, 1], λ > 0 such that 0 < cθλ < 1, and let
{xk} be generated by (7). Then

eθλf(xk+1)− eθλ(xk) ≤
(
L− 1

λ

)
‖xk+1 − xk‖2,

where L > 0 is the Lipschitz constant in Corollary 3.9. In particular, if λ < 1
L , the

sequence {eθλf(xk)} decreases.

Proof. Follows immediately from (8). �

5. Perspectives on the proximal point method for weakly convex
functions

In this section we present different interpretations of the proximal point method,
namely as gradient descent, DC algorithm and proximal-gradient method, all of
which provide different insights.

5.1. Proximal point as gradient descent.

Proposition 5.1. Let c > 0 and f ∈ Γc. Moreover, let λ, ε ≥ 0 such that

max

{
ε,

1

2c

}
≤ λ ≤

(
2− ε
3− ε

)
1

c
. (9)

Now, let {xk} be generated by the proximal point method with constant step-size λ,
i.e.

xk+1 := Pλf(xk) (k ∈ N), x0 ∈ Rn.
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Then every accumulation point of {xk} is a stationary point of f.

Proof. Using Proposition 3.4 b), observe that

xk+1 = xk +
(
Pλf(xk)− xk

)
= xk − λ∇eλf(xk) (k ∈ N),

i.e. {xk} is in fact generated by the gradient method with constant step-size λ for
the function eλf . Condition (9) ensures on the one hand that ∇eλf has Lipschitz
constant L := c

1−cλ , cf. Corollary 3.4 b). On the other it guarantees that ε ≤ λ ≤
(2− ε) 1

L . Therefore, [Ber99, Proposition1.2.3] is applicable and implies that every

accumulation point of {xk} is a stationary point of ∇eλf , which by Proposition 3.4
d) gives the desired statement. �

We illustrate the above result by two examples. In the first one we revisit Example
(3.6).

Example 5.2 (Piecewise quadratic). In Example 3.6, for a = 1, b = 2, the function

f(x) = max

{
1

2
(1− x2), (x2 − 1)

}
,

is 1-weakly convex. By Remark 3.5, the optimal parameter choice is λ = 1
2 . Then

the proximal point method xk+1 = P1/2f(xk) is explicit:

• if x0 = 0, 1,−1 then the sequence is constantly equal to 0, 1 and −1, re-
spectively;
• if x0 ∈

[
1

2K+1 ,
1
2K

)
∪ (2K , 2K+1], for a fixed K ∈ N, then the algorithm

converges in K + 1 steps to 1,
• if x0 ∈

(
− 1

2K+1 ,− 1
2K

]
∪ [−2K ,−2K+1), for a fix K ∈ N, then the algorithm

converges in K + 1 steps to −1.

The second example concerns the classical Rosenbrock function.

Example 5.3 (Rosenbrock function). Consider the Rosenbrock function f : R2 → R
defined by

f(x, y) = (x− 1)2 + 100(y − x2)2.

In Figure 2, we plot the iterations for the gradient descent and the proximal point
method with the optimal parameter choice λ = 1

2c . In addition, we observe the
decay of the Rosenbrock function.

5.2. Proximal point method as DC algorithm. A very popular and powerful
algorithm for solving DC optimization problems of the form

min f = g − h (10)

with g, h ∈ Γ0 is the so-called DC Algorithm, DCA for short, which goes back to
An and Tao, see e.g. [AT97]. In its simplified version (which coincides with the
original version in our setting) it reads as follows:

(1) Choose x0 ∈ dom ∂h;
(2) Compute yk ∈ ∂h(xk);
(3) Compute xk+1 ∈ ∂g∗(yk).

We point out that DCA applied to (10) is well-defined if (and only if)

dom ∂g ⊂ dom ∂h and dom ∂h∗ ⊂ dom ∂g∗, (11)
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Figure 2. Top: Iterations of gradient descent and the proximal
point method. The proximal point method gets closer to the global
mininum with the same number of total gradient evaluations. Bot-
tom: function values at each iteration of gradient descent and at
each outer proximal point iteration for the Rosenbrock function
(a fair comparison is used by counting total gradient evaluations,
using 10 or 20 for the approximate proximal point). After 2000
gradient evaluations the function value for gradient descent is still
order 1, while the proximal point method is order 10−2, moreover
the function values appear to decrease at a first order rate.

cf. [AT97, Lemma 1]. Now assume that f ∈ Γc. As was argued earlier, a natural
DC decomposition of f is

f = φλ −
1

2λ
‖ · ‖2 (0 < λc < 1),
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where, as always, φλ = f + 1
2λ‖ · ‖

2. Condition (11) is clearly satisfied. Hence, for

any x0 ∈ Rn, the DCA is well-defined and generates the sequences

yk =
1

λ
xk and xk+1 = ∇φ∗λ(yk) = Pλf(xk),

cf. Proposition 3.1 b).

5.3. Proximal point as proximal gradient. Again, we consider the trivial de-
composition

f = φλ −
1

2λ
‖ · ‖2 (0 < λc < 1).

The proximal gradient iteration with Lk := L = 1
λ , cf. [Bec17, Section 10.2], for

this decomposition reads

xk+1 = P 1
L
φλ

(
xk +

1

L
∇(

1

2λ
‖ · ‖2)(xk)

)
= Pλφλ(2xk).

On the other hand we have the following lemma.

Lemma 5.4. For f ∈ Γc we have

Pλφλ(2x) = Pλ
2
f(x) (x ∈ Rn, 0 < λc < 1).

Proof. We have

{Pλφλ(2x)} = argminy

{
f(y) +

1

2λ
‖y‖2 +

1

2λ
‖2x− y‖2

}
= argminy

{
f(y) +

1

λ
‖y‖2 − 2

λ
〈x, y〉+

1

2λ
‖2x‖2

}
= argminy

{
f(y) +

1

λ
‖y‖2 − 2

λ
〈x, y〉+

1

λ
‖x‖2

}
= argminy

{
f(y) +

1

λ
‖x− y‖2

}
=

{
Pλ

2
f(x)

}
.

�

6. Final remarks

We studied proximal point-type methods for weakly convex functions where the
main results were the following: We investigated the proximal mapping and Moreau
envelope for weakly convex (not necessarily smooth) functions while establishing
an optimal choice for the regularization parameter. In the smooth case we re-
vealed a connection between the θ-proximal point method and the θ-method for
gradient flows. Moreover, under an additional one-sided Lipschitz property we
prove a guaranteed decrease of the regularized objective function for the θ-proximal
point method. Finally, we gave three different interpretations of the proximal point
method for (possibly nonsmooth) weakly convex functions, which provide new in-
sights into the algorithm.
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