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1 Introduction

This set of notes was created for a series of invited lectures at the Spring School on
Variational Analysis in Paseky nad Jizerou, Czech Republic, May 19–25, 2019.

We start in Chapter 2 with some preliminaries about (finite dimensional) Euclidean
spaces, extended arithmetic and lower semicontinuity which is used throughout.

Following the preliminary section there are the three main chapters, Chapter 3, 4 and
5: In Chapter 3 we present, in a self-contained way, the fundamental tools from convex
analysis that are necessary to understand the subsequent study. An emphasis is put on the
study of support and gauge functions, including Hörmander’s theorem and, most impor-
tantly, on infimal convolution, upon which we build our presentation of many important
results in convex analysis, and which is a main workhorse for large parts of our study. The
approach centered around the conjugacy relations between infimal convolution and addi-
tion of functions is inspired by the excellent textbook [2] by Bauschke and Combettes.
The rest of this section is an eclectic selection from other standard references such as
[19] by Hiriart-Urruty and Lemaréchal, the classic and ever-current book by Rockafellar
[24] and the monumental bible of variatonal analysis by Rockafellar and Wets [25], also
reflecting some of the author’s personal preferences.

In Chapter 4 we take a broader perspective on convexity through a generalized notion
of convexity for vector-valued functions with respect to partial orderings induced by a
(closed, convex) cone K, which is referred to as K-convexity in the literature. Important
groundwork in this area was laid by Borwein in his thesis [4]. Another pivotal (and
somewhat overlooked) contribution was made by Pennanen in [23]. Here, we focus on
conjugacy results for the composition g ◦ F of a (closed, proper) convex function g with
a nonlinear map F . Maps of this form are called convex-composite functions. We study
the case where the generalized convexity properties of the nonlinear map F and the
monotonicity properties of the convex function g align in such a way that the composite
g ◦ F is still convex. Our main result, Theorem 4.7, provides sufficient conditions for the
formula

(g ◦ F )∗(p) = min
v∈−K◦

g∗(v) + 〈v, F 〉∗ (p)

to hold, thus complementing the work by Bot and Wanka on that subject, see e.g. [5]. The
main ingredients for the proof of said result are K-convexity and the conjugacy calculus
for infimal convolution. The material presented in Section 4 grew out of an ongoing
collaboration with my postdoc Quang Van Nguyen at McGill.

Chapter 5 is based on a series of papers [7, 8, 9] by the author and James V. Burke as
well as his PhD student Yuan Gao at the University of Washington, Seattle. The central
object of study is the generalized matrix-fractional function (GMF)

ϕA,B : (X, V ) ∈ Rn×m×Sn 7→

{
1
2
tr
((

X
B

)T
M(V )†

(
X
B

))
if rge

(
X
B

)
⊂ rgeM(V ), V ∈ KA,

+∞, else.

Here, A ∈ Rp×n and B ∈ Rp×m are such that rgeB ⊂ rgeA, KA ⊂ Sn is the set of all
symmetric matrices that are positive semidefinite on the kernel of A, and M(V )† is the
Moore-Penrose pseudoinverse of the bordered matrix M(V ) =

(
V AT
A 0

)
. The GMF occurs

in different situations, and for different choices of A,B, in matrix optimization or machine
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and statistical learning, see Section 5.1 and 5.2. A main theoretical result, see Theorem
5.8, is the observation that the GMF is the support function of the set

D(A,B) :=

{(
Y,−1

2
Y Y T

)
∈ Rn×m × Sn

∣∣ Y ∈ Rn×m : AY = B

}
.

The second main result, Theorem 5.10, provides the formula

convD(A,B) =

{
(Y,W ) ∈ Rn×m × Sn

∣∣∣∣ AY = B and
1

2
Y Y T +W ∈ K◦A

}
(1.1)

for the closed convex hull of the set D(A,B). Combining these two facts opens the door
for a full convex-analytical study of the GMF, and for using it in various applications such
as nuclear norm smoothing, see Section 5.5.2, or variational Gram functions, see Section
5.5.1. The description of the closed, convex hull of D(A,B) also establishes a tie between
the GMF and our study of K-convexity in Chapter 4 (which is also explicitly used in the
proof of Theorem 5.26): The special case A = 0 and B = 0 in (1.1) gives

convD(A,B) =

{
(Y,W ) ∈ Rn×m × Sn

∣∣∣∣ 1

2
Y Y T +W � 0

}
.

In the language of K-convexity, this means that the closed, convex hull of D(0, 0) is the
negative K-epigraph of the map Y 7→ 1

2
Y Y T with respect to the positive semidefinite

matrices.
The notes end with an appendix on background from linear algebra and the bibliog-

raphy.

2 Preliminaries

2.1 The Euclidean setting

In what follows, E will be an N -dimensional (N ∈ N) Euclidean space, i.e. a finite-
dimensional real vector space equipped with a scalar product, which we denote by 〈·, ·〉.
Recall that a scalar product on E is a mapping 〈·, ·〉 : E × E → R such that for all
x, y, z ∈ E and λ, µ ∈ R we have:

i) 〈λx+ µy, z〉 = λ 〈x, z〉+ µ 〈y, z〉 (linearity in first argument);

ii) 〈x, y〉 = 〈y, x〉 (symmetry);

iii) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0 (positive definiteness).

Altogether 〈·, ·〉 is a positive definite, symmetric bilinear form on E.
By ‖ · ‖ we label the norm2 on E induced by the scalar product, i.e.

‖x‖ :=
√
〈x, x〉 (x ∈ E),

2Recall that a norm on E is a mapping ‖ · ‖∗ : E→ R such that for all x, y ∈ E and λ ∈ R:

i) ‖x‖∗ = 0 ⇐⇒ x = 0 (definiteness)

ii) ‖λx‖∗ = |λ| · ‖x‖∗ (absolute homogeneity)

iii) ‖x+ y‖∗ ≤ ‖x‖∗ + ‖y‖∗ (triangle inequality)
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Scalar product and induced norm obey the famous Cauchy-Schwarz inequality

| 〈x, y〉 | ≤ ‖x‖ · ‖y‖ (x, y ∈ E),

where equality holds if and only if x and y are linearly dependent.
The open ball with radius ε > 0 centered around x ∈ E is denoted by Bε(x). In

particular, we put B := B1(0) for the open unit ball.

If (Ei, 〈·, ·〉i) (i = 1, . . . ,m) is a Euclidean space, then X
m

i=1 Ei is also a Euclidean space
equipped with the canonical scalar product

〈·, ·〉 :
m

X
i=1

Ei → R, 〈(x1, . . . , xm), (y1, . . . , ym)〉 :=
m∑
i=1

〈xi, yi〉i .

For n = dimE1,m = dimE2 < ∞, the set of all linear (hence continuous) operators is
denoted by L(E1,E2). Recall from Linear Algebra that L(E1,E2) is isomorphic to Rm×n,
the set of all real m× n-matrices, and that L ∈ L(E1,E2) if and only if

1) L(λx) = λL(x) (x ∈ E1, λ ∈ R) (homogeneity);

2) L(x+ y) = L(x) + L(y) (x, y ∈ E1) (additivity).

It is known from Linear Algebra that (since we restrict ourselves to finite dimensional
Euclidean spaces alone) for L ∈ L(E1,E2) there exists3 a unique mapping L∗ ∈ L(E2,E1)
such that

〈Lx, y〉E2
= 〈x, L∗y〉E1

(x, y ∈ E1).

The mapping L∗ is called the adjoint (mapping) of L. If E1 = E2 and L = L∗, we call L
self-adjoint.

With the well-known definitions for

rgeL := {L(x) ∈ E2 | x ∈ E1} (image of L)

and
kerL := {x ∈ E1 | L(x) = 0} (kernel of L)

for L : E1 → E2 linear, the following important relations are standard knowledge from
Linear Algebra.

At this, recall that, for some nonempty subset S ⊂ E we define its orthogonal comple-
ment by

S⊥ := {x ∈ E | 〈s, x〉 = 0 (s ∈ S)} .

Theorem 2.1 (Fundamental subspaces). Let L ∈ L(E1,E2). Then the following hold:

a) kerL = (rgeL∗)⊥ and (kerL)⊥ = rgeL∗;

b) kerL∗ = (rgeL)⊥ and (kerL∗)⊥ = rgeL.

3The unique existence of the adjoint mapping is already guaranteed if only the preimage space is finite
dimensional.
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Minkowski addition and multiplication

For two sets A,B ⊂ E we define their Minkowski sum by

A+B := {a+ b | a ∈ A, b ∈ B}.

If B = {b} is a singleton, we put

A+B =: A+ b.

Moreover, if A = ∅ (or B = ∅) then A+B := ∅.
In addition, for Λ ⊂ R, we put

Λ · A := {λa | a ∈ A, λ ∈ Λ} .

The operation (Λ, A) ⊂ 2R × 2E → 2E is called (generalized) Minkowski multiplication.
For Λ = {λ} we simply write

λA := {λ} · A.

Using the above notation, for instance, we have

Bε(x) = x+ εB

for all x ∈ E and ε > 0.

2.2 Extended arithmetic and extended real-valued functions

Let R := [−∞,∞] be the extended real line. The following conventions for an extended
arithmetic have become standard in the optimization and convex analysis community:
The uncritical ones are

α +∞ = +∞ =∞+ α and α−∞ = −∞+ α = −∞ (α ∈ R),

α · ∞ = sgnffl(α) · ∞ =∞ · α and α · (−∞) = −sgnffl(α) · ∞ = −∞ · α (α ∈ R \ 0).

Although we will try to avoid these cases whenever possible it is expedient for our purposes
to also use the following conventions:

0 · ∞ = 0 = 0 · (−∞),

∞−∞ = −∞+∞ =∞ (inf-addition).

Every subset S ⊂ R of the extended real line has a supremum (least upper bound) and an
infimum (greatest lower bound), which could be infinite. We use the common conventions

inf ∅ = +∞ and sup ∅ = −∞.

Functions of the type f : E → R occur naturally in various areas of mathematics, in
particular in optimization (e.g. optimal value functions) or measure theory, as soon as
suprema or infima are involved.
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The domain of a function f : E→ R is given by

dom f := {x | f(x) <∞} .

We call f proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ E.
A central object of study for extended real-valued functions is the epigraph, which for

f : E→ R is defined by

epi f := {(x, α) ∈ E× R | f(x) ≤ α} ,

see Figure 1 for an illustration. The epigraph establishes a one-to-one correspondence of
sets in E × R and functions E → R. In fact, all the important convex-analytical prop-
erties of an extended real-valued function (like lower semicontinuity, convexity, positive
homogeneity or sublinearity) have their correspondence in the geometry and topology, re-
spectively, of their epigraph. It is sometimes expedient to also consider the strict epigraph

epi <f := {(x, α) ∈ E× R | f(x) < α}

of f : E→ R.

gph f

epi f

x

f(x)

Figure 1: Epigraph of a function f : R→ R

Another useful tool are the level sets of f , which are defined by

lev≤αf := {x ∈ E | f(x) ≤ α} (α ∈ R).

We call f level-bounded if lev≤αf is bounded for all α ∈ R. Level-boundedness is tremen-
dously important for the existence of solutions of optimization problems, see Theorem
2.8.

The most prominent example of an extended real-valued function is as simple as it is
important.

Definition 2.2 (Indicator function). For a set S ⊂ E the mapping δS : E → R ∪ {+∞}
given by

δS(x) :=

{
0 if x ∈ S,

+∞ if x /∈ S

is called the indicator (function) of S.
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2.3 Lower semicontinuity

We now want to establish the notion of lower semicontinuity for extended real-valued
functions. To this end, for f : E→ R and x̄ ∈ E, we define

lim inf
x→x̄

f(x) := inf
{
α ∈ R

∣∣ ∃{xk} → x̄ : f(xk)→ α
}

(2.1)

as the lower limit of f at x̄.

Definition 2.3 (Continuity notions for extended-real valued functions). Let f : E → R
and x̄ ∈ E. Then f is said to be lower semicontinuous (lsc) at x̄ if

lim inf
x→x̄

f(x) ≥ f(x̄).

In addition, f is called continuous at x̄ if both f and −f are lsc at x̄, i.e. if

lim
x→x̄

f(x) = x̄,

where the latter means that for any sequence {xk} → x̄ we have f(xk)→ f(x̄).

Since the constant sequence {xk = x̄} is admitted in (2.1), the inequality in the definition
of lower semicontinuity can actually be substituted for and equality.

This fact that can also be phrased as follows: f : E → R is lower semicontinuous at
x̄ if and only if there does not exist a sequence {xk} → x̄ such that limk→∞ f(xk) < f(x̄).
See also Figure 2 for an illustration: Here the lack of lower semicontinuity at x̄ could be
remedied by setting by assigning f the value lim inf

x→x̄
f(x) = lim

x↓x̄
f(x) at x̄.

x̄
x

f(x)

Figure 2: A function f not lsc at x̄

We continue with an example of a function that is continuous in the extended real-valued
sense.

Example 2.4 ((Negative) log-determinant). Consider the function

f : Sn → R ∪ {+∞}, f(X) :=

{
− log(detX) if X � 0,

+∞ else
(2.2)
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which we call the (negative) log-determinant or the (negative) logdet function, for short.
Then f is proper and continuous: The properness is clear (as dom f = Sn++ 6= ∅). Recall
that the determinant mapping X 7→ det(X) is continuous (as it is a polynomial of the
matrices’ entries, cf. Leibniz formula), and hence f is continuous on its open domain
dom f = Sn++. Hence we only need to consider the critical cases of points on the boundary
of the domain, i.e. in X̄ ∈ bd (dom f) = Sn+ \ Sn++ and sequences {Xk ∈ Sn++} → X̄. At
this, Hence, for X̄ ∈ bd (dom f) and {Xk ∈ Sn++} → X̄ we have det(Xk)→ 0, and thus,
we obtain

lim
k→∞

f(Xk) = lim
k→∞
− log(det(Xk)) = +∞ = f(X̄),

thus f is continuous.

Lower semicontinuity plays an important role in our study. In fact, we often find it useful
to rectify the absence of lower semicontinuity of a function as follows:

We define the lower semicontinuous hull or closure of f to be the function cl f : E→ R,

(cl f)(x̄) := lim inf
x→x̄

f(x).

As the constant sequence {xk = x̄} is admitted in (2.1), we always have

lim inf
x→x̄

f(x) ≤ f(x̄) (x̄ ∈ E),

hence
cl f ≤ f

for every function f : E→ R. Moreover, we have

epi (cl f) = cl (epi f),

see Exercise 2.10 In particular, in view of the following result (which also clarifies why lsc
functions are also called closed ), this shows that cl f is always lsc.

Proposition 2.5 (Characterization of lower semicontinuity). Let f : E → R. Then the
following are equivalent:

i) f is lsc (on E);

ii) epi f is closed;

iii) lev≤αf is closed for all α ∈ R.

Proof. ’i)⇒ii)’: Let {(xk, αk) ∈ epi f} → (x, α). By lower semicontinuity we have

f(x) ≤ lim inf
k→∞

f(xk) ≤ lim
k→∞

αk = α,

hence (x, α) ∈ epi f . This shows that epi f is closed.

’ii)⇒ iii)’: Fix α ∈ R and let {xk ∈ lev≤αf} → x. Then {(xk, α) ∈ epi f} → (x, α),
and by closedness of epi f , we have (x, α) ∈ epi f , i.e. x ∈ lev≤αf . Thus, lev≤αf is closed,
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which proves the desired implication.

’iii)⇒ i):’(Contraposition) Suppose that f is not lsc. Then there exists x ∈ E, {xk} → x
and such that

f(xk)→ α < f(x).

Now, pick r ∈ (α, f(x)). Then we have

f(xk) ≤ r < f(x) for all k sufficiently large.

But that means that x /∈ lev≤rf , although almost every member of the sequence {xk} lies
in lev≤rf . Hence, lev≤rf cannot be closed.

Due to the ubiquitiousness of the indicator function, we state a closedness result for it
explicitly.

Corollary 2.6 (Lower semicontinuity of the indicator). For a set C ⊂ E its indicator δC
is proper and lsc if and only if C is nonempty and closed.

Lower semicontinuity plays a central role in minimization problems, as the following
paragraph illustrates.

2.4 Optimization problems

Let f : E→ R and C ⊂ E. We define

inf
C
f := inf

x∈C
f(x) := inf {f(x) | x ∈ C }

and
sup
C
f := sup

x∈C
f(x) := sup {f(x) | x ∈ C } .

In this scenario, infC f and supC f describe a(n extended) real number. By slight abuse of
notation (since a minimum/maximum does not need to exist) we write the optimization
problems that come with f and C by

min f(x) s.t. x ∈ C and max
x∈C

f(x) s.t. x ∈ C,

respectively. The function f is called objective function in this conext, where C is referred
to as the feasible set. If C = E, the respective minimization/maximization problems are
called unconstrained and otherwise constrained.

Note that we always have

inf
C
f = − sup

C
−f and sup

C
f = − inf

C
−f,

hence there is no big loss in generality if we primarily focus on minimization problems.
We now define the notion of a local and global minimizers.
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Definition 2.7 (Minimizers). Let f : E→ R ∪ {+∞} and C ⊂ E. Then x̄ ∈ C ∩ dom f
is called

i) local minimizer of f over C if there exists ε > 0 such that

f(x̄) ≤ f(x) (x ∈ C ∩Bε(x̄)).

ii) global minimizer of f over C if

f(x̄) ≤ f(x) (x ∈ C).

A global (local) minimizer of f over C is also called a (local) solution of the optimization
problem

min f(x) s.t. x ∈ C.

Obviously, every global minimizer is a local minimizer, while the converse implication is,
in general, not true. We will see, however, that in the convex setting, in turn, this does
hold.

We define

argminCf := argminx∈Cf(x) :=
{
x ∈ C

∣∣∣ f(x) = inf
C
f
}
,

i.e. argminCf is the set of alll global minimizers of f over C. Using indicator functions,
we have

inf
C
f = inf

E
(f + δC).

In fact, the minimization problems

min f(x) s.t. x ∈ C

and
min f(x) + δC(x)

are fully equivalent, in that not only there optimal values but also there (global and local)
solutions coincide (if they exist), in particular

argminCf = argminEf + δC .

We also define

argmaxCf := argmaxx∈Cf(x) :=

{
x ∈ C

∣∣∣∣ f(x) = sup
C
f

}
.

We want to emphasize here that, when minimizing proper functions f : E→ R ∪ {+∞},
we always have the implication

argminEf 6= ∅ ⇒ inf
E
f ∈ R.
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However, the converse implication does not hold in general: Consider for example the
function

f : x ∈ R 7→
{

1
x

if x > 0,
+∞ else.

Then clearly, infR f = 0 but argminf = ∅.
The significance of lower semicontinuity for minimization problems is highlighted by

the following famous result along the lines of the foregoing remark.

Theorem 2.8 (Existence of minima). Let f : E → R ∪ {+∞} be proper, lsc and level-
bounded. Then

argminEf 6= ∅ and inf
E
f ∈ R.

Proof. Let f ∗ := infE f < ∞. There exists a sequence {xk} such that f(xk) → f ∗.
Choosing α ∈ (f ∗,+∞) we have xk ∈ levαf for all k ∈ N sufficiently large. Since f is
lsc, levαf is closed by Proposition 2.5, and since f is level-bounded by assumption, levα
is compact. Hence, by the Bolzano-Weierstrass Theorem, there exists x̄ ∈ levα and an
infinite subset K ⊂ N such that xk →K x̄.

Lower semicontinuity of f then implies

f(x̄) ≤ lim inf
x→x̄

f(x) ≤ lim
k∈K

f(xk) = f ∗,

hence f(x̄) = f ∗, which proves the assertion.

The above theorem is the blueprint for what is called the direct method of the calculus of
variations.

Exercises to Chapter 2

2.1 (Openness of Sn++) Argue that Sn++ is open in Sn.

2.2 (Riesz representation theorem - finite dimensional version) Let (E, 〈·, ·〉)
be a (finite dimensional) Euclidean space and L ∈ L(E,R). Show that there exists
a unique b ∈ E such that

L(x) = 〈b, x〉 (x ∈ E).

2.3 (Orthogonal matrices) Show that O(n) is a compact subset of Rn×n.

2.4 (Logdet and trace inequality) Let A ∈ Sn++. Show that

log(detA) + n ≤ tr (A).

2.5 (Matrix-fractional function) For Ω := Rn × Sn++ consider the function

f : Ω→ R, f(x, V ) =
1

2
xTV −1x.
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Prove that f is differentiable by showing that

∇f(x, V ) =

[
V −1x,−1

2
V −1xxTV −1

]
(x, V ∈ Rn × Sn)

(w.r.t the standard scalar product on Rn × Sn).

Hint: Use the fact that for T ∈ Rn×n with ‖T‖ < 1 we have

(I − T )−1 =
∞∑
k=0

T k (Neumann series).

2.6 (Minimizing a linear function over the unit ball) Let g ∈ Rn \ {0}. Compute
the solution of the optimization problem

min 〈g, d〉 s.t. ‖d‖ ≤ 1.

2.7 (Minimizing a quadratic function) For A ∈ Sn and b ∈ Rn consider the
quadratic function

q : Rn → R, q(x) =
1

2
xTAx+ bTx.

Prove (without using first-order optimality conditions) that the following are equiv-
alent:

i) infRn q > −∞;

ii) A � 0 and b ∈ rgeA;

iii) argminRnq 6= ∅.

2.8 (Topology of Minkowski sum) Let A,B ⊂ E nonempty. Prove:

a) A+B is open if A or B is open.

b) A+B is closed if both A and B are closed and at least one of them is bounded.
Illustrate by a counterexample that the boundedness assumption cannot be
omitted in general.

2.9 (Closures and interiors of epigraphs) Let f : E→ R. Then the following hold:

a) (x̄, ᾱ) ∈ cl (epi f) ⇐⇒ ᾱ ≥ lim infx→x̄ f(x).

b) (x̄, ᾱ) ∈ int (epi f) ⇐⇒ ᾱ > lim supx→x̄ f(x).

2.10 (Lower semicontinuous hull) Let f : E→ R. Show that

epi (cl f) = cl (epi f),

i.e. cl f is the function whose epigraph is the closure of epi f .

2.11 (Domain of an lsc function) Is the domain of an lsc function closed?
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2.12 (Closedness of a positive combination) For p ∈ N let fi : E → R ∪ {+∞} be
lsc and αi ≥ 0. Show that f :=

∑p
i=1 αifi is lsc.

2.13 (Closedness preserving compositions) Let f : E→ R ∪ {+∞} be lsc.

a) Show that f ◦ g is lsc if g : E′ → E is continuous.

b) Show that φ ◦ f is lsc if φ : R→ R is monotonically increasing and we use the
convention φ(+∞) = supt∈R φ(t).

3 Fundamentals from Convex Analysis

3.1 Convex sets

Definition 3.1 (Convex sets). A set C ⊂ E is called convex if

λx+ (1− λ)y ∈ C (x, y ∈ C, λ ∈ [0, 1]). (3.1)

In other words, a convex set is simply a set which contains all connecting lines of points
from the set, see Figure 3 for examples.

Figure 3: Convex sets in R2

A vector of the form

r∑
i=1

λixi,
r∑
i=1

λi = 1, λi ≥ 0 (i = 1, . . . , r)

is called a convex combination of the points x1, . . . , xr ∈ E. It is easily seen that a set
C ⊂ Rn is convex if and only if it contains all convex combinations of its elements.

Below is a list of important classes of convex sets as well as operations that preserve
convexity.

Example 3.2 (Convex sets).

a) (Subspaces) Every subspace of E (in particular E itself) is convex, as convex com-
binations are special cases of linear combinations.
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b) (Minkowski sum) The Minkowski sum

A+B := {a+ b | a ∈ A, b ∈ B }

of two convex sets A,B ⊂ E is convex: For x, y ∈ A + B there exist a, a′ ∈ A and
b, b′ ∈ B such that x = a+ b and y = a′ + b′. Then for λ ∈ [0, 1] we have

λx+ (1− λ)y = λ(a+ b) + (1− λ)(a′ + b′)

= λa+ (1− λ)a′ + λb+ (1− λ)b′

By convexity of A and B, respectively, we see that λa+ (1−λ)a′ ∈ A and λb+ (1−
λ)b′ ∈ B, hence λx+ (1− λ)y ∈ A+B.

c) (Affine sets) Any set S ⊂ E which has a representation S = x+U , where x ∈ E and
U ⊂ E is a subspace is called an affine set and is, due to a) and b), in particular,
convex. It can be seen that the subspace U is uniquely determined and given by
S − S. Moreover, S ⊂ E is affine if and only if

αx+ (1− α)y ∈ S (x, y ∈ S, α ∈ R).

For these details see, e.g. [24, Section 1].

d) (Intersection) Arbitrary intersections of convex sets are convex, see Exercise 3.1.1a).

e) (Linear images and pre-images) For convex sets C ⊂ E1 and D ⊂ E2 and a linear
mapping F : E1 → E2 the sets F (C) and F−1(D) are convex, see Exercise 3.1.1 b).

f) (Hyperplanes) For s ∈ E \ {0} and γ ∈ R the set

{x ∈ E | 〈s, x〉 = γ }

is called a hyperplane. It is a convex set, which is easily verified elementary or as
a special case part e) with F : x 7→ 〈s, x〉 and D = {γ}.

g) (Half-spaces) Sets of the form

{x ∈ E | 〈s, x〉 ≥ γ } , {x ∈ E | 〈s, x〉 > γ }

interval

h) (Intervals) The intervals (closed, open, half-open) are exactly the convex sets in R.

3.1.1 The convex hull

Definition 3.3 (Convex hull). Let M ⊂ E be nonempty. The convex hull of M is the set

convM :=
⋂
M⊂C,

C convex

C,

i.e. the convex hull of M is the smallest convex set containing M .
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We can obtain an intrinsic characterization of the convex hull of a set by means of
convex combinations of their elements. At this, for x1, . . . , xp ∈ E and λ ∈ ∆p we call∑p

i=1 λixi a convex combination.

Proposition 3.4 (Characterization of the convex hull). Let M ⊂ E be nonempty. The
we have

convM =

{
r∑
i=1

λixi | r ∈ N, λ ∈ ∆r, xi ∈M (i = 1, . . . , r)

}
Proof. Exercise 3.1.2.

Proposition 3.4 tells us that the convex hull of a set can be seen as the set of all convex
combinations of elements from the set in question.

In an N -dimensional (N ∈ N) space E this can be sharpened as follows.

Theorem 3.5 (Carathéodory’s Theorem). Let M ⊂ E be nonempty. Then we have

conv M =

{
N+1∑
i=1

λixi | λ ∈ ∆N+1, xi ∈M (i = 1, . . . , N + 1)

}
,

i.e. every vector in convM can be written as a convex combination of at most N + 1
elements from M .

Proof. Let x ∈ conv M . By Proposition 3.4 there exists r ∈ N , λ1, . . . , λr > 0 and
x1, . . . , xr ∈M such that

r∑
i=1

λi = 1 and
r∑
i=1

λixi = x. (3.2)

If r ≤ N + 1 there is nothing to do.
Hence, let r > N + 1. We are going to show that x can already be written as a convex

combination of r − 1 elements from M , which then (inductively) gives the assertion.
As r > N + 1, the vectors

(x1, 1), . . . , (xr, 1) ∈ E× R

are linearly dependent. Hence, there exist α1, . . . , αr ∈ R such that

0 =
r∑
i=1

αi(xi, 1) (3.3)

and αi 6= 0 for at least one index i.
W.l.o.g. we can assume that∣∣∣αi

λi

∣∣∣ ≤ ∣∣∣αr
λr

∣∣∣ ∀i = 1, . . . , r − 1, (3.4)
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(i.e. r = argmax
{∣∣∣αiλi ∣∣∣ | i = 1, . . . , r

}
) hence, in particular αr 6= 0. Putting βi :=

− αi
αr

(i = 1, . . . , r − 1), equation (3.3) yields

xr =
r−1∑
i=1

βixi and
r−1∑
i=1

βi = 1. (3.5)

Then (3.2) and (3.5) imply

x =
r∑
i=1

λixi =
r−1∑
i=1

λixi + λr

r−1∑
i=1

βixi =
r−1∑
i=1

(λi + λrβi)xi,

Setting λ̃i := λi + λrβi (i = 1, . . . , r − 1) we thus obtain

x =
r−1∑
i=1

λ̃ixi,

and
r−1∑
i=1

λ̃i =
r−1∑
i=1

λi + λr

r−1∑
i=1

βi = 1− λr + λr = 1.

Due to (3.4) we also have

λ̃i = λi − λr
αi
αr

> 0.

Thus, x is already a convex combination of the r−1 vectors x1, . . . , xr−1, which concludes
the proof.

3.1.2 Topological properties of convex sets

We start by reviewing the fundamental concept of the (topological) closure, interior and
boundary of an arbitray set M ⊂ E. The (topological) closure clM of M , which is the
intersection all closed sets containing M , can also be written as

clM = {x | ∀ε > 0 ∃y ∈ Bε(x) ∩M } ,

in particular, clM is the set of all cluster (or, equivalently, limit) points of sequences in
M . It is easy to see that clM can also be written as

clM =
⋂
ε>0

M + εB. (3.6)

The interior intM of M is defined by

intM := {x ∈M | ∃ε > 0 : Bε(x) ⊂M } .

The boundary bdM of M is given by

bdM := clM \ intM.

The first topological result shows that convexity of a set is inherited to its interior and
its closure.
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Proposition 3.6 (Closure and interior of a convex set). Let S ⊂ E be convex. Then clS
and intS (which could well be empty, even if S is not) are convex, too.

Proof. Since

clS =
⋂
ε>0

(S + εB),

and S + εE is convex (see Example 3.2 b)), the convexity of clS follows from Example
3.2 d).

Now, let x, y ∈ intS, hence there exist open neighborhoods U1, U2 ⊂ S of x and y,
respectively. It follows for λ ∈ [0, 1] that

λx+ (1− λ)y ⊂ λU1 + (1− λ)U2 ⊂ λS + (1− λ)S ⊂ S,

which proves the result as λU1 + (1− λ)U2 is open by Exercise 2.8 a).

Boundedness, closedness and compactness are fundamental topological properties of sub-
sets in E. At this point, we want to study in how far they are preserved under the convex
hull operation.

Recall that, in (the finite-dimensional space) E, a subset is compact if and only if it
is bounded and closed.
The following result shows that compactness is preserved under the convex hull operator.

Proposition 3.7. Let M ⊂ E be compact. Then convM is compact.

Proof. Exercise 3.1.3 a).

As an immediate consequence, we obtain that boundedness, too, is preserved under the
affine hull operator.

Corollary 3.8. Let M ⊂ E be bounded. Then convM is bounded.

Proof. Exercise 3.1.3 b).

Unfortunately, closedness is, in general, not preserved under the convex hull operation,
which we will illustrate by an example below. In the face of Proposition 3.7 the set to
choose here, necessarily needs to be unbounded.

Example 3.9. Consider M := {
(

0
0

)
} ∪ {

(
a
1

)
| a ≥ 0} ⊂ R2. Then M is closed and(

1
1
k

)
=

1

k

(
k

1

)
+
(

1− 1

k

)(0

0

)
∈ convM (k ∈ N).

On the other hand, as one can easily verify, limk→∞
(

1
1
k

)
=
(

1
0

)
/∈ convM , and hence

convM is not closed, see Figure 4.

This justifies the following definition.

Definition 3.10 (Closed convex hull). Let S ⊂ E be nonempty. Then its closed convex
hull is the intersection of all closed convex sets containing it, we denote it by convS.
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Figure 4: Closed set, non-closed convex hull

It is not surprising that the closed convex hull equals the closure of the convex hull of a
set.

Proposition 3.11. Let S ⊂ E be nonempty. Then convS = cl (convS).

Proof. ’⊂’: cl (convS) is a closed convex set containing S, hence convS ⊂ cl (convS), as
convS is the smallest closed and convex set containing S.
’⊃’: We have S ⊂ convS, hence convS ⊂ convS, thus cl (convS) ⊂ convS, as convS is
closed and convex.

3.1.3 Projection on convex sets and a separation theorem

For a set S ⊂ Rn and a given point in x ∈ E we want to assign to x the subset of points
in S which have the shortest distance to it. We formalize this in the following definition.

Definition 3.12 (Projection on a set). Let S ⊂ E be nonempty and x ∈ E. Then we
define the projection of x on S by

PS(x) := argminy∈S‖x− y‖ ⊂ S.

Observe that no changes occur if we substitute y 7→ ‖y − x‖ for y 7→ 1
2
‖y − x‖2 in the

above definition.
In general, the projection PS is a set-valued map E ⇒ S. It is well known, however,

that it is single-valued for nonempty, closed, convex sets. We record this fact in the next
result.

Lemma 3.13 (Projection on closed convex sets). Let C ⊂ E be nonempty, closed and
convex. Then PC is a mapping E→ C with x = PC(x) if and only if x ∈ C.

Figure 5 illustrates this fact.
The following theorem gives an important characterization of the projection on a closed
convex set in terms of a variational inequality.

For its proof, observe that by the definition of the Euclidean norm and the canonical
scalar product 〈·, ·〉 we have

‖x± y‖2 = ‖x‖2 ± 2 〈x, y〉+ ‖y‖2 (x, y ∈ E).
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Figure 5: Projection on a closed convex set

Theorem 3.14 (Projection Theorem). Let C ⊂ E be nonempty, closed and convex and
let x ∈ E. Then v̄ = PC(x) if and only if

v̄ ∈ C and 〈v̄ − x, v − v̄〉 ≥ 0 (v ∈ C). (3.7)

Proof. First, assume that v̄ = PC(x) ∈ C and define f : E → R, f(v) = 1
2
‖v − x‖2. By

convexity of C, we have v̄ + λ(v − v̄) ∈ C for all v ∈ C and λ ∈ (0, 1). This implies

1

2
‖v̄ − x‖2 = f(v̄) ≤ f(v̄ + λ(v − v̄)) =

1

2
‖(v̄ − x) + λ(v − v̄)‖2 (v ∈ C, λ ∈ (0, 1)),

which, in turn, gives

0 ≤ 1

2
‖(v̄ − x) + λ(v − v̄)‖2 − 1

2
‖v̄ − x‖2

= λ 〈v̄ − x, v − v̄〉+
λ2

2
‖v − v̄‖2

for all v ∈ C and λ ∈ (0, 1). Dividing by λ yields

0 ≤ 〈v̄ − x, v − v̄〉+
λ

2
‖y − v̄‖2.

Letting λ ↓ 0 gives the desired inequality in (3.7).
In order to see the converse implication, let v̄ ∈ E such that (3.7) holds. For v ∈ C

we hence obtain

0 ≥ 〈x− v̄, v − v̄〉
= 〈x− v̄, v − x+ x− v̄〉
= ‖x− v̄‖2 + 〈x− v̄, v − x〉
≥ ‖x− v̄‖2 − ‖x− v̄‖ · ‖v − x‖,

where the last inequality is due to the Cauchy-Schwarz inequality. If x 6= v̄ we can divide
by ‖x− v̄‖ > 0 and infer

‖x− v̄‖ ≤ ‖x− v‖ (v ∈ C),

i.e. v̄ = PC(x). If, in turn,
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A geometrical interpretation of the projection theorem is as follows: The angle between
x− PC(x) and v − PC(x) must be at least 90◦ for all v ∈ C.

Remark 3.15. A nonempty set S ⊂ H in an arbitrary Hilbert space is called Chebyshev
set if PS is single-valued (i.e. for every x ∈ H the projection PS(x) is a singleton).

In finite dimension the (nonempty) closed and convex sets are exactly the Chebyshev
sets, see [2, Corollary 21.11]. In infinite dimension this is still an open problem known
as the Chebyshev problem.

The projection theorem in the form of Theorem 3.14 remains valid (with literally the
same proof) if the assumption that E be finite dimensional is dropped and one works in
Hilbert space.

The following separation theorem is an immediate consequence of the projection theorem.

Theorem 3.16 (Separation Theorem). Let C ⊂ E be nonempty, closed and convex, and
let x /∈ C. Then there exists s ∈ E \ {0} with

〈s, x〉 > sup
v∈C
〈s, v〉 .

Proof. Put s := x− PC(x) 6= 0. Then the projection theorem yields

0 ≥ 〈x− PC(x), v − PC(x)〉 = 〈s, v − x+ s〉 = 〈s, v〉 − 〈s, x〉+ ‖s‖2 (v ∈ C).

Thus,
〈s, x〉 − ‖s‖2 ≥ 〈s, v〉 (v ∈ C),

hence, s fulfills the requirements of the theorem.

We would like to note some technicalities about the former theorem.

Remark 3.17. Under the assumptions of Theorem 3.16 the following hold:

a) The vector s can always be substituted for −s and thus, there exists s ∈ E\{0} such
that 〈s, x〉 < infv∈C 〈s, v〉.

b) By positive homogeneity, we can assume w.l.o.g. that ‖s‖ = 1.

c) The statement of the separation theorem can also be formulated as follows: For
C ⊂ E nonempty, closed and convex and x /∈ C there exist s ∈ E \ {0} and β ∈ R
such that

〈s, x〉 > β ≥ 〈s, v〉 (v ∈ C).

It is not quite clear yet why the above theorem was labeled separation theorem. In the
situation of the theorem, define γ := 1

2
(〈s, x〉+ supy∈C 〈s, y〉). Then

x ∈ {z | 〈s, z〉 > γ } and C ⊂ {z | 〈s, z〉 < γ } ,

i.e. {x} and C lie in two distinct open half-spaces induced by the hyperplane H ={
z
∣∣ sT z = γ

}
. We say that H separates the set C from the point x /∈ C. This situation

is illustrated in Figure 9.
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•x

H = {z | 〈s, z〉 = γ }

s

Figure 6: Separation of a point from a closed convex set

Remark 3.18. In view of Remark 3.15 it is clear that the separation theorem in the form
of Theorem 3.16 remains valid if for an arbitrary real Hilbert space instead of E without
even changing the proof.

There is an extension of this result to arbitrary Banach spaces, but the existing proofs
rely on the axiom of choice, usually in the form of Zorn’s Lemma.

3.1.4 The relative interior

For a nonempty set M ⊂ E, its affine hull is given by

aff M :=
⋂
{S ∈ E |M ⊂ S, S affine} ,

cf. Example 3.2 c). One can easily see (like in the case of the linear hull) that the intrinsic
characterization

aff M =

{
r∑
i=1

λixi

∣∣∣∣∣
r∑
i=1

λi = 1, xi ∈M (i = 1, . . . , r)

}
holds, i.e. aff M is the set of all affine combinations of M , see Exercise 3.1.6.

For convex sets the (topological) interior is too restrictive a concept as in many cases
it is going to be empty. For instance, consider the line segment C := [x, y] for some
x, y ∈ Rn. We have intC = ∅, but on the other hand it would be nice to declare the set
(x, y)(:= C \ {x, y}) as the ’interior of C in some sense’. Since aff C = {λx + (1 − λ)y |
λ ∈ R}, it is easily verified that

(x, y) = {z | ∃ε > 0 : Bε(z) ∩ aff C ⊂ C } ,

i.e. (x, y) is the interior of C with respect to the relative topology induced by the affine
hull of C. We are going to make a general principle out of that.

Definition 3.19 (Relative interior/boundary and convex dimension). Let C ⊂ E be
convex. Then the relative interior riC of C is its interior with respect to the relative
topology induced by aff C, i.e.

riC := {x ∈ C | ∃ε > 0 : Bε(x) ∩ aff C ⊂ C } .
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C aff C dimC riC

{x} {x} 0 {x}
[x, x′] {λx+ (1− λ)x′ | λ ∈ R} 1 (x, x′)
∆n {a | eTna = 1} n− 1 {a ∈ ∆n | ai > 0}
Bε(x) E N Bε(x)

Table 1: Examples for relative interiors

The relative boundary of C is given by

rbdC := clC \ riC,

which is closed. In addition, we define dimC := dim(aff C) to be the (convex) dimension
of C.

aff C
riC

C

Figure 7: Illustration of relative interior

Figure 3.1.4 illustrates the relative interior and affine hull.
By definition, for any convex set C ⊂ E, we have

intC ⊂ riC ⊂ C ⊂ clC. (3.8)

One might ask the question why we did not define a relative closure along with the relative
interior and boundary, respectively. The reason for this is that there is no difference
between the closure in the standard topology and in the topology relative to the affine
hull. This holds since, briefly speaking, aff C is closed and hence clC ⊂ aff C.

Table 3.1.4 contains a list of examples of frequently used sets and their relative inte-
riors. We urge the reader to verify them. Note that the first two show that the relative
interior (as opposed to the interior) is non-monotonic in the sense that C1 ⊂ C2 does
not necessarily imply riC1 ⊂ riC2. However, Corollary 3.27 points shows that, in most
situations, monotonicity is valid.
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Remark 3.20. The relative interior of a convex set C ⊂ E coincides with the interior
if (and only if) C has full dimension, i.e. when aff C = E, in which case all topological
questions reduce to the standard topology.

If, on the other hand, dimC = m < N(= dimE), and we choose any m-dimensional
subspace U ⊂ E, there exists an invertible affine mapping F : E→ E such that F (aff C) =
U , see [24, Corollary 1.6.1]. That is F maps aff C to U in a homeomorphic (even diffeo-
morphic) way. Thus, it holds that

aff F (C) = F (aff C) = U,

and therefore, it is often possible to reduce topological questions about arbitrary (lower
dimensional) convex sets to the full dimensional case by just working with the affine,
diffeomorphic image F (A) as a full dimensional convex set in some (sub-)space U .

Remark 3.20 already comes into play in the proof of the next result.

Proposition 3.21 (Line segment principle). Let C ⊂ E be convex as well as x ∈ riC
and y ∈ clC. Then we have [x, y) ∈ riC, i.e.

(1− λ)x+ λy ∈ riC (λ ∈ [0, 1))

Proof. In view of Remark 3.20 we may assume w.l.o.g that dimC = N , i.e. riC = intC.
Now, let λ ∈ [0, 1). Since y ∈ clC , we have

y ∈ C + εB (ε > 0). (3.9)

Hence, using Minkowski addition, we get

Bε((1− λ)x+ λy) = (1− λ)x+ λy + εB
(3.9)
⊂ (1− λ)x+ λ(C + εB) + εB

= (1− λ)
[
x+

1 + λ

1− λ
εB︸ ︷︷ ︸

=B
ε 1+λ

1−λ
(x)

]
+ λC

for all ε > 0. Since x ∈ intC, we have Bε 1+λ
1−λ

(x) ⊂ C for all ε > 0 sufficiently small.

Hence, for these ε > 0, we get

Bε((1− λ)x+ λy) ⊂ (1− λ)C + λC = C,

which shows that (1− λ)x+ λy ∈ intC, and hence concludes the proof.

We encourage the reader to emulate the proof of Proposition 3.21 without the assumption
that C has nonempty interior to see that nothing changes other than the necessity of
intersecting with aff C.

An immediate consequence of the line segment principle is the convexity of the relative
interior of a convex set (just take y ∈ riC in Proposition 3.21).

We now show that for C ⊂ E convex, the three convex sets C, riC and clC have the
same affine hull, hence the same convex dimension.
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Theorem 3.22. Let C ⊂ E convex. Then aff (clC) = aff C = aff (riC). In particular, we
have dimC = dim clC = dim riC and riC 6= ∅ if C 6= ∅.

Proof. Since aff C is closed we have clC ⊂ aff C. Using again the properties of the
respective hull operators ’cl ’ and ’aff ’ we hence obtain

aff C ⊂ aff (clC) ⊂ aff (aff C) = aff C,

therefore, in particular, we have aff C = aff (clC).
We now show that aff C = aff (riC): In view of Remark 3.20 we can assume that

aff C = E, i.e. dimC = N . Hence, it suffices to show that intC 6= ∅ under this assump-
tion, since then also aff (intC) = E. For these purposes, let x0, x1, . . . , xN ∈ C be affinely
independent and define

S := conv {x0, x1, . . . , xN} ⊂ C.

We show that

x̄ :=
1

N + 1

N∑
i=0

xi ∈ S

is an interior point of S hence also of C.
Notice that E = aff S = aff {x0, x1, . . . , xN}, and x0, x1, . . . , xN are affinely indepen-

dent. Hence, for every y ∈ E, we have unique scalars β0(y), β1(y), . . . , βN(y) ∈ R with∑N
i=0 βi(y) = 1 such that

N∑
i=0

βi(y)xi = x̄+ y =
1

N + 1

N∑
i=0

xi + y.

Thus, putting αi(y) := βi(y)− 1
N+1

(i = 0, 1, . . . , N), the vector α(y) ∈ RN+1 is the unique
solution of the linear system

y =
N∑
i=0

αixi, 0 =
N∑
i=0

αi.

The thus induced mapping y ∈ E 7→ α(y) is linear, hence continuous. Thus, we can find
δ > 0 such that for all y ∈ δB, we have |αi(y)| ≤ 1

N+1
. But then βi(y) = αi(y) + 1

N+1
≥ 0

and hence x̄+y =
∑N

i=0 βi(y)xi ∈ conv {x0, . . . , xN} = S for all y ∈ δE. Thus, x̄+δB ⊂ S,
which gives the assertion.

We continue by providing a list of useful properties of the relative interior.

Proposition 3.23. Let C ⊂ E convex. Then the following hold:

a) ri (riC) = riC = ri (clC);

b) clC = cl (riC);

c) rbdC = rbd (riC) = rbd (clC).
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Proof. By Remark 3.20 we can again assume that aff C = E, i.e. the standard and the
relative topology coincide. The statements then follow from the well-known facts for the
interior, boundary and closure of sets with nonempty interior.

The fact that two convex set with the same closure have the same relative interior is an
immediate consequence, which we want to state explicitly because it is so frequently used.

Corollary 3.24. Let C1, C2 ⊂ E such that clC1 = clC2. Then riC1 = riC2.

Proof. From Proposition 3.23 we infer that riC1 = ri (clC1) = ri (clC2) = riC2.

We next present another useful principle for the relative interior of a convex set that we
call the stretching principle.

Proposition 3.25 (Stretching principle). Let C ⊂ E be a nonempty convex set . Then
it holds that

z ∈ riC ⇐⇒ ∀x ∈ C ∃µ > 1 : µz + (1− µ)x ∈ C.

Proof. First, let z ∈ riC. By definition, there exists ε > 0 such that Bε(z) ∩ aff C ∈ C.
Moreover, for every x ∈ C and µ ∈ R we have µz + (1 − µ)x ∈ aff C. For every µ
sufficiently close to 1, µz + (1− µ)x ∈ Bε(z). Hence, µz + (1− µ)x ∈ aff C ∩Bε(z) ⊂ C.

Now, suppose that z satisfies the condition on the right-hand side of the equivalence:
As riC 6= ∅ by Theorem 3.22, there exists x ∈ riC. By assumption we then have
y := µz + (1− µ)x ∈ C for some µ > 1. Then z = λy+ (1− λ)x, where λ := µ−1. By the
line segment principle z ∈ riC.

Proposition 3.25 basically says that every line segment in C having z ∈ riC as one
endpoint can be, to some extent, stretched beyond z without leaving C.

In the following result we want to investigate how relative interiors and closures behave
with regard to intersection of sets. For these purposes, recall that for an intersection of a
family of sets Ai ∈ E (i ∈ I), it always holds that

cl
⋂
i∈I

Ai ⊂
⋂

clAi

due to the monotonicity and idempotence of the closure operator and the fact that an
arbitrary intersection of closed sets is closed.

Proposition 3.26. Let Ci ⊂ E be convex for i ∈ I (an index set) such that
⋂
i∈I riCi 6= ∅.

Then the following hold:

a) cl
⋂
i∈I Ci =

⋂
i∈I clCi;

b) ri
⋂
i∈I Ci =

⋂
i∈I riCi if I is finite.

26



Proof. Fix x ∈
⋂
i∈I riCi. By the line segment principle, given any y ∈

⋂
i∈I clCi, we have

(1− λ)x+ λy ∈
⋂
i∈I riCi for all λ ∈ [0, 1). Moreover, we have y = limλ→1(1− λ)x+ λy.

As y was chosen arbitrarily in
⋂
i∈I clCi, we obtain⋂

i∈I

clCi ⊂ cl
⋂
i∈I

riCi ⊂ cl
⋂
i∈I

Ci ⊂
⋂
i∈I

clCi.

This proves a) and shows at the same time that
⋂
i∈I riCi and

⋂
i∈I Ci have the same

closure, hence, by Corollary 3.24, the same relative interior. Thus,

ri
⋂
i∈I

Ci ⊂
⋂
i∈I

riCi.

In order to prove the opposite inclusion we assume that I is finite. Fix z ∈
⋂
i∈I riCi.

Then by the stretching principle (applied to every Ci), for every x ∈
⋂
Ci and every i ∈ I

there exists µi > 0 such that µiz + (1 − µi) ∈ Ci. Putting µ := mini∈I µi > 1 (I finite!),
we see that µz + (1− µ)x ∈

⋂
Ci. Hence, again by the stretching principle, z ∈ ri

⋂
Ci,

which completes the proof.

As was pointed out above, the relative interior operator is not necessarily monotone. The
following result tells us, however, that in many situations, it actually is.

Corollary 3.27. Let C1, C2 ⊂ E be convex sets such that C2 ⊂ clC1 but C2 6⊆ rbdC1.
Then riC2 ⊂ riC2.

Proof. Since by assumption C2 ⊂ clC1, by Proposition 3.23 b) and the monotonicity of
the closure operator we have

cl (riC2) = clC2 ⊂ clC1 (3.10)

We claim that riC1∩ riC2 6= ∅: Otherwise (3.10) would yield riC2 ⊂ clC1 \ riC1 = rbdC1

which is closed, hence C2 ⊂ cl (riC2) ⊂ rbdC1, which contradicts our assumption. Hence
riC1 ∩ riC2 6= ∅, and we may apply Proposition 3.26 to obtain

riC1 ∩ riC2 = riC1 ∩ ri (clC2) = ri (C1 ∩ clC2) = riC2,

hence riC2 ⊂ riC2.

Next, we want to show that affine mappings preserve relative interiors (as was already
foreshadowed in Remark 3.20). To this end, recall that for a continuous function f : E1 →
E2 and A ∈ E1, we have

f(clA) ⊂ cl (f(A)).

Proposition 3.28 (Relative interior under affine mappings). Let F : E1 → E2 be affine
and C ⊂ E1 convex. Then

riF (C) = F (riC).
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Proof. First note that by Example 3.2 e) the set F (C) is convex, so that we can even talk
about its relative interior.

By the continuity of F , the monotonicity of the closure operation and Proposition 3.23
b) we obtain

F (C) ⊂ F (clC) = F (cl (riC)) ⊂ clF (riC) ⊂ clF (C).

Hence, taking the (idempotent) closure again on both sides, we get clF (C) = clF (riC).
Therefore, see Corollary 3.24, riF (C) = riF (riC) ⊂ F (riC).

In order to prove the converse inclusion take z ∈ F (riC). Moreover, let x ∈ F (C). In
addition, choose z′ ∈ F−1(z) ⊂ riC and x′ ∈ F−1(x) ⊂ C. By the stretching principle,
there exists µ > 1 such that µz′ + (1− µ)x′ ∈ C, and thus

F (µz′ + (1− µ)x′) = µz + (1− µ)x ∈ F (C).

As x ∈ F (C) was chosen arbitrarily, we can apply the stretching principle (in the opposite
direction to before) to z and infer that z ∈ riF (C), which concludes the proof.

We close out this paragraph on the relative interior with a result that will be very useful
for our study in section 5.3. It is usually referenced to [24, Theorem 6.8].

Theorem 3.29. Let C ⊂ E1×E2. For each y ∈ E1 we define Cy := {z ∈ E2 | (y, z) ∈ C }
and D := {y | Cy 6= ∅}. Then riC = {(y, z) | y ∈ riD, z ∈ riCy } .

Proof. The projection L : (y, z) 7→ y has L(C) = D, hence L(riC) = riD, by Proposition
3.28. Given y ∈ riD and the affine set M := {(y, z) | z ∈ E2}, Proposition 3.26 (M
affine!) and Exercise 3.1.8 we have

M ∩ riC = ri (M ∩ C) = ri ({y} × Cy) = ri {y} × riCy = {(y, z) | z ∈ riCy } ,

which is exactly the set of points in riC mapped to y by L. This shows the desired
statement (clear?).

Exercises for Section 3.1

3.1.1 (Convexity preserving operations on sets)

a) (Intersection) Let I be an arbitrary index set (possibly uncountable) and let
Ci ⊂ E (i ∈ I) be a family of convex sets. Show that

⋂
i∈I Ci is convex.

b) (Linear images and preimages) Let F ∈ L(E1,E2) and let C ⊂ E1, D ⊂ E2 be
convex. Show that

F (C) := {Ax | x ∈ C } and F−1(D) = {x | Ax ∈ D}

are convex.
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3.1.2 (Convex hull of a set) Let M ⊂ E. Show that

convM =

{
r∑
i=1

λixi | r ∈ N, λ ∈ ∆r, xi ∈M (i = 1, . . . , r)

}
,

i.e. convM is the set of all convex combinations of vectors in M .

Hint: You may use the comment in the notes that a convex set contains all convex combinations

of its elements.

3.1.3 (Topology of convex hulls) Let M ⊂ E. Show the following:

a) If M is compact then convM is compact.

b) If M is bounded then convM is bounded.

3.1.4 (Convex hulls) Let F : E → E′ be affine and A,C ⊂ E and B ⊂ E′ nonempty.
Prove the following:

a) convF (A) = F (convA);

b) conv (A×B) = convA× convB;

c) conv (A+ C) = convA+ convC.

3.1.5 (Spectahedron) For n ∈ N compute conv
{
uuT ∈ Sn | u ∈ Rn : ‖u‖ = 1

}
.

3.1.6 (Affine hulls) Let M ⊂ E be nonempty and let F : E → E′ be linear. Show the
following:

a) aff M = {
∑r

i=1 λixi |
∑r

i=1 λi = 1, xi ∈M (i = 1, . . . , r)}.
b) aff (F (M)) = F (aff M).

3.1.7 (Characterization of relative interior points) Let C ⊂ E be nonempty and
convex and x ∈ C. Show that the following are equivalent:

i) x ∈ riC;

ii) R+(C − x) is a subspace of E.

3.1.8 (Relative interiors and cartesian products) For i = 1, . . . , p let Ci ⊂ Ei. Show
that

ri

(
p

X
i=1

Ci

)
=

p

X
i=1

riCi.

3.1.9 (Conex hull and relative boundary) Let C ⊂ E be nonempty, convex and
compact. Show that conv (rbdC) = C.

3.1.10 (Open mapping theorem - finite dimensional version) Let A ⊂ E be open
and L ∈ L(E,E′) surjective. Then L(A) is open.
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3.2 Convex cones

3.2.1 Convex cones and conical hulls

Definition 3.30 (Cones). A nonempty set K ⊂ E is said to be a cone if

λK ⊂ K (λ ≥ 0),

i.e. K is a cone if and only if it is closed under multiplication with nonnegative scalars.
We call K pointed if for any p ∈ N the implication

x1 + · · ·+ xp = 0 ⇒ xi = 0 (i = 1, . . . , p)

holds as soon as xi ∈ K.

Note that, in our definition, a cone always contains the origin. In the literature this is
not necessarily the case.

For obvious reasons, convex cones are of particular interest to our study. We have the
following handy characterization of convexity of a cone.

Proposition 3.31 (Convex cones). Let K ⊂ E be a cone. Then K is convex if and only
if K +K ⊂ K.

Proof. Let K be convex. Then

x+ y = 2 · 1

2
(x+ y)︸ ︷︷ ︸
∈K

∈ K (x, y ∈ K)

hence K +K ⊂ K.
If, in turn, K +K ⊂ K, then

λx︸︷︷︸
∈K

+ (1− λ)y︸ ︷︷ ︸
∈K

∈ K +K ⊂ K (x, y ∈ K,λ ∈ [0, 1]),

i.e. K is convex.

Pointedness of convex cones can be handily characterized.

Proposition 3.32 (Pointedness of convex cones). Let K ⊂ E be a convex cone. Then K
is pointed if and only if K ∩ (−K) = {0}.

Proof. Exercise 3.2.1

We proceed with a list of prominent examples of cones.

Example 3.33 (Cones).

a) (Nonnegative Orthant) For all n ∈ N, the nonnegative orthant Rn
+ is a pointed,

convex cone, which is also a polyhedron as

Rn
+ =

{
x ∈ Rn

∣∣ (−ei)Tx ≤ 0 (i = 1, . . . , n)
}
.
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b) (Cone complementarity constraints) Let K ⊂ E be a cone. Then the set

Λ := {(x, y) ∈ E× E | x, y ∈ K, 〈x, y〉 = 0}

is a cone. A prominent realization is K = Rn, in which case Λ is called the comple-
mentarity constraint set.

c) (Positive semidefinite matrices) For n ∈ N, the set Sn+ of positive semidefinite n×n
matrices is a pointed, convex cone.

The next example is important enough to merit its own definition.

Definition 3.34 (Polar cone). Let K ∈ E be a cone. Then the polar (cone) of K is
defined by

K◦ := {d ∈ E | 〈d, x〉 ≤ 0 (x ∈ K)} .
respectively. Moreover, K◦◦ := (K◦)◦ is called the bipolar cone of K.

The cone K∗ := −K◦ is sometimes referred to as the dual (cone) of K, and K is
called self-dual if K∗ = K.

In order to visualize the normal cone, we think of E as Rn: Then the normal cone of the
cone K is set of all vectors, which have an angle ≥ 90◦ to every vector in K.

Clearly, for an arbitrary cone K ⊂ E, its polar K◦ is always a closed, convex cone.
Hence, for K to be self-dual, it must necessarily be a closed, convex cone. Moreover,
polarization is order-reversing, i.e. for K1 ⊂ K2 ⊂ E, we have K◦2 ⊂ K◦1 .

We continue with some elementary examples of polar cones.

Example 3.35 (Polar cones).

a) It holds that {0}◦ = E and E◦ = {0}, which is a special case of part b).

b) If S is a subspace, S◦ = S⊥ (cf. Exercise 3.2.4).

c) For 0 6= w ∈ E, the polar of the ray {tw | t ≥ 0} is the half-space {w ∈ E | 〈w, x〉 ≤ 0}.

d) The negative orthant Rn
+ and the positive semidefinite n × n matrices Sn+ are self-

dual.

Since the intersection of convex cones is again a convex cone, using our usual routine, we
can also build up (convex) conical hulls of arbitrary sets.

Definition 3.36 ((Convex) Conical hull). Let S ⊂ E be nonempty. Then the (convex)
conical hull of S is the set

cone S :=
⋂
S⊂M,

M convex cone

M.

Moreover, we define the closed (convex) conical hull of S to be

cone S := cl (cone S).

We notice, without proof, that cone S is the intersection of all closed, convex cones that
contain S.
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3.2.2 The horizon cone

The next conical approximation of a set is, loosely speaking, comprised of the directions
in which one can go (starting at least one point in the set) without ever leaving the set,
and thus takes account of the unboundedness of the set.

Definition 3.37 (Horizon cone). For a nonempty set S ⊂ E the set

S∞ := {v ∈ E | ∃{xk ∈ S}, {tk} ↓ 0 : tkxk → v}

is called the horizon cone of S. We put ∅∞ := {0}.

C

C∞

Figure 8: The horizon cone of an unbounded set

The following result shows that the horizon cone is indeed a closed cone.

Lemma 3.38. The horizon cone of a set C ⊂ E is a closed cone.

Proof. The fact that C∞ is a cone is trivial. For the closedness of the horizon cone we
can invoke a diagonal sequence arguments as it is usually used to show closedness of the
tangent cone.

The horizon cone can be used to very handily express boundedness of an arbitrary set in
E.

Proposition 3.39 (Horizon criterion for boundedness). A set S ⊂ E is bounded if and
only if S∞ = {0}.

Proof. If S is bounded, then for all sequences {xk ∈ S}, {tk} ↓ 0, we have tkxk → 0, hence
S∞ = {0}.

If, in turn, S is unbounded, then there exists {xk ∈ S} with ‖xk‖ → ∞. Putting
tk = 1

‖xk‖
, we have {tk} ↓ 0 and tkxk = xk

‖xk‖
converges (at least on a subsequence) to some

v 6= 0 and, hence v ∈ S∞ ) {0}.

Figure 8 nicely illustrates the foregoing result. It shows that the horizon cone of an
unbounded nonconvex set, which is a non-trivial closed cone, which is not necessarily
convex.

We now want to show that the horizon cone is always going to be convex if the said in
question is convex itself. For these purposes, we introduce another conical approximation
for convex sets.
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Definition 3.40 (Recession cone). For nonempty convex sets C ⊂ E, the convex cone

0+(C) := {v | ∀x ∈ C, λ ≥ 0 : x+ λv ∈ C } ,

is called the recession cone of C,

The recession cone is very closely related to the horizon cone as we will now see.

Proposition 3.41 (Horizon vs. recession cone). Let C ⊂ E be nonempty and convex.
Then

C∞ = 0+(clC).

In particular, C∞ is (a closed and) convex (cone) if C is convex.

Proof. Let v ∈ C∞. Then there exist {xk ∈ C}, {tk} ↓ 0 such that tkxk → v. Now, let
λ ≥ 0 and x ∈ C be given. As C is convex, we have

(1− λtk)x+ λtkxk ∈ C

for all k ∈ N sufficiently large. Hence,

x+ λv = lim
k→∞

(1− λtk)x+ λtkxk ∈ cl (C),

which shows that v ∈ 0+(clC).
Now let v ∈ 0+(clC). Fixing x ∈ C, we get x + λv ∈ clC for all λ ≥ 0. Hence,

we can find a sequence {xk ∈ C} such that ‖x + kv − xk‖ ≤ 1
k

for all k ∈ N. Putting
λk := 1

k
(k ∈ N), we obtain

‖v − λkxk‖ ≤
1

k
(‖x‖+ ‖x+ kv − xk‖)→ 0,

hence λkxk → v, i.e. v ∈ C∞.

An obvious consequence of the foregoing proposition is the fact that horizon and recession
cone coincide for nonempty, closed and convex sets.

Corollary 3.42. Let C ⊂ E be nonempty, closed and convex. Then

C∞ = 0+(C).

Exercises to Section 3.2

3.2.1 (Pointedness of convex cones) Let K ⊂ E be a convex cone. Show that K is
pointed if and only if K ∩ (−K) = {0}.

3.2.2 (Convex cones vs. subspaces) Let K ⊂ E be a convex cone. Show that:

a) K ∩ (−K) is the largest subspace that is contained in K;

b) K −K is the smallest subspace containing K, i.e. K = K = spanK.

c) K is a subspace if and only if K = −K.
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3.2.3 (Characterizing the conical hull) Let S ⊂ E be nonempty. Prove that

cone S =

{
r∑
i=1

λixi | r ∈ N, xi ∈ S, λi ≥ 0 (i = 1, . . . , r)

}
= R+(convS) = conv (R+S).

3.2.4 (Polar of subspace) Let U ⊂ E be a subspace. Show that U◦ = U⊥.

3.2.5 (Pointedness and polarity) Let K be a convex cone. Show that

w ∈ intK ⇐⇒ 〈v, w〉 < 0 (v ∈ K◦ \ {0}).

3.2.6 (Polar cone and normal vectors) Let C ⊂ E be nonempty. Then it holds that

(cone C)◦ = {w ∈ E | 〈w, x〉 ≤ 0 (x ∈ C)} .

3.3 Convex functions

We start the section with the basic definition of a convex function.

Definition 3.43 (Convex function). A function f : E → R is said to be convex if epi f
is a convex set.

Note that in the above definition we could have substitued the epigraph for the strict
epigraph epi <f := {(x, α) ∈ E× R | f(x) < α} of f , see Exercise 3.3.3. Moreover, note
that convex functions have convex level sets, see Exercise 3.3.6.

Recall that the domain of a function f : E→ R is defined by dom f := {x ∈ E | f(x) <∞}.
Using the linear mapping

L : (x, α) ∈ E× R 7→ x ∈ E, (3.11)

we have dom f = L(epi f), and hence Example 3.2 e) yields the following immediate but
important result.

Proposition 3.44 (Domain of a convex function). The domain of a convex function is
convex.

Recall that a (convex) function f : E→ R is proper if dom f 6= ∅ and f(x) > −∞ for all
x ∈ E.

Improper convex functions are somewhat pathological (cf. Exercise 3.3.4), but they do
occur; rather as by-products then as primary objects of study. For example the function

f : x ∈ R 7→


−∞ if |x| < 1,

0 if |x| = 1,
+∞ if |x| > 1.

is improper and convex.
Convex functions have an important interpolation property, which we summarize in the
next result for the case that f does not take the value −∞.

34



Proposition 3.45 (Characterizing convexity). A function f : E→ R ∪ {+∞} is convex
if and only if for all x, y ∈ E we have

f(λx+ (1− λ)y) ≤ (1− λ)f(x) + λf(y) (λ ∈ [0, 1]). (3.12)

Proof. First, let f be convex. Take x, y ∈ E and λ ∈ [0, 1]. If x /∈ dom f or y /∈ dom f
the inequality (3.12) holds trivially, since the right-hand side is going to be +∞. If, on
the other hand, x, y ∈ dom f , then (x, f(x)), (y, f(y)) ∈ epi f , hence by convexity

(λx+ (1− λ)y, λf(x) + (1− λ)f(y)) ∈ epi f,

i.e. f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), which proves the first implication.
In turn, let (3.12) hold for all x, y ∈ E. Now, take (x, α), (y, β) ∈ epi f and let

λ ∈ [0, 1]. Due to (3.12) we obtain

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λα + λβ,

i.e. λ(x, α) + (1− λ)(y, β) ∈ epi f , which shows the converse implication.

We move the analogous characterization of convexity for functions E → R to Exercise
3.3.3, because these kinds of functions are not our primary object of study.

Definition 3.46 (Convexity on a set). Let f : E→ R∪{+∞} and C ⊂ dom f nonempty,
convex. Then we call f convex on C if (3.12) holds for all x, y ∈ C.

With this terminology we can formulate the following useful result.

Corollary 3.47. Let f : E→ R ∪ {+∞}. Then the following are equivalent.

i) f is convex.

ii) f is convex on its domain.

Proof. The implication’ i)⇒ii)’ is obvious from the characterization of convexity in Propo-
sition 3.45

For the converse implication note that (3.12) always holds for any pair of points x, y
if one of them is not in the domain.

This completes the proof.

As an immediate consequence of Corollary 3.47, we can make the following statement
about proper, convex functions:

”The proper and convex functions E→ R are exactly those proper functions f : E→ R
for which there exists a nonempty, convex set C ⊂ E such that (3.12) holds on C and
f takes the value +∞ outside of C.”
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We are mainly interested in proper, convex (even lsc) functions E→ R ∪ {+∞}. Hence,
we introduce the abbreviations

Γ := Γ(E) := {f : E→ R ∪ {+∞} | f proper and convex}

and
Γ0 := Γ0(E) := {f : E→ R ∪ {+∞} | f proper, lsc and convex}

which we will use frequently in the remainder.
Although we are not primarily interested in continuity properties of convex functions

we still want to mention the following to standard result which can be substantially
refined, see the analysis in [24, §10].

Theorem 3.48 (Lipschitz continuity of convex functions; [3, Th. 4.1.3]). A proper convex
function is (locally Lipschitz) continuous on the interior of its domain.

In particular, every finite-valued convex function is (locally Lipschitz) continuous.

Exercises for Section 3.3

3.3.1 (Univariate convex functions) Let f : R → R ∪ {+∞} and I ⊂ dom f be an
open interval. Show the following :

a) f is convex on I if and only if the slope-function

x 7→ f(x)− f(x0)

x− x0

is nondecreasing on I \ {x0}.
b) Let f is differentiable on I: Then f is convex on I if f ′ is nondecreasing on I,

i.e.
f ′(s) ≤ f ′(t) (s, t ∈ I : s ≤ t).

c) Let f is twice differentiable on I. Then f is convex on I if and only if f ′′(x) ≥ 0
for all x ∈ I.

3.3.2 (Convexity of maximum eigenvalue) Let f : Sn → R be given by

f(A) = λmax(A),

where λmax(A) denotes the largest eigenvalue of A. Show that f is convex.
Hint: Rayleigh quotient.

3.3.3 (Characterization of convexity) Let f : E→ R. Show the equivalence of:

i) f is convex;

ii) The strict epigraph epi <f := {(x, α) ∈ E× R | f(x) < α} of f is convex;

iii) For all λ ∈ (0, 1) we have f(λx+ (1−λ)y) < λα+ (1−λ)β whenever f(x) < α
and f(y) < β.
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3.3.4 (Properness and closedness of convex functions) Prove the following:

a) An improper convex function f : E → R must have f(x) = −∞ for all x ∈
ri (dom f).

b) An improper convex function which is lsc, can only have infinite values.

c) If f is convex then cl f is proper if and only if f is proper.

3.3.5 (Jensen’s Inequality) Show that f : E→ R ∪ {+∞} is convex if and only if

f

(
p∑
i=1

λixi

)
≤

p∑
i=1

λif(xi) ∀xi ∈ E (i = 1, . . . , p), λ ∈ ∆p.

3.3.6 (Quasiconvex functions) A function f : E→ R is called quasiconvex if the level
sets lev≤αf are convex for every α ∈ R. Show:

a) Every convex function is quasiconvex.

b) f : E→ R ∪ {+∞} is quasiconvex if an only if

f(λx+ (1− λ)y) ≤ max{f(x), f(y)} (x, y ∈ dom f, λ ∈ [0, 1]).

c) If f : E→ R ∪ {+∞} is quasiconvex then argminf is a convex set.

3.4 Functional operations preserving convexity

Proposition 3.49 (Positive combinations of convex functions). For p ∈ N let fi : E →
R ∪ {+∞} be convex (and lsc) and αi ≥ 0 for i = 1, . . . , p. Then

p∑
i=1

αifi

is convex (and lsc). If, in addtion, ∩pi=1dom fi 6= ∅, then f is also proper.

Proof. The convexity assertion is an immediate consequence of the characterization in
(3.12). For the additional closedness see Exercise 2.12. The properness statement is
obvious.

Note that the latter result tells us that Γ and Γ0 are convex cones.

Proposition 3.50 (Pointwise supremum of convex functions). For an arbitrary index set
I let fi be convex (and lsc) for all i ∈ I. Then the function f = supi∈I fi, i.e.

f(x) = sup
i∈I

fi(x) (x ∈ E)

is convex (and lsc).
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Proof. It holds that

epi f =

{
(x, α)

∣∣∣∣ sup
i∈I

fi(x) ≤ α

}
= {(x, α) | ∀i ∈ I : fi(x) ≤ α} =

⋂
i∈I

epi fi.

Since the intersection of (closed) convex sets it (closed) convex, this gives the assertion.

Proposition 3.51 (Pre-composition with and affine mapping). Let H : E1 → E2 be affine
and g : E2 → R ∪ {+∞} (lsc and) convex. Then the function f := g ◦ H is (lsc and)
convex.

Proof. Let x, y ∈ E1 and λ ∈ (0, 1). Then we have

f(λx+(1−λx)) = g(λH(x)+(1−λ)y) ≤ λg(H(x))+(1−λ)g(H(y)) = λf(x)+(1−λ)f(y),

which gives the convexity of f . The closedness of f , under the closedness of g, follows
from the continuity (as a consequence of affineness) of H, cf. Exercise 2.13

Proposition 3.52 (Convexity under epi-composition). Let f ∈ Γ and L ∈ L(E,E′).
Then the function Lf : E′ → R defined by

(Lf)(y) := inf {f(x) | L(x) = y}

is convex.

Proof. We first show that , with T : (x, α) 7→ (Lx, α), we have

epi <Lf = T (epi <f). (3.13)

To this end, recall that

epi <Lf = {(y, α) | Lf(y) < α} and epi <f = {(x, α) | f(x) < α} .

First, let (x, α) ∈ epi <f . Then T (x, α) = (L(x), α) and

(Lf)(L(x)) = inf
z
{f(z) | L(z) = L(x)} ≤ f(x) < α,

thus, T (x, α) ∈ epi <Lf .
In turn, if (y, α) ∈ epi <Lf , i.e. inf {f(z) | L(z) = y} < α, then L−1(y) 6= ∅, hence,

there exists x ∈ L−1(y) with f(x) < α. Thus, we have T (x, α) = (y, α) and (x, α) ∈ epi <f .
This proves (3.13).

Now, as f is convex, epi <f is convex (see Exercise 3.3.3). But, since T is linear, from
(3.13) it follows that also epi <Lf is convex, which proves the convexity of Lf .

Theorem 3.53 (Infimal projection). Let ψ : E1 × E2 → R ∪ {+∞} be convex. Then the
optimal value function

p : E1 → R, p(x) := inf
y∈E2

ψ(x, y)

is convex. Moreover, the set-valued mapping

x 7→ argminy∈E2
ψ(x, y) ⊂ E2.

is convex-valued.
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Proof. It can easily be shown that epi <p = L(epi <ψ) under the linear mapping L :
(x, y, α) 7→ (x, α). This immediately gives the convexity of p.

The remaining assertion follows immediately from the fact that the solution set of
a convex minimization problem is convex (Exercise), and y 7→ ψ(x, y) is convex for all
x ∈ E1.

3.5 Conjugacy of convex functions

3.5.1 The closed convex hull of a function

We start this section with the fundamental result that every closed, proper, convex func-
tion has an affine minorant.

Proposition 3.54 (Affine minorization principle). For f ∈ Γ0 there exists an affine
minorant, i.e. there exist a ∈ E and β ∈ R such that

f(x) ≥ 〈a, x〉+ β (x ∈ E).

Proof. By assumption epi f is nonempty, closed and convex and there exists x̄ ∈ dom f .
Choosing γ < f(x̄), we have (x̄, γ) /∈ epi f . By the separation theorem (Theorem 3.16)
there exists 0 6= (a, λ) ∈ E× R and β ∈ R such that

〈a, x〉+ λα ≥ β > 〈a, x̄〉+ λγ ((x, α) ∈ epi f). (3.14)

In particular, for (x̄, f(x̄)) ∈ epi f this implies

λ
(
f(x̄)− γ

)
> 0.

Since f(x̄) > γ, this implies λ > 0. Dividing (3.14) by λ this gives

α ≥ −
〈a
λ
, x
〉

+
β

λ
((x, α) ∈ epi f).

Since (x, f(x)) ∈ epi f this yields

f(x) ≥ −
〈a
λ
, x
〉

+
β

λ
(x ∈ dom f).

Since this inequality holds trivially for x /∈ dom f , the function x 7→ −
〈
a
λ
, x
〉

+ β
λ

has the
desired properties.

We continue with the main result of this section which says that every closed, proper,
convex function is the pointwise supremum of its affine minorants. It will be the main
workhorse for this section and Section 3.5.2 on Fenchel conjugates.

Theorem 3.55 (Envelope representation in Γ0). Let f ∈ Γ0. Then f is the pointwise
supremum of all affine functions minorizing it, i.e.

f(x) = sup {h(x) | h ≤ f, h affine} .
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Proof. The inequality
f(x) ≥ sup {h(x) | h ≤ f, h affine}

is clear.
In order to establish the reverse inequality we are going to show that for all (x̄, γ) such

that f(x̄) > γ there exists an affine function g : E→ R g ≤ f and γ ≤ g(x̄). As γ < f(x̄)
can be chosen arbitrarily close to f(x̄) this will yield the assertion:

To this end, let (x̄, γ) such that γ < f(x̄) be given. Then (x̄, γ) /∈ epi f , and by
separation there exists (a, λ) 6= (0, 0) and β ∈ R such that

〈a, x〉+ λα ≥ β > 〈a, x̄〉+ λγ ((x, α) ∈ epi f). (3.15)

Note that we do not necessarily have x̄ ∈ dom f . However, from (3.15) we infer at least
λ ≥ 0 (clear?). Hence, we consider two cases:
Case 1: λ > 0. Dividing (3.15) by λ > 0 yields〈a

λ
, x
〉

+ α ≥ β

λ
⇐⇒ α ≥ −

〈a
λ
, x
〉

+
β

λ
((x, α) ∈ epi f).

In particular, for (x, f(x)) ∈ epi f we infer that

f(x) ≥ g(x) := −
〈a
λ
, x
〉

+
β

λ
(x ∈ dom f).

For x /∈ dom f this inequality is satisfied anyway. Due to (3.15) we also have

g(x̄) = −
(a
λ

)T
x̄+

β

λ
> γ,

so that g has the desired properties.

Case 2: λ = 0. In this case (3.15) reduces to

〈a, x〉 ≥ β > 〈a, x̄〉 ((x, α) ∈ epi f),

which is obviously equivalent to

〈a, x〉 ≥ β > 〈a, x̄〉 (x ∈ dom f). (3.16)

In particular, we have x̄ /∈ dom f here, hence f(x̄) =∞. We now define

ĝ : E→ R, ĝ(x) := −〈a, x〉+ β.

Then from (3.16) we immediately infer that

ĝ(x) ≤ 0 (x ∈ dom f) and ĝ(x̄) > 0. (3.17)

Invoking Proposition 3.54 yields another affine mapping g̃ : E→ R such that

g̃(x) ≤ f(x) (x ∈ E). (3.18)

40



By means of ĝ and g̃ we now define another affine function

g : E→ R, g(x) := g̃(x) + ρĝ(x).

where ρ > 0 will be specified shortly. From (3.17) and (3.18) we infer that

g(x) = g̃(x) + ρĝ(x) ≤ f(x) + ρ ĝ(x)︸︷︷︸
≤0

≤ f(x) (x ∈ dom f),

which, in particular, implies g ≤ f as well as

g(x̄) = g̃(x̄) + ρ ĝ(x̄)︸︷︷︸
>0

> γ

for all ρ > 0 sufficiently large. Hence g has the the desired properties in this case, which
concludes the proof.

We will now establish the notion of the convex and closed convex hull of a function, and
we will see that for functions that are minorized by an affine function, the latter coincides
with the supremum over all its affine minorants.

For these purposes, let f : E→ R and observe that from our contruction of the lower
semicontinuous hull cl f of f in Section 2.3 it follows that

(cl f)(x) = sup {h(x) | h ≤ f, h lsc} ,

i.e. cl f is the largest lsc function that minorizes f . We take this and Theorem 3.55 as a
guide to build of the (closed) convex hull of f .

Definition 3.56 (Convex hull of a function). Let f : E → R. Then the pointwise
supremum of all convex functions minorizing f , i.e.

(conv f)(x) := sup {h(x) | h ≤ f, h convex}

is called the convex hull of f . Moreover, we define the closed convex hull of f to be

(conv f)(x) := sup {h(x) | h ≤ f, h lsc and convex} .

Since both convexity and lower semicontinuity are preserved under pointwise suprema (cf.
Proposition 3.50), we find that conv f is the largest convex function that minorizes f , and
analogously, conv f is the largest lsc and convex function that minorizes f . Note that we
always have

conv f ≤ conv f ≤ f

and
conv f = cl (conv f).

Moreover, there is an epigraphical characterization of the closed convex hull for proper
functions that have an affine minorant, cf. Exercise 3.5.2. An analogous statement does
not hold for the convex hull, see the discussion in [19].
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We close this section with a result which tells us that for a proper function which
has an affine minorant, its closed convex hull is the pointwise supremum of its affine
minorants. Hence the set of functions over which the supremum in the definition of the
close convex hull is taken over can be substantially reduced.

Here, notice that since every affine function E→ R is convex and lsc, by the definition
of the respective hulls, the functions f , cl f , conv f and conv f have the same affine
minorants (if any).

Corollary 3.57 (Affine envelope representation of conv ). Let f : E → R be proper and
minorized by an affine function. Then conv f is the pointwise supremum of all affine
functions minorizing f , i.e.

(conv f)(x) = sup {h(x) | h ≤ f, h affine} .

Proof. Recall that f and conv f have the same affine minorants. Since, by assumption
f has one, so does conv f , and thus f does not take the value −∞. Moreover, f is not
constantly +∞ and hence so neither is conv f ≤ f . Therefore, conv f is proper and has
an affine minorant hence, by Theorem 3.55, conv f is the pointwise supremum of its affine
minorants. But, again, since these conincide with those of f , the result follows.

3.5.2 The Fenchel conjugate

We start with the central definition of this section.

Definition 3.58 (Fenchel conjugate). Let f : E → R. Then its Fenchel conjugate (or
simply conjugate) is the function f ∗ : E→ R defined by

f ∗(y) := sup
x∈E
{〈x, y〉 − f(x)}.

The function f ∗∗ := (f ∗)∗ is called the (Fenchel) biconjugate of f .

Note that, clearly, we can restrict the supremum in the above definition of the conjugate
to the domain of the underlying function f , i.e.

f ∗(y) = sup
x∈dom f

{〈x, y〉 − f(x)}.

Moreover, by definition, we always have

f(x) + f ∗(y) ≥ 〈x, y〉 (x, y ∈ E), (3.19)

which is known as the Fenchel-Young inequality.
The mapping f 7→ f ∗ from the space of extended real-valued functions to itself is

called the Legendre-Fenchel transform.
We always have

f ≤ g =⇒ f ∗ ≥ g∗,
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i.e. the Legendre-Fenchel transform is order-reversing. Moreover, this implies that for
any function f we have

f ≥ f ∗∗.

We will study the case when equality occurs in depth below.
Before we start analyzing the conjugate function in-depth, we want to motivate why

we would be interested in studying it: Let f : E→ R. We notice that

epi f ∗ = {(y, β) | 〈x, y〉 − f(x) ≤ β (x ∈ E)} . (3.20)

This means that the conjugate of f is the function whose epigraph is the set of all (y, β)
defining affine functions x 7→ 〈y, x〉 − β that minorize f . In view of Corollary 3.57, if f
is proper and has an affine minorant , the pointwise supremum of these affine mappings
is the closed convex hull of f , i.e., through its epigraph, f ∗ encodes information about f
and its closed convex hull.

Since
f ∗(y) = sup

x∈E
{〈x, y〉 − f(x)} = sup

(x,α)∈epi f

{〈y, x〉 − α} (y ∈ E), (3.21)

we also have
epi f ∗ = {(y, β) | 〈x, y〉 − α ≤ β ((x, α) ∈ epi f)}

We use our recent findings to establish our main result on conjugates and biconjugates
known in the literature as the Fenchel-Moreau theorem, crediting the founding fathers of
convex analysis.

Theorem 3.59 (Fenchel-Moreau Theorem). Let f : E→ R be proper and have an affine
minorant. Then the following hold:

a) f ∗ and f ∗∗ are closed, proper and convex;

b) f ∗∗ = conv f ;

c) f ∗ = (conv f)∗ = (cl f)∗ = (conv f)∗.

Proof. a) Applying Proposition 3.50 to (3.21), we see that f ∗ is lsc and convex. If f ∗

attained the value −∞, f would be constantly +∞, which is false. On the other
hand, f ∗ is not identically +∞, since that would imply that its epigraph epi f ∗

which encodes all minorizing affine mappings of f , were empty, which is false by
assumption . Hence, f ∗ is proper.

Applying the same arguments to f ∗∗ = (f ∗)∗ (and observing that f ∗ is proper and
has an affine minorant) gives that f ∗∗ is closed, proper and convex, too.

b) Applying (3.21) to f ∗∗, for x ∈ E, we have

f ∗∗(x) = sup
(y,β)∈epi f∗

{〈y, x〉 − β}.

Hence, in view of (3.20), f ∗∗ is the pointwise supremum of all affine minorants of f .
Therefore, by Corollary 3.57, we see that f ∗∗ = conv f .
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c) Since the affine minorants of f, conv f, cl f and conv f coincide, their conjugates
have the same epigraph and hence are equal.

f ≥ f ∗∗ for any function f : E → R that has an affine minorant, and it holds that
f ∗∗ = f if and only if f is closed and convex. Thus, the Legendre-Fenchel transform
induces a one-to-one correspondence on Γ0: For f, g ∈ Γ0, f is conjugate to g if and only
if g is conjugate to f and we write f

∗←→ g in this case. This is called the conjugacy
correspondence. A property on one side is reflected by a dual property on the other as we
will see in the course of our study.

A list of some elementary conjugacy operations is given below

Proposition 3.60 (Elementary cases of conjugacy). Let f : E→ R. Then the following
hold:

a) (f − 〈a, ·〉)∗ = f ∗((·) + a) (a ∈ E);

b) (f + γ)∗ = f ∗ − γ (γ ∈ R);

c) (λf)∗ = λf ∗
(

(·)
λ

)
(λ > 0).

Proof. Exercise 3.5.1.

3.5.3 Special cases of conjugacy

Convex quadratic functions For Q ∈ Sn, b ∈ Rn we consider the quadratic function
q : Rn → R defined by

q(x) :=
1

2
xTQx+ bTx. (3.22)

By the well known characterization of convexity in the smooth case, we know that q is
convex if and only if Q is (symmetric) positive semidefinite. Hence, for the remainder we
assume that Q � 0.

Proposition 3.61 (Conjugate of convex quadratic functions). For q from (3.22) with
Q ∈ Sn+ we have

q∗(y) =

{
1
2
(y − b)TQ†(y − b) if y − b ∈ rgeQ,

+∞ else.

In particular, if Q � 0, we have

q∗(y) =
1

2
(y − b)TQ−1(y − b)

Proof. By definition, we have

q∗(y) = sup
x∈Rn

{
xTy − 1

2
xTQx− bTx

}
= − inf

x∈E

{
1

2
xTQx− (b− y)Tx

}
. (3.23)
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The necessary and sufficient optimality conditions of x̄ to be a minimizer of the convex
function x 7→ 1

2
xTQx− (b− y)Tx read

Qx̄ = y − b. (3.24)

Hence, if y − b /∈ rgeQ, from Exercise 2.7, we know that inf f = −∞, hence q∗(y) = +∞
in that case.

Otherwise, we have y− b ∈ rgeQ, hence, in view of Theorem A.4, (3.24) is equivalent
to

x̄ = Q†(y − b) + z, z ∈ kerA.

Inserting x̄ = Q†(y − b) (we can choose z = 0) in (3.23) yields

q∗(y) = (Q†(y − b))Ty − 1

2
(Q†(y − b))TQQ†(y − b)− bTQ†(y − b)

= (y − b)Q†(y − b)− 1

2
(y − b)Q†QQ†(y − b)

=
1

2
(y − b)Q†(y − b),

where we make use of Theorem A.4 a) and c). Part d) of the latter result gives the
remaining assertion.

We point out that, by the foregoing result, the function f = 1
2
‖ · ‖2 is self-conjugated in

the sense that f ∗ = f . Exercise 3.5.5 shows that this is the only function on Rn that
has this property. Clearly, by an isomorphy argument, the same holds for the respective
function on an arbitrary Euclidean space.

Support functions

Definition 3.62 (Positive homogeneity, subadditivity, and sublinearity). Let f : E→ R.
Then we call f with 0 ∈ dom f

i) positively homogeneous if

f(λx) = λf(x) (λ > 0, x ∈ E);

b) subadditive if
f(x+ y) ≤ f(x) + f(y) (x, y ∈ E);

c) sublinear if
f(λx+ µy) ≤ λf(x) + µf(y) (x, y ∈ E, λ, µ > 0).

Note that in the definition of positive homogeneity we could have also just demanded an
inequality, since f(λx) ≤ λf(x) for all λ > 0 implies that

f(x) = f(λ−1λx) ≤ 1

λ
f(λx).

We note that norms are sublinear.
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Example 3.63. Every norm ‖ · ‖ is sublinear.

We next proivide a usful list of characerizations of positive homogeneneity and sublinear-
ity, respectively.

Proposition 3.64. (Positive homogeneity, sublinearity and subadditivity) Let
f : E→ R. Then the following hold:

a) f is positively homogeneous if and only if epi f is a cone. In this case f(0) ∈
{0,−∞}.

b) If f is lsc and positively homogeneous with f(0) = 0 it must be proper.

c) The following are equivalent:

i) f is sublinear;

ii) f is positively homogeneous and convex;

iii) f is positively homogeneous and subadditive;

iv) epi f is a convex cone.

Proof. Exercise 3.5.9

We continue with the prototype of a sublinear functions, so-called support functions, which
will from now on occur ubiquitiously.

Definition 3.65 (Support functions). Let C ∈ E nonempty. The support function of C
is defined by

σC : x ∈ E 7→ sup
s∈C
〈s, x〉 .

We start our investigation of support functions with a list of elementary properties.

Proposition 3.66 (Support functions). Let C ⊂ E be nonempty. Then

a) σC = σclC = σconvC = σconvC.

b) σC is proper, lsc and sublinear.

c) δ∗C = σC and σ∗C = δconvC.

d) If C is closed and convex then σC
∗←→ δC.

Proof. a) Obviously, closures do not make a difference. On the other hand, we have〈
N+1∑
i=1

λisi, x

〉
=

N+1∑
i=1

λi 〈si, x〉 ≤ max
i=1,...,r

〈si, x〉

for all si ∈ C, λ ∈ ∆N+1, which shows that convex hulls also do not change anything.
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b) By Proposition 3.50 σC is lsc and convex, and as 0 ∈ domσC and since λσC(x) =
σC(λx) for all x ∈ E and λ > 0 this shows properness and positive homogeneity,
which gives the assertion in view of Proposition 3.64 c).

c) Clearly, δ∗C = σC . Hence, σ∗C = δ∗∗C = conv δC = δconvC , since

conv (epi δC) = conv (C × R+) = convC × R+ = epi (δconvC).

d) Follows immediately from c).

One of our main goals in this paragraph is to show that, in fact, part b) of Propostion
3.66 can be reversed in the sense that every proper, lsc and sublinear function is a support
function. As a preparation we need the following result.

Proposition 3.67. Let f : E → R be closed, proper and convex. Then the following are
equivalent:

i) f only takes the values 0 and +∞;

ii) f ∗ is positively homogeneous (i.e. sublinear, since convex).

Proof. ’i)⇒ii):’ In this case f = δC for some closed convex set C ⊂ E. Hence, f ∗ = σC ,
which is sublinear, cf. Proposition 3.66.

In turn, let f ∗ be positively homogeneous (hence sublinear). Then, for λ > 0 and
y ∈ E, we have

f ∗(y) = λf ∗(λ−1y)

= λ sup
x∈E

{〈
x, λ−1y

〉
− f(x)

}
= sup

x∈E
{〈x, y〉 − λf(x)}

= (λf)∗(y).

Thus, (λf)∗ = f ∗ for all λ > 0 and hence, by the Fenchel-Moreau Theorem, we have

λf = (λf)∗∗ = f ∗∗ = f (λ > 0).

But as f is proper, hence does not takte the value −∞, this immediately implies that f
only takes the values +∞ and 0.

Theorem 3.68 (Hörmander’s Theorem). A function f : E → R is proper, lsc and sub-
linear if and only if it is a support function.

Proof. By Proposition 3.66 b), every support function is proper, lsc and sublinear.
In turn, if f is proper, lsc and sublinear (hence f = f ∗∗), by Proposition 3.67, f ∗ is the

indicator of some set C ⊂ E, which necessary needs to be nonempty, closed and convex,
as f ∗ ∈ Γ0. Hence, f ∗∗ = δ∗C = σC .
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We now want to give a slight refinement of Hörmander’s Theorem, in that we describe
the set that a proper, lsc sublinear function supports.

Corollary 3.69. Let f : E→ R be proper and sublinear. Then cl f is the support function
of the closed convex set

{s ∈ E | 〈s, x〉 ≤ f(x) (x ∈ E)} .

Proof. Since cl f is proper (cf. Exercise 3.3.4) closed and sublinear it is a support function
of a closed convex set C. Therefore, we have cl f = δ∗C and thus f ∗ = (cl f)∗ = δC . Hence,
C = {s ∈ E | f ∗(s) ≤ 0}. But f ∗(s) ≤ 0 if and only 〈s, x〉 − f(x) ≤ 0 for all x ∈ E.

3.5.4 Gauges, polar sets and dual norms

We now present a class of functions that makes a connection between support functions
and norms.

Definition 3.70 (Gauge function). Let C ⊂ E. The gauge (function) of C is defined by

γC : x ∈ E 7→ inf {λ ≥ 0 | x ∈ λC } .

For a closed convex set that contains the origin, its gauge has very desirable convex-
analytical properties.

Proposition 3.71. Let C ⊂ E be nonempty, closed and convex with 0 ∈ C. Then γC is
proper, lsc and sublinear.

Proof. γC is obviously proper as γC(0) = 0. Moreover, for t > 0 and x ∈ E, we have

γC(tx) = inf {λ ≥ 0 | tx ∈ λC }

= inf

{
λ ≥ 0

∣∣∣∣ x ∈ λt C
}

= inf {tµ ≥ 0 | x ∈ µC }
= t inf {µ ≥ 0 | x ∈ µC }
= tγC(x),

i.e. γC is positively homogeneous (since also 0 ∈ dom γC). We now show that it is also
subadditive, hence altogether, sublinear: To this end, take x, y ∈ dom γC (otherwise there
is nothing to prove). Due to the identity

x+ y

λ+ µ
=

λ

λ+ µ

x

λ
+

µ

λ+ µ

y

µ
(λ+ µ 6= 0),

we realize, by convexity of C, that x+y ∈ (λ+µ)C if x ∈ λC and y ∈ µC for all λ, µ ≥ 0.
This implies that γC(x+ y) ≤ γC(x) + γC(y).

In order to prove lower semicontinuity of γC notice that (by Exercise 3.5.12 and positive
homogeneity) we have lev≤αγC = αC for α > 0, lev≤αγC = ∅ for α < 0 and lev≤0γC = C∞

(again by Exercise 3.5.12), hence all level sets of γC are closed, i.e. γC is lsc.
This concludes the proof.
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Note that in the proof of Proposition 3.71, we do not need the assumption that C contains
the origin to prove sublinearity. We do need it, though, to get lower semicontinuity, cf.
Exercise 3.5.12

Since the gauge of a closed convex set that contains 0 is proper, lsc and sublinear
we know, in view of Hörmander’s Theorem (see Theorem 3.68), that it is the support
function of some closed convex set. It can be described beautifully using the concept of
polar sets which generalizes the notion of polar cones, cf. Definition 3.34.

Definition 3.72 (Polar sets). Let C ⊂ E. Then its polar set is defined by

C◦ := {v ∈ E | 〈v, x〉 ≤ 1 (x ∈ C)} .

Moreover, we put C◦◦ := (C◦)◦ and call it the bipolar set of C.

Note that there is no ambiguity in notation, since the polar cone and the polar set of a
cone coincide, see Exercise 3.5.11 Moreover, as an intersection of closed half-spaces, C◦ is
a closed, convex set containing 0. In addition, like we would expect, we have

C ⊂ D ⇒ D◦ ⊂ C◦,

and
C ⊂ C◦◦.

Before we continue to pursue our question for the support function representation of
gauges, we provide the famous bipolar theorem. Its proof is based on separation.

Theorem 3.73 (Bipolar Theorem). Let C ⊂ E. Then C◦◦ = conv (C ∪ {0}).

Proof. Since C∪{0} ⊂ C◦◦ and C◦◦ is closed and convex, we clearly have conv (C∪{0}) ⊂
C◦◦. Now assume there were x̄ ∈ C◦◦ \ conv (C ∪ {0}). By strong separation, there exists
s ∈ E \ {0} such that

〈s, x̄〉 > σconv (C∪{0})(s) ≥ max{σC(s), 0}.

After rescaling s accordingly (cf. Remark 3.17) we can assume that

〈s, x̄〉 > 1 ≥ σC(s),

in particular, s ∈ C◦. On the other hand 〈s, x̄〉 > 1 and x̄ ∈ C◦◦, which is a contradiction.

As a consequence of the bipolar theorem we see that every closed convex set C ⊂ E
containing 0 satisfies C = C◦◦. Hence, the mapping C 7→ C◦ establishes a one-to-one
correspondence on the closed convex sets that contain the origin. This is connected to
conjugacy through gauge functions as is highlighted by the next result.

Proposition 3.74. Let C ⊂ E be closed and convex with 0 ∈ C. Then

γC = σC◦
∗←→ δC◦ and γC◦ = σC

∗←→ δC .
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Proof. Since, by Proposition 3.71, γC is proper, lsc and sublinear we have

γC = σD, D = {v ∈ E | 〈v, x〉 ≤ γC(x) (x ∈ E)}

in view of Corollary 3.69. To prove that γC = σC◦ , we need to show that D = C◦. Since
γC(x) ≤ 1 if (and only if; see Exercise 3.5.12) x ∈ C, the inclusion D ⊂ C◦ is clear. In
turn, let v ∈ C◦, i.e. 〈v, x〉 ≤ 1 for all x ∈ C. Now let x ∈ E. By the definition of γC ,
there exists λk → γC(x) and ck ∈ C such that x = λkck for all k ∈ N. But then

〈v, x〉 = λk 〈v, ck〉 ≤ λk → γC(x),

hence v ∈ D, which proves γC = σC◦ . Since C◦◦ = C, this implies γC◦ = σC . The
conjugacy relations are due to Proposition 3.66.

Exercise 3.5.12 tells us that the gauge of a symmetric, compact convex set with nonempty
interior is a norm. This justifies the following definition.

Definition 3.75 (Dual norm). Let ‖ · ‖∗ be a norm on E with closed unit ball B∗. Then
we call

‖ · ‖◦∗ := γB◦∗

its dual norm.

Corollary 3.76 (Dual norms). For any norm ‖·‖∗ with (closed) unit ball B its dual norm
is σB, the support of its unit ball. In particular, we have ‖ · ‖◦ = ‖ · ‖, i.e. the Euclidean
norm is self-dual.

Exercises for Section 3.5

3.5.1 (Elementary conjugacy operations) Let f : E→ R. Prove the following:

a) (f − 〈a, ·〉)∗ = f ∗((·) + a) (a ∈ E);

b) (f + γ)∗ = f ∗ − γ (γ ∈ R);

c) (λf)∗ = λf ∗
(

(·)
λ

)
(λ > 0).

3.5.2 (Closed convex hulls) Let C ⊂ E be nonempty. Show the following:

a) convC = cl (convC).

b) Let f : E → R be proper and have an affine minorant. Then epi (conv f) =
conv (epi f).

3.5.3 (Convex quadratic functions) Let A ∈ Sn and define f : Rn → R by

f(x) =
1

2
xTAx.

a) Show that f is convex if and only if A ∈ Sn+.

b) For A ∈ Sn++ compute f ∗ and f ∗∗.
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3.5.4 (Conjugate of separable sum) For fi : Ei → R (i = 1, 2) the separable sum of
f1 and f2 is defined by

f1 ⊕ f2 : (x1, x2) ∈ E1 × E2 7→ f1(x1) + f2(x2).

Show that (f1 ⊕ f2)∗ = f ∗1 ⊕ f ∗2 .

3.5.5 (Self-conjugacy) Show that 1
2
‖ · ‖2 is the only function f : E→ R with f ∗ = f .

3.5.6 (Projections and conjugate functions) Let φ : E → R proper with and affine
minorant, let V ⊂ E be a subspace containing aff (domφ), and set U := V ⊥. Show
that for any z ∈ aff (domφ) and s ∈ E we have

φ∗(s) = 〈PU(s), z〉+ φ∗(PV (s)).

3.5.7 (Conjugate of max-function) Let f : Rn → R be given by f(x) = maxi=1,...,n xi.
Show that f ∗ = δ∆n where ∆n :=

{
λ ∈ Rn

+ |
∑n

i=1 λi = 1
}
.

3.5.8 (Conjugate of negative logdet) Compute f ∗ for

f : X ∈ Sn 7→
{
− log(detX) if X � 0,

+∞ else.

3.5.9 (Positive homogeneity, sublinearity and subadditivity) Let f : E→ R. Show
the following:

a) f is positively homogeneous if and only if epi f is a cone. In this case f(0) ∈
{0,−∞}.

b) If f is lsc and positively homogeneous with f(0) = 0 it must be proper.

c) The following are equivalent:

i) f is sublinear;

ii) f is positively homogeneous and convex;

iii) f is positively homogeneous and subadditive;

iv) epi f is a convex cone.

3.5.10 (Finiteness of support functions) Let S ⊂ E be nonempty. Then σS is finite if
and only if S is bounded.

3.5.11 (Polar sets) Show the following:

a) If C ∈ E is a cone, we have {v | 〈v, x〉 ≤ 0 (x ∈ C)} = {v | 〈v, x〉 ≤ 1 (x ∈ C)}.
b) C ⊂ E is bounded if and only if 0 ∈ intC◦.

c) For any closed half-space H containing 0 we have H◦◦ = H.

3.5.12 (Gauge functions) Let C ⊂ E be nonempty, closed and convex with 0 ∈ C. Prove:
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a) C = lev≤1γC , C∞ = γ−1
C ({0}), dom γC = R+C

b) The following are equivalent:

i) γC is a norm (with C as its unit ball);

ii) C is bounded, symmetric (C = −C) with nonempty interior.

3.5.13 (Cone polarity and conjugacy) Let K ⊂ E be a convex cone. Then δK
∗←→

δK◦ .

3.5.14 (Directional derivative of a convex function) Let f ∈ Γ, x ∈ dom f and d ∈ E.
Show that the following hold:

a) The difference quotient

t > 0 7→ q(t) :=
f(x+ td)− f(x)

t

is nondecreasing.

b) f ′(x; d) exists (in R) with

f ′(x; d) = inf
t>0

q(t),

c) f ′(x; ·) is sublinear with dom f ′(x; ·) = R+(dom f − x).

d) f ′(x; ·) is proper and lsc for x ∈ ri (dom f).

3.6 Horizon functions

There is a functional correspondence of the horizon/recession calculus for (convex) cones
which is obtained through the epigraphical perspective.

Definition 3.77 (Horizon functions). For any function f : E→ R the associated horizon
function f∞ : E→ R is the function determined through

epi f∞ = (epi f)∞ (f 6≡ +∞) and f∞ = δ{0} (f ≡ +∞).

As the horizon cone of a set is, by Lemma 3.38, always a closed cone, we find that the
horizon function of is always lsc and positively homogeneous. If f is convex, then, by
Proposition 3.41, f∞ is, in even sublinear (and lsc), cf. Proposition 3.64.

We have the following analytic description of the horizon function of a closed, proper,
convex functions.

Proposition 3.78. Let f ∈ Γ. Then f∞ is lsc and sublinear. If f is also lsc (i.e. f ∈ Γ0)
we have

f∞(w) = lim
t↓0

f(x̄+ tw)− f(x̄)

t
(x̄ ∈ dom f).
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Proof. By Proposition 3.41 we have

(w, β) ∈ epi f∞ ⇐⇒ (w, β) ∈ (epi f)∞

⇐⇒ ∀(x, α) ∈ epi f, t > 0 : (x, α) + t(w, β) ∈ epi f

⇐⇒ ∀x ∈ dom f, t > 0 :
f(x+ tw)− f(x)

t
≤ β

⇐⇒ ∀x ∈ dom f : sup
t>0

f(x+ tw)− f(x)

t
≤ β.

The fact that the supremum is a limit is due to Exercise 3.5.14 a).

Proposition 3.79. Let f ∈ Γ0. Then for all α ∈ R such that lev≤αf 6= ∅ we have

{x | f(x) ≤ α}∞ = {x | f∞(x) ≤ 0} . (3.25)

Proof. This follows from Proposition 3.41 and Proposition 3.78.

Proposition 3.79 motivates the following definition of the horizon cone of a closed, proper,
convex function.

Definition 3.80 (Horizon cone of closed proper convex function). Let f ∈ Γ0. Then we
define the horizon cone of f by hzn f := lev≤0f

∞.

We have the following duality correspondences.

Theorem 3.81. Let f ∈ Γ. Then (cone (dom f))◦ = hzn f ∗. Dually, if f is also lsc (i.e.
f ∈ Γ0), then (hzn f)◦ = cone (dom f).

Proof. We first note that f ∗ ∈ Γ0 by Theorem 3.59, hence hzn f ∗ is well-defined and, by
Propositon 3.79, for any α > inf f ∗, equals the horizon cone of

lev≤αf
∗ = {y | f ∗(y) ≤ α}

= {y | 〈y, x〉 − f(x) ≤ α (x ∈ dom f)}
= {y | 〈y, x〉 ≤ f(x) + α (x ∈ dom f)} .

From the latter representation we find that

w ∈ hzn f ∗ ⇐⇒ ∀y ∈ lev≤αf
∗, λ ≥ 0 : y + λw ∈ lev≤αf

∗

⇐⇒ ∀y ∈ lev≤αf
∗, λ ≥ 0, x ∈ dom f : λ 〈x, w〉+ 〈y, x〉 ≤ f(x) + α

⇐⇒ ∀x ∈ dom f : 〈w, x〉 ≤ 0.

Therefore
hzn f ∗ = {w | 〈x, w〉 ≤ 0 (x ∈ dom f)} ,

which proves the first statement, see e.g. Exercise 3.2.6. The second statement follows as
f = f ∗∗ when f ∈ Γ0, see Theorem 3.59.
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3.7 The convex subdifferential

For motivational purposes we consider the following well known result for characterizing
convexity for smooth functions which is a consequence of the mean-value theorem.

Proposition 3.82. Let C ⊂ E be open and convex and let f : E → R be continuously
differentiable on C. Then f is convex on C if and only if

f(x) ≥ f(x̄) + 〈∇f(x̄), x− x̄〉 (x, x̄ ∈ C). (3.26)

In view of the latter result the following notion of a surrogate for the derivative for an
arbitrary convex function appears natural.

Definition 3.83 (The convex subdifferential). Let f : E→ R and x̄ ∈ E. Then g ∈ E is
called a subgradient of f at x̄ if

f(x) ≥ f(x̄) + 〈g, x− x̄〉 (x ∈ E). (3.27)

The set
∂f(x̄) := {v ∈ E | f(x) ≥ f(x̄) + 〈v, x− x̄〉 (x ∈ E)}

of all subgradients is called the (convex) subdifferential of f at x̄.

Note that we did not restrict ourselves to convex functions in the above definition, but
we point out that its the class Γ where the subdifferential is most meaningful.

Moreover, note that, clearly, in (3.27) (which is called the subgradient inequality), we
can restrict ourselves to points x ∈ dom f , since the inequality holds trivially outside of
dom f .

We point out that the subdifferential ∂f(x̄) of f : E → R at x̄ ∈ E contains exactly
the slopes of all affine minorants of f that coincide with f at x̄, see Figure 9.

gph f

Figure 9: Affine minorants at a point of nondifferentiability

The subdifferential of a convex function might well be empty, contain only a single point,
be bounded (hence compact as it is always closed, as we wil see shortly) or unbounded as
the following examples illustrate.

Example 3.84.
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a) (Subdifferential of indicator function) Let C ⊂ E be convex and x̄ ∈ C. Then

g ∈ ∂δC(x̄) ⇐⇒ δC(x) ≥ δC(x̄) + 〈g, x− x̄〉 (x ∈ E)

⇐⇒ 0 ≥ 〈g, x− x̄〉 (x ∈ C),

i.e. ∂δC(x̄) = {v ∈ E | 〈v, x− x̄〉 ≤ 0 (x ∈ C)}. The latter set is also called the
normal cone of C at x̄, and is denoted by NC(x̄). It plays a central role in the
derivation of optimality conditions of convex optimization problems.

b) (Subdifferential of Euclidean norm) We have

∂‖ · ‖(x̄) =

{ x̄
‖x̄‖ if x̄ 6= 0,

clB if x̄ = 0

as can be verified by elementary considerations, see Exercise 3.7.1.

c) (Empty subdifferential) Consider

f : x ∈ R 7→
{
−
√
x if x ≥ 0,

+∞ else.

Then ∂f(x) = ∅ for all x ≤ 0, see Exercise 3.7.2.

We start our conceptual study of the subdifferential with some elementary properties.

Proposition 3.85 (Elementary properties of the subdifferential). Let f : E → R. Then
the following hold:

a) ∂f(x̄) is closed and convex for all x̄ ∈ dom f .

b) If f is proper then ∂f(x) = ∅ for x /∈ dom f .

c) We have 0 ∈ ∂f(x̄) if and only if x̄ ∈ argminEf (Generalized Fermat’s rule)

d) If f is convex then ∂f(x̄) = {v ∈ E | (v,−1) ∈ Nepi f (x̄, f(x̄))} (x̄ ∈ dom f).

Proof. a) We have

∂f(x̄) =
⋂
x∈E

{v | 〈x− x̄, v〉 ≤ f(x̄)− f(x)} ,

and intersection preserves closedness and convexity.

b) Obvious.

c) By definition we have

0 ∈ ∂f(x̄) ⇐⇒ f(x) ≥ f(x̄) (x ∈ E).
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d) Notice that

v ∈ ∂f(x̄) ⇐⇒ f(x) ≥ f(x̄) + 〈v, x− x̄〉 (x ∈ dom f)

⇐⇒ α ≥ f(x̄) + 〈v, x− x̄〉 ((x, α) ∈ epi f))

⇐⇒ 0 ≥ 〈(v,−1), (x− x̄, α− f(x̄))〉 ((x, α) ∈ epi f))

⇐⇒ (v,−1) ∈ Nepi f (x̄, f(x̄)).

There is a tight connection between subdifferentiation and conjugation of convex func-
tions.

Theorem 3.86 (Subdifferential and conjugate function). Let f : E → R. Then the
following are equivalent:

i) y ∈ ∂f(x);

ii) x ∈ argmaxz{〈z, y〉 − f(z)};

iii) f(x) + f ∗(y) = 〈x, y〉;

If f ∈ Γ0 these are also equivalent to:

iv) x ∈ ∂f ∗(y);

v) y ∈ argmaxw{〈x, w〉 − f ∗(w)}.

Proof. Notice that

y ∈ ∂f(x) ⇐⇒ f(z) ≥ f(x) + 〈y, z − x〉 (z ∈ E)

⇐⇒ 〈y, x〉 − f(x) ≥ sup
z
{〈y, z〉 − f(z)}

⇐⇒ f(x) + f ∗(y) ≤ 〈x, y〉
⇐⇒ f(x) + f ∗(y) = 〈x, y〉 ,

where the last equality makes use of the Fenchel-Young inequality (3.19). This establishes
the equivalences between i), ii) and iii). Applying the same reasoning to f ∗ and noticing
that f ∗∗ = f if f ∈ Γ0, gives the missing equivalences.

One consequence of Theorem 3.86 is that the set-valued mappings ∂f and ∂f ∗ are in-
verse to each other. We notice some other interesting implications of the latter theorem
combined with Proposition 3.66.

Corollary 3.87. Let C ⊂ E. Then the following hold:

a) For x ∈ domσC, we have ∂σC(x) = {v ∈ C | x ∈ NconvC(v)}.

b) If C is a closed, convex cone the following are equivalent:

i) y ∈ ∂δC(x);

ii) x ∈ ∂δC◦(y);

iii) x ∈ C, y ∈ C◦ and 〈x, y〉 = 0.
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Smoothness properties of convex functions Although we are not primarily inter-
ested in studying the smoothness properties of convex functions we still want to mention
the following important facts which can be gathered from the extensive study in [24, §25],
and which will be sporadically used later on.

Theorem 3.88 (Differentiability of convex functions). Let f ∈ Γ and let x̄ ∈ int (dom f).
Then the following are equivalent:

i) ∂f(x̄) is a singleton;

ii) f is differentiable at x̄;

iii) f is continuously differentiable at x̄.

In either case, ∂f(x̄) = {∇f(x̄)}.

Exercises for Section 3.7

3.7.1 (Subdifferential of Euclidean norm) Show that

∂‖ · ‖(x̄) =

{ x̄
‖x̄‖ if x̄ 6= 0,

clB if x̄ = 0.

3.7.2 (Empty subdifferential) Consider

f : x ∈ R 7→
{
−
√
x if x ≥ 0,

+∞ else.

Show that ∂f(x) = ∅ for all x ≤ 0.

3.8 Infimal convolution and the Attouch-Brézis Theorem

In this section we study a special instance of infimal projection in the spirit of Theorem
3.53 in the following form.

Definition 3.89 (Infimal convolution). Let f, g : E→ R ∪ {+∞}. Then the function

f#g : E→ R, (f#g)(x) := inf
u∈E
{f(u) + g(x− u)}

is called the infimal convolution of f and g. We call the infimal convolution f#g exact
at x ∈ E if

argminu∈E{f(u) + g(x− u)} 6= ∅.
We simply call f#g exact if it is exact at every x ∈ dom f#g.

Observe that we have the representation

(f#g)(x) = inf
u1,u2:u1+u2=x

{f(u1) + g(u2)}. (3.28)

This has some obvious, yet useful consequences.
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Lemma 3.90. Let f, g : E→ R ∪ {+∞}. Then the following hold:

a) dom f#g = dom f + dom g;

b) f#g = g#f .

Moreover, observe the trivial inequality

(f#g)(x) ≤ f(u) + g(x− u) (u ∈ E). (3.29)

Infimal convolution preserves convexity, as can be seen in the next result.

Proposition 3.91 (Infimal convolution of convex functions). Let f, g : E → R ∪ {+∞}
be convex. Then f#g is convex.

Proof. Defining

ψ : E× E→ R ∪ {+∞}, ψ(x, y) := f(y) + g(x− y),

we see that ψ is convex (jointly in (x, y)) as a sum of the convex functions (x, y) 7→ f(y)
and (x, y) 7→ g(x − y), the latter being convex by Proposition 3.51. By definition of the
infimal convolution, we have

(f#g)(x) = inf
y∈E

ψ(x, y),

hence, Theorem 3.53 yields the assertion.

We continue with an important class of functions that can be constructed using infimal
convolution, and that is intimately tied to projection mappings.

Example 3.92 (Distance functions). Let C ⊂ E. Then the function dC := δC#‖ · ‖ is
called the distance (function) to the set C. It holds that

dC(x) = inf
u∈C
‖x− u‖.

Hence, it is clear that, if C ⊂ E is (nonempty) closed and convex, we have

dC(x) = ‖x− PC(x)‖.

Moreover, Proposition 3.91 tells us that the distance function of a closed set is convex.

Proposition 3.93 (Conjugacy of inf-convolution). Let f, g : E → R ∪ {+∞}. Then the
following hold:

a) (f#g)∗ = f ∗ + g∗;

b) If f, g ∈ Γ0 such that dom f ∩ dom g 6= ∅ then (f + g)∗ = cl (f ∗#g∗).
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Proof. a) By definition, for all y ∈ E, we have

(f#g)∗(y) = sup
x

{
〈x, y〉 − inf

u
{f(u) + g(x− u)}

}
= sup

x,u
{〈x, y〉 − f(u)− g(x− u)}

= sup
x,u
{(〈u, y〉 − f(u)) + (〈x− u, y〉 − g(x− u))}

= f ∗(y) + g∗(y).

b) From a) and the fact that f, g are closed, proper convex, we have

(f ∗#g∗)∗ = f ∗∗ + g∗∗ = f + g,

which is proper, as dom f meets dom g, closed and convex. Thus,

conv (f ∗#g∗) = (f ∗#g∗)∗∗ = (f + g)∗.

By Proposition 3.91 the convex hull on the left can be omitted, hence cl (f ∗#g∗) =
(f + g)∗.

The closure operation in Proposition 3.93 can be omitted under the qualification condition

ri (dom f) ∩ ri (dom g) 6= 0. (3.30)

This in fact is the statement of the following prominent theorem which in the infinite
dimensional setting is attributed to Attouch and Brézis [1], and we reflect that in calling
it the Attouch-Brézis Theorem even though in the finite dimensional setting it was well
established before.

Theorem 3.94 (Attouch-Brézis). Let f, g ∈ Γ0 such that (3.30) holds. Then (f + g)∗ =
f ∗#g∗, and the infimal convolution is exact, i.e. the infimum in the infimal convolution
is attained on dom f ∗#g∗.

Proof. By Proposition 2.5 it suffices to show that f ∗#g∗ has closed level to sets. To
this end let r ∈ R and {zk ∈ lev≤rf

∗#g∗} → z̄. Given {δk} ↓ 0 there hence exists
{(xk, yk) ∈ E× E} such that

f ∗(xk) + g∗(yk) ≤ r + δk and L∗(xk, yk) = zk (k ∈ N),

where L : x ∈ E 7→ (x, x) ∈ E×E. Now let (pk, qk) be the orthogonal projection of (xk, yk)
onto the linear space V := span (dom f ×dom g)− rgeL. Then by Exercise 3.5.6 (applied
to φ = f ⊕ g, see Exercise 3.5.4), we have f ∗(pk) + g∗(qk) = f ∗(xk) + g∗(yk). Moreover,
V ⊥ = span (dom f × dom g)⊥ ∩ kerL∗ ⊂ kerL∗, hence L∗(pk, qk) = zk for all k ∈ N. All
in all, we find that

f ∗(pk) + g∗(qk) ≤ r + δk and pk + qk = zk (k ∈ N). (3.31)
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If {(pk, qk)} is bounded we can assume w.l.o.g. that {(pk, qk)} → (p̄, q̄). Passing to the
limit in (3.31) hence yields

f ∗(p̄) + g∗(q̄) ≤ lim inf
k→∞

f ∗(pk) + g∗(qk) ≤ r and p̄+ q̄ = z̄.

Therefore z̄ ∈ lev≤rf
∗#g∗, which shows that the latter is closed, and hence f ∗#g∗ is lsc.

Moreover with r := (f ∗#g∗)(z̄) it holds that

f ∗(p̄) + g∗(z̄ − p̄) = inf
p∈E
{f ∗(p) + g∗(z̄ − p)} = (f ∗#g∗)(z̄),

which gives exactness.
We now show that {(pk, qk)} is, in fact, bounded: By our assumption that ri (dom f)∩

ri (dom g) 6= ∅ and that L : x 7→ (x, x) we have that (0, 0) ∈ ri (dom f × dom g)− rgeL =
ri (dom f × dom g − rgeL). Hence V = aff (dom f × dom g − rgeL) and so there exists
ε > 0 such that Bε(0, 0)∩V ⊂ dom f ×dom g− rgeL. Hence for any (r, s) ∈ Bε(0, 0)∩V
there exist (u, v) ∈ dom f × dom g and x ∈ E such that (r, s) = (u− x, v− x). Therefore,
for all k ∈ N, we have

〈(pk, qk), (r, s)〉 = 〈(pk, qk), (u− x, v − x)〉
= 〈(pk, qk), (u, v)〉 − 〈(pk, qk), (x, x)〉
≤ f ∗(pk) + g∗(qk) + f(u) + g(v)− 〈pk + qk, x〉
≤ r + δk + f(u) + g(v) + 〈zk, x〉 ,

where the first inequality is simply the due to the Fenchel-Young inequality (3.19), and
the second one follows from (3.31). Since {δk} ↓ 0, (u, v) ∈ dom f × dom g and {zk}
converges, and is hence bounded, the last expression is bounded from above. Therefore

sup
k∈N
〈(pk, qk), (r, s)〉 < +∞ ((r, s) ∈ V ).

by scaling (r, s) accordingly. This readily implies that {(pk, qk) ∈ V } is bounded.

As a consequence we can study the conjugacy of a composition g ◦ L where g is closed
(proper, convex). We also bring to mind Proposition 3.52 in this context.

Proposition 3.95. Let g : E → R be proper and L ∈ L(E,E′) and T ∈ L(E′,E). Then
the following hold:

a) (Lg)∗ = g∗ ◦ L∗.

b) (g ◦ T )∗ = cl (T ∗g∗) if g ∈ Γ.

c) The closure in b) can be dropped and the infimum is attained when finite if g ∈ Γ0

and
ri (rgeT ) ∩ ri (dom g) 6= ∅. (3.32)
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Proof. a) For y ∈ E′ we have

(Lg)∗(y) = sup
z∈E′

{
〈z, y〉 − inf

x: L(x)=z
g(x)

}
= sup

z∈E′, x∈L−1({z})
{〈z, y〉 − g(x)}

= sup
x∈E
{〈x, L∗(y)〉 − g(x)}

= g∗(L∗(y)).

b) Follows from a) and the Fenchel-Moreau Theorem.

c) With φ : (x, y) ∈ E× E′ 7→ g(y) we have

(g ◦ T )∗(z) = sup
x∈E
{〈z, x〉 − g(T (x))}

= sup
(x,y)∈gphT

{〈z, x〉 − g(y)}

= sup
(x,y)∈E×E′

{〈(z, 0), (x, y)〉 − (δgphT + φ)(x, y)}

= (δgphT + φ)∗(z, 0).

We now observe that

ri (δgphT ) ∩ ri (domφ) = ri (gphT ) ∩ E× ri (dom g).

Therefore, (3.30) for δgphT and φ is satisfied if (and only if) (3.32) holds. We can hence
invoke Attouch-Brézis to find that

(g ◦ T )∗(z) = (σgphT#φ∗)(z, 0)

= inf
(u,v)
{σgphT (u, v) + δ{0}(z − u) + g∗(−v)}

= inf
v
δ{0}(T

∗(v) + z) + g∗(−v)

= (T ∗g∗)(z),

where the infimum is a minimum when finite.

3.9 Subdifferential calculus and Fenchel-Rockafellar duality

In this section we develop a calculus for the convex subdifferential. Our primary goal is to
establish a subdifferential rule for convex functions of the form f+g◦L for f ∈ Γ(E1), g ∈
Γ(E2) and L ∈ L(E1,E2). There are various different ways to the subdifferential of that
kind of convex function. We choose the path via Fenchel-Rockafellar duality which we
can prove using Attouch-Brézis.

The central qualification condition is

0 ∈ ri (dom g − L(dom f)) (3.33)

or equivalently
ri (L−1dom g) ∩ ri (dom f) 6= ∅

which is simply (3.30) applied to f and g ◦ L.
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Theorem 3.96 (Fenchel-Rockafellar duality). Let f : E1 → R ∪ {+∞}, g : E2 →
R ∪ {+∞} and L ∈ L(E1,E2). Then the following hold:

a) (Weak duality) We have

p := inf
x∈E1

{f(x) + g(L(x))} ≥ sup
y∈E2

{−f ∗(L∗(y))− g∗(−y)} =: d. (3.34)

b) (Strong duality) If f ∈ Γ0(E1) and g ∈ Γ0(E2) (3.33) holds then equality holds in
(3.34) and the supremum is attained if finite.

c) (Primal-dual recovery) If f ∈ Γ0(E1) and g ∈ Γ0(E2) the following are equivalent
for x̄ ∈ E1 and ȳ ∈ E2:

i) p = d, x̄ ∈ argminf(x) + g(L(x)), ȳ ∈ argmax− f ∗(L∗(y))− g∗(−y);

ii) L∗(ȳ) ∈ ∂f(x̄), −ȳ ∈ ∂g(L(x̄));

iii) x̄ ∈ ∂f ∗(L∗(ȳ)), L(x̄) ∈ ∂g∗(−ȳ).

Proof. a) Follows immediately from the Fenchel-Young inequality.

b) By Attouch-Brézis (recall the remark about the qualification conditions above) and
Proposition 3.95 c) we find that

inf
x∈E1

{f(x) + g(L(x))} = (f + g ◦ L)∗(0)

= inf
z∈E1

{f ∗(z) + (L∗g∗)(−z)}

= inf
y∈E2

{f ∗(L(y)) + g∗(−y)}

where the second (and hence third) infimum is attained if finite. That shows the desired
statement.

c) ’i)⇔ii)’: Observe that

ii) ⇐⇒ f(x̄) + f ∗(L∗(ȳ)) = 〈x̄, L∗(ȳ)〉 , g(L(x̄)) + g∗(−ȳ) = 〈L(x̄), −ȳ〉
⇐⇒ f(x̄) + f ∗(L∗(ȳ)) + g(L(x̄)) + g∗(−ȳ) = 0

⇐⇒ f(x̄) + g(L(x̄)) = −f ∗(L∗(ȳ))− g∗(−ȳ)

⇐⇒ i).

Here the first equivalence is due to Theorem 3.86. In the second equivalence the ’⇐’-
direction uses the Fenchel-Young inequality. The third one is obvious, while the last
equivalence uses a).

’ii)⇔iii)’: Follows immediately from Theorem 3.86.

There is an abundance of applications of Fenchel-Rockafellar duality, but at this point
in our study, it is primarily a tool for proving a generalized sum rule for the convex
subdifferential.
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Theorem 3.97 (Generalized sum rule). Let f : E1 → R, g : E2 → R and L ∈ L(E1,E2).
Then the following hold:

a) ∂(f + g ◦ L)(x̄) ⊃ ∂f(x̄) + L∗ [∂g(L(x̄))] (x̄ ∈ E1).

b) If f ∈ Γ0(E1) and g ∈ Γ0(E2) and condition (3.33) is satisfied, equality holds in a).

Proof. a) Let v ∈ ∂f(x̄) + L∗ [∂g(L(x̄))], i.e. v = u + L∗(w) where u ∈ ∂f(x̄) and
w ∈ ∂g(L(x̄)). By the respective subgradient inequalities we have

〈u, x− x̄〉+ f(x̄) ≤ f(x) (x ∈ E1) (3.35)

and
〈w, L(x)− L(x̄)〉+ g(L(x̄)) ≤ g(L(x)) (x ∈ E1).

The latter is equivalent to

〈L∗(w), x− x̄〉+ (g ◦ L)(x̄) ≤ (g ◦ L)(x) (x ∈ E1).

Adding this to (3.35) yields

〈v, x− x̄〉+ f(x̄) + (g ◦ L)(x̄) ≤ f(x) + (g ◦ L)(x) (x ∈ E1),

which shows that v ∈ ∂(f + g ◦ L)(x̄).

b) Let v ∈ ∂(f + g ◦ L)(x̄). Observe (cf. Theorem 3.86) that x̄ solves

inf
x∈E1

{(f(x)− 〈v, x〉) + g(L(x))}.

By Fenchel-Rockafellar duality (applied to f−〈v, ·〉 and g noticing that dom f = dom (f−
〈v, ·〉)) we therefore infer that there exists ȳ ∈ E2 such that

f(x̄)− 〈v, x̄〉+ g(L(x̄)) = −f ∗(L∗(ȳ) + v)− g∗(−ȳ),

or equivalently

〈v, x̄〉 = f(x̄) + g(L(x̄)) + f ∗(L∗(ȳ) + v) + g∗(−ȳ).

Hence,

〈v + L∗(ȳ), x̄〉+ 〈−ȳ, L(x̄)〉 = f(x̄) + f ∗(L∗(ȳ) + v) + g(L(x̄)) + g∗(−ȳ).

By the Fenchel-Young inequality we hence must have

L∗(ȳ) + v ∈ ∂f(x̄) and − ȳ ∈ ∂g(L(x̄)).

Therefore
v = v + L∗(ȳ) + L∗(−ȳ) ∈ ∂f(x̄) + L∗∂g(L(x̄)),

which concludes the proof.
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The generalized subdifferential sum rule has many important consequences, two of which
we present now: The first one is a sum rule, which in the literature is sometimes referred
to as Moreau-Rockafellar Theorem, but this is moniker is not used uniformly.

Corollary 3.98 (Subdifferential sum rule). Let f, g ∈ Γ then

∂(f + g)(x) ⊃ ∂f(x) + ∂g(x) (x ∈ E). (3.36)

Under the qualification condition

0 ∈ ri (dom g − dom f)

equality holds in (3.36).

Likewise we obtain a chain rule.

Corollary 3.99 (Subdifferential chain rule). Let g ∈ Γ(E2) and L ∈ L(E1,E2). Then

∂(g ◦ L) ⊃ L∗(∂g) ◦ L. (3.37)

Under the qualification condition

0 ∈ ri (dom g − rgeL)

equality holds in (3.37).

We continue with a subdifferential rule for infimal convolution.

Theorem 3.100 (Subdifferential of infimal convolution). Let f, g ∈ Γ0 and x ∈ dom (f#g).
Then

∂(f#g)(x̄) = ∂f(ū) ∩ ∂g(x̄− ū) (ū ∈ argminuf(u) + g(x̄− u)).

Proof. Let ū ∈ argminuf(u) + g(x̄− u). Then, by Theorem 3.86, we have

ȳ ∈ ∂(f#g)(x̄) ⇐⇒ x̄ ∈ argminx{(f#g)(x)− 〈x, ȳ〉}
⇐⇒ (f#g)(x̄)− 〈x̄, ȳ〉 = inf

x
{(f#g)(x)− 〈x, ȳ〉}

⇐⇒ f(ū) + g(x̄− ū)− 〈x̄, ȳ〉 = inf
(x,u)
{f(u) + g(x− u)− 〈x, ȳ〉}

⇐⇒ (x̄, ū) ∈ argminx,u{f(u) + g(x− u)− 〈(x, u), (ȳ, 0)〉}.

Now consider the self-adjoint linear map

L : (x, u) ∈ E× E 7→ (u, x− u)

and the convex function

c : (v, w) ∈ E× E 7→ g(v) + h(w).

Using again Theorem 3.86 and Corollary 3.99 and Exercise 3.9.1, we find that ȳ ∈
∂(f#g)(x̄) is equivalent to

(ȳ, 0) ∈ ∂(c ◦ L)(x̄, ū) = L∗∂c(ū, x̄− ū) = L [∂f(ū)× ∂g(x̄− ū))].

This yields the desired result.
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Exercises for Section 3.9

3.9.1 (Subdifferential of separable sum) For fi : Ei → R (i = 1, 2) the separable sum
of f1 and f2 is defined by

f1 ⊕ f2 : (x1, x2) ∈ E1 × E2 7→ f1(x1) + f2(x2).

Show that for fi ∈ Γ(Ei) (i = 1, 2) we have

∂(f1 ⊕ f2) = ∂f1 × ∂f2.

3.10 Infimal projection

We would like to revisit the infimal projection setting from 3.53.

Theorem 3.101 (Infimal projection II). Let ψ ∈ Γ0(E1 × E2) and define p : E1 → R by

p(x) := inf
v
ψ(x, v). (3.38)

Then the following hold:

a) p is convex.

b) p∗ = ψ∗(·, 0) which is closed and convex.

c) The condition
domψ∗(·, 0) 6= 0 (3.39)

is equivalent to having p∗ ∈ Γ0.

d) If (3.39) holds then p ∈ Γ0 and the infimum in its definition is attained when finite.

Proof. a) Theorem 3.53.

b) We have

p∗(y) = sup
x
{〈y, x〉 − inf

v
ψ(x, v)}

= sup
(x,v)

{〈(y, 0), (x, v)〉 − ψ(x, v)}

= ψ∗(y, 0).

A conjugate function is always closed and convex as a pointwise supremum of affine, hence
convex functions, cf. Proposition 3.50.

c) The is obvious from b).

d) Observe that by b) we have

p∗∗(x) = sup
y
{〈x, y〉 − ψ∗(y, 0)}

= sup
(y,w)

{〈(x, 0), (y, w)〉 − (ψ∗ + δE1×{0})(y, w)}

= (ψ∗ + δE1×{0})
∗(x, 0).
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Now we notice that

ri (domψ∗) ∩ ri (dom δE1×{0}) = ri (domψ∗) ∩ E1 × {0}

see Exercise 3.1.8. Hence

ri (domψ∗) ∩ ri (dom δE1×{0}) 6= ∅ ⇐⇒ domψ∗(·, 0) 6= ∅

as the relative interior of a convex set is nonempty if and only if the set itself is not, see
Theorem 3.22. Since we assume that the latter holds, we can hence apply the Attouch-
Brézis Theorem to continue the above derivations and obtain

p∗∗(x) = (ψ∗ + δE1×{0})
∗(x, 0)

= (ψ#δ{0}×E2)(x, 0)

= inf
v
ψ(x, v)

= p(x),

and the infimum is attained when finite.

4 Conjugacy of Composite Functions via K-Convexity

and Infimal Convolution

In this section we are concerned with functions g◦F , where g is closed, proper, convex and
F is a (generally) nonlinear map. These kinds of functions are known under the moniker
convex-composite function, and are, in general, nonconvex. However, if the monotonicity
properties of g and the generalized convexity properties of F align in a certain way, this
convex-composite may be convex after all. We want to study this case with a focus on
the Fenchel conjugate of these kinds of (convex) convex-composite functions. Our main
tools are infimal convolution, especially the Attouch-Brézis Theorem (see Theorem 3.94)
and a notion of generalized convexity for vector-valued functions with respect to some
cone-induced ordering.

4.1 K-convexity

Given a cone K ⊂ E, the relation

x ≤K y :⇐⇒ y − x ∈ K (x, y ∈ E)

induces a partial ordering on E. We may then attach to E a largest element +∞• with
respect to that ordering which satisfies

x ≤K +∞• (x ∈ E).

We will set E• := E ∪ {+∞•}. For a function F : E1 → E•2 we define its domain, graph
and range, respectively, as

domF := {x ∈ E1 | F (x) ∈ E2} ,
gphF := {(x, F (x)) ∈ E1 × E2 | x ∈ domF } ,
rgeF := {F (x) ∈ E2 | x ∈ domF } .
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We call F proper if domF 6= ∅. The following concept is central to our study.

Definition 4.1 (K-convexity). Let K ⊂ E2 be a cone and F : E1 → E•2. Then we call F
convex with respect to K or K-convex if its K-epigraph

K-epiF := {(x, v) ∈ E1 × E2 | F (x) ≤K v}

is convex (in E1 × E2).

We point out that, in the setting of Definition 4.1, a K-convex function F has a convex
domain as domF = L(K-epiF ) where L : E1×E2 → E1 : (x, v) 7→ x. Thus, F is K-convex
if and only if

F (λx+ (1− λ)y) ≤K λF (x) + (1− λ)F (y) (x, y ∈ domF, λ ∈ [0, 1]).

We will make use of the relative interior of the K-epigraph of a K-convex function which
is described in the following lemma, the proof on which is based on results from Section
3.1.4.

Lemma 4.2 (Relative interior of K-epigraph). Let K ⊂ E2 be a convex cone, and let
F : E1 → E•2 be proper and K-convex. Then

ri (K-epiF ) =
{

(x, v)
∣∣ x ∈ ri (domF ), F (x) �ri (K) v

}
=

(
riK-epiF

)⋂(
domF × E2

)
.

In particular, if domF = E1, then ri (K-epiF ) = riK-epiF .

Proof. For each x ∈ E1, set Cx = {v ∈ E2 | (x, v) ∈ K-epiF } . It follows from Proposition
3.28 that

riCx = ri
(
L−1
x (K)

)
= L−1

x (riK) = {v ∈ E2 | v ∈ F (x) + riK } ,

where Lx : v 7→ v − F (x). Hence, by Theorem 3.29, we find that

(x, v) ∈ ri (K-epiF )⇐⇒ x ∈ ri {x ∈ E1 | Cx 6= ∅} and v ∈ riCx

⇐⇒ x ∈ ri (domF ) and v ∈ riCx

⇐⇒ x ∈ ri (domF ) and v ∈ F (x) + riK.

It is clear from the definition that if F is K-convex and L ⊃ K is a cone, then F is also
L-convex. The following result due to Pennanen [23, Lemma 6.1] gives a nice description
of the polar of smallest closed, convex cone with respect to which a given function is
convex.

Lemma 4.3. Let f : E1 → E•2 with a convex domain and let K ⊂ E2 be the smallest closed
convex cone with respect to which F is convex. Then

(−K)◦ = {v ∈ E2 | 〈v, F 〉 is convex} =: PF .
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Proof. First, we observe the following: As F is K-convex, for λ ∈ (0, 1) and x, y ∈ domF ,
we have

λF (x) + (1− λ)F (y)− F (λx+ (1− λ)y) ∈ K
⇐⇒ F (λx+ (1− λ)y)− λF (x)− (1− λ)F (y) ∈ −K
⇐⇒ 〈v, F (λx+ (1− λ)y)− λF (x)− (1− λ)F (y)〉 ≤ 0 (v ∈ (−K)◦)

⇐⇒ 〈v, F 〉 is convex (v ∈ (−K)◦)

where the third equivalence uses that K = K◦◦ as K is a closed, convex cone, see Theorem
3.73. It hence, implies that

(−K)◦ ⊂ PF . (4.1)

Next, it is clear that PF is a convex cone, and, due to the continuity of the inner product,
PF is closed. By the above observation F is −P ◦F -convex and therefore K ⊂ −P ◦F , or
equivalently,

−K ⊂ P ◦F . (4.2)

Finally, by taking the polars in (4.2), using Theorem 3.73 and (4.1), we get

PF = (P ◦F )◦ ⊂ (−K)◦ ⊂ PF .

4.2 The convex-composite setting

For F : E1 → E•2 and g : E2 → R ∪ {+∞} we define the composition of g and F as

(g ◦ F )(x) :=

{
g(F (x)) if x ∈ domF,

+∞ else

which extends the usual convention g(+∞) = +∞ when E2 = R. In particular, given
v ∈ E2 and the linear form 〈v, ·〉 : E2 → R that goes with it, we set 〈v, F 〉 := 〈v, ·〉 ◦ F ,
i.e.

〈v, F 〉 (x) =

{
〈v, F (x)〉 if x ∈ domF,

+∞ else.

This scalarization of F is quite central to our study which is already foreshadowed in the
next two auxiliary results.

Lemma 4.4. Let F : E1 → E•2 and v ∈ E2. Then the following hold:

a) If F is K-convex then 〈v, F 〉 is convex for all v ∈ −K◦.

b) The inverse of a) holds true if K is closed and convex.

Proof. a) Suppose that F is K-convex and let v ∈ −K◦, x, y ∈ E1, and λ ∈ [0, 1]. Since

λF (x) + (1− λ)F (y)− F (λx+ (1− λ)y) ∈ K,
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it follows that
〈v, λF (x) + (1− λ)F (y)− F (λx+ (1− λ)y)〉 ≥ 0,

and hence,
〈v, λF (x) + (1− λ)F (y)〉 ≥ 〈v, F (λx+ (1− λ)y)〉 .

b) Let x, y ∈ E1, λ ∈ [0, 1], and v ∈ −K◦. Set z = λx + (1− λ)y. Since 〈v, F 〉 is convex
we have

〈v, λF (x) + (1− λ)F (y)− F (z)〉 = λ 〈v, F (x)〉+ (1− λ) 〈v, F (y)〉 − 〈v, F (z)〉
= λ 〈v, F 〉 (x) + (1− λ) 〈v, F 〉 (y)− 〈v, F 〉 (λx+ (1− λ)y)

≥ 0,

and therefore,

λF (x) + (1− λ)F (y)− F (λx+ (1− λ)y) ∈ −(−K◦)◦ = K◦◦ = K,

where K◦◦ = K because K is closed and convex (and contains 0), see Theorem 3.73.

Lemma 4.5. Let F : E1 → E•2 and let K ⊂ E2 be a closed, convex cone. Then the
following hold for all (u, v) ∈ E1 × E2:

a) σK-epiF (u, v) = σgphF (u, v) + δK◦(v).

b) σgphF (u,−v) = 〈v, F 〉∗ (u).

c) If F is linear then 〈v, F 〉∗ = δ{F ∗(v)}.

Proof. a) Observe that

σK-epiF (u, v) = sup
(x,y)∈K-epiF

〈(u, v), (x, y)〉

= sup
(x,z)∈E1×K

〈(u, v), (x, F (x) + z)〉

= sup
x∈E1

〈(u, v), (x, F (x))〉+ sup
z∈K
〈z, v〉

= σgphF (u, v) + δK◦(v),

where the last identity uses Exercise 3.5.13.

b) We have

σgphF (u,−v) = sup
x∈domF

〈(u,−v), (x, F (x))〉

= sup
x∈E1

{〈u, x〉 − 〈v, F 〉 (x)}

= 〈v, F 〉∗ (u).
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Proposition 4.6. Let K ⊂ E2 be a convex cone, F : E1 → E•2 K-convex and g ∈ Γ(E2)
such that rgeF ∩ dom g 6= ∅. If

g(F (x)) ≤ g(y) ((x, y) ∈ K-epiF ) (4.3)

then the following hold:

a) g ◦ F is convex and proper.

b) If g is lsc and F is continuous then g ◦ F is lower semicontinuous.

Proof. a) As g is proper and rgeF ∩ dom g 6= ∅, the composite g ◦ F is proper. Now, let
v, w ∈ domF and λ ∈ [0, 1]. Then

g(F (λv + (1− λ)w)) ≤ g(λF (v) + (1− λ)F (w))

≤ λg(F (v)) + (1− λ)g(F (w)).

Here the first inequality is due to the fact that (λv + (1 − λ)w, λF (v) + (1 − λ)F (w)) ∈
K-epiF (as F is K-convex) and assumption (4.3).

b) Let {xn} be a sequence in E1 converging to x and set t = lim infn→+∞ g(F (xn)).
Then there exists a subsequence (xkn) such that g(F (xkn))→ t. Due to the continuity of
F , F (xkn)→ F (x), and hence, by the lower semicontinuity of g, we have t ≥ g(F (x)).

4.3 The Fenchel conjugate of the convex convex-composite

Without further ado, we present the main result of this chapter.

Theorem 4.7 (Conjugacy for convex-composite). Let K ⊂ E2 be a closed convex cone,
F : E1 → E•2 K-convex such that K-epiF is closed and g0 ∈ Γ(E2) such that (4.3) is
satisfied. Then the following hold:

a) (g ◦ F )∗ ≤ cl η, where

η(p) = inf
v∈−K◦

g∗(v) + 〈v, F 〉∗ (p).

b) If
F (ri (domF )) ∩ ri (dom g −K) 6= ∅. (4.4)

the function η in a) is closed, proper and convex and the infimum is attained if
finite.

c) Under the assumptions of b) we have

(g ◦ F )∗(p) = min
v∈−K◦

g∗(v) + 〈v, F 〉∗ (p)

with dom (g ◦ F )∗ = {p ∈ E1 | ∃v ∈ dom g∗ ∩ (−K◦) : 〈v, F 〉∗ (p) < +∞}.
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Proof. a) Define φ : E1 × E2 → R ∪ {+∞} : (x, y) 7→ g(y) and observe that

φ∗(u, v) = δ{0}(u) + g∗(v). (4.5)

Hence we find that

(g ◦ F )∗(p) = sup
x∈E1

{〈x, p〉 − g(F (x))}

= sup
(x,y)∈K-epiF

{〈x, p〉 − g(y)}

= sup
(x,y)∈E1×E2

{〈(p, 0), (x, y)〉 − (g(y) + δK-epiF (x, y)}

= (φ+ δK-epiF )∗(p, 0)

= cl (φ∗#σK-epiF ) (p, 0).

Here the second equality uses assumption (4.3), and last identity is then due to Proposition
3.93 as the functions in play are closed, proper and convex by assumption. Moreover, we
have

(φ∗#σK-epiF ) (p, 0) = inf
(u,v)∈E1×E2

{φ∗(u, v) + σK-epiF (p− u,−v)}

= inf
v∈E2

{g∗(v) + σK-epiF (p,−v)}

= inf
v∈−K◦

{g∗(v) + σgphF (p,−v)}

= inf
v∈−K◦

{g∗(v) + 〈v, F 〉∗ (p)} ,

where the second identity uses (4.5) and the third and fourth one rely on Lemma 4.5.
This shows the desired statement.

b) This follows from Theorem 3.94 while observing that

ri (domφ) ∩ ri (dom δK-epiF ) 6= ∅ ⇐⇒ E1 × ri (dom g) ∩ ri (K-epiF ) 6= ∅
⇐⇒ ∃x ∈ ri (domF ) : F (x) ∈ ri (dom g)− riK

⇐⇒ F (ri (domF )) ∩ ri (dom g −K) 6= ∅.

Here the second equivalence relies on Lemma 4.2.

c) The first statement follows from a) and b) and Theorem 3.94. The expression of
dom (g ◦ F )∗ is an immediate consequence of that.

We now continue with a whole sequence of rather immediate consequences of Theorem
4.7. The first one shows that our setting g ◦ F in fact covers the seemingly more general
setting with an additional additive term.

Corollary 4.8 (Conjugate of additive composite functions). Under the assumptions of
Theorem 4.7 let f ∈ Γ0 such that

F (ri (dom f ∩ domF )) ∩ ri (dom g −K) 6= ∅. (4.6)

Then
(f + g ◦ F )∗(p) = min

v∈−K◦,
y∈E1

g∗(v) + f ∗(y) + 〈v, F 〉∗ (p− y).
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Proof. Define g̃ : R× E2 → R ∪ {+∞} by g(s, y) := s+ g(y). Then g ∈ Γ0(R× E2) with

g̃∗(t, v) = δ{1}(t) + g∗(v). (4.7)

Moreover, define F̃ : E1 → R ∪ {+∞} × E•2 by F̃ (x) = (f(x), F (x)). Then dom F̃ =
dom f ∩ domF . Setting K̃ := R+ ×K, we find that F̃ is K̃-convex, g̃ ◦ F̃ = f + g ◦ F ∈
Γ0(E1) and g̃ ◦ F̃ satisfies (4.3) with K̃ (since g ◦ F satisfies it with K). Moreover, as
dom g̃ = R × dom g, we realize that condition (4.4) for g̃, F̃ and K̃ amounts to (4.6).
Therefore, we obtain

(f + g ◦ F )∗(p) = (g̃ ◦ F̃ )(p)

= min
(t,v)∈−K̃◦

g̃∗(t, v) +
〈

(t, v), F̃
〉∗

(p)

= min
v∈−K◦

g∗(v) + sup
x∈E1

{〈p, v〉 − (f(x) + 〈v, F 〉 (x))}

= min
v∈−K◦

g∗(v) + (f + 〈v, F 〉)∗(p)

= min
v∈−K◦

g∗(v) + (f ∗# 〈v, F 〉∗)(p)

= min
v∈−K◦,
y∈E1

g∗(v) + f ∗(y) + 〈v, F 〉∗ (p).

Here the second identity is due to Theorem 4.7, the third one uses (4.7), while the fifth
relies once more on Theorem 3.94, realizing that dom 〈v, F 〉 = domF and (4.6) implies
that ri (dom f) ∩ ri (domF ) ⊃ ri (dom f ∩ domF ) 6= ∅.

The next corollary follows simply from the fact that condition (4.3) is trivially satisfied if
g has the following property: For a cone K ⊂ E we call f : E→ R∪ {+∞} K-increasing
if

f(u) ≤ f(v) (u �K v).

Corollary 4.9. Let K ⊂ E2 be a closed, convex cone, F : E1 → E•2 K-convex such that
K-epiF is closed and let g ∈ Γ0 and K-increasing such that (4.4) holds (which is true in
particular when g is finite-valued or F is surjective). Then

(g ◦ F )∗(p) = min
v∈−K◦

g∗(v) + 〈v, F 〉∗ (p).

Proof. Since the fact that g is K-increasing implies (4.3) the assertion follows from The-
orem 4.7.

The next result shows that any closed, proper, convex function g is monotone with respect
to its horizon cone, see Definition 3.80.

Lemma 4.10. Let g ∈ Γ0. Then g is (−hzn g)-increasing.
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Proof. Put K := −hzn g. Then Theorem 3.81 yields K = −(cone (dom g∗))◦. Now let
x, y ∈ E such that x �K y, i.e. y = x+ b for some b ∈ K. Since g = g∗∗ we hence find

g(x) = sup
z∈dom g∗

{〈x, z〉 − g∗(z)}

= sup
z∈dom g∗

{〈y, z〉 − 〈b, z〉 − g∗(z)}

≤ sup
z∈dom g∗

{〈y, z〉 − g∗(z)}

= g(y),

where the inequality relies on the fact that 〈b, z〉 ≥ 0.

Corollary 4.11. Let g ∈ Γ0(E2) and let F : E1 → E•2 be (−hzn g)-convex with −hzn g-epiF
closed such that

F (ri (domF )) ∩ ri (dom g + hzn g) 6= ∅.

Then
(g ◦ F )∗(p) = min

v∈E2

g∗(v) + 〈v, F 〉∗ (p).

Proof. This follows from combining Corollary 4.9 (with K = −hzn g) and Lemma 4.10
while observing that dom g∗ ⊂ cone (dom g∗) = (hzn g)◦, cf. Theorem 3.81.

Finally, as another immediate consequence of our study we get the well known result for
the case when F is linear, cf. Proposition 3.95.

Corollary 4.12 (The linear case). Let g ∈ Γ(E2) and F : E1 → E2 linear such that
rgeF ∩ ri (dom g) 6= ∅. Then

(g ◦ F )∗(p) = min
v∈E2

{g∗(v) | F ∗(v) = p}

with dom (g ◦ F ) = (F ∗)−1(dom g∗).

Proof. We notice that F is {0}-convex. Hence we can apply Theorem 4.7 with K = {0}.
Condition (4.4) then reads rgeF ∩ ri (dom g) 6= ∅, which is our assumption. Hence we
obtain

(g ◦ F )∗(p) = min
v∈−K◦

g∗(v) + 〈v, F 〉∗ p = min
v∈E2

g∗(v) + δF ∗(v)(p).

where the second identity uses Lemma 4.5.

4.4 Applications

In this section we present some eclectic applications of our study in Section 4.3 to illustrate
the versatility of our findings.
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4.4.1 Conic programming

We consider the general conic program

min f(x) s.t. F (x) ∈ −K (4.8)

where f : E1 → R is convex, F : E1 → E2 is K-convex and K ⊂ E2 is a closed, convex
cone. Clearly, (4.8) can be written in the additive composite form

min
x∈E1

f(x) + (δ−K ◦ F )(x). (4.9)

This fits the additive composite setting of Corollary 4.8 with g = δ−K which is K-
increasing. Moreover, the qualification condition (4.4) for the conjugate calculus reads

rgeF ∩ ri (−K) = ∅, (4.10)

which is simply a generalized version of Slater’s condition.
The Fenchel (or Fenchel-Rockafellar) dual problem associated with (4.8) via (4.9) is

max
y∈E1

−f ∗(y)− (δ−K ◦ F )∗(−y),

while the Lagrangian dual is

max
v∈−K◦

inf
x∈E1

f(x) + 〈v, F (x)〉 .

We obtain the following duality result.

Theorem 4.13. (Strong duality and dual attainment for conic programming) Let f :
E1 → R is convex, K ⊂ E2 a closed, convex cone, and let F : E1 → E2 be K-convex with
closed K-epigraph. If (4.10) holds then

inf
x∈E1

f(x) + (δ−K ◦F )(x) = max
v∈−K◦

−f ∗(y)− (δ−K ◦F )∗(−y) = max
v∈−K◦

inf
x∈E1

f(x) + 〈v, F (x)〉 .

Proof. Observe that, by Corollary 4.8, we have

(f + δ−K ◦ F )∗(0) = min
v∈−K◦,
y∈E1

f ∗(y) + 〈v, F 〉∗ (−y)

= min
v∈−K◦

(f + 〈v, F 〉)∗(0)

= min
v∈−K◦

sup
x∈E1

{−f(x)− 〈v, F (x)〉}.

Moreover, by Theorem 4.7 we have

(δ−K ◦ F )∗(−y) = min
v∈−K◦

〈v, F 〉∗ (−y).

Finally, since infE1 f + δ−K ◦ F = −(f + δ−K ◦ F )∗(0), this shows everything.

Theorem 4.13 furnishes various facts: It shows strong duality and dual attainment for
both the Fenchel duality (first identity) and Lagrangian duality (second identity) scheme
under a generalized Slater condition. Moreover, it shows the equivalence of both duality
concepts. Of course, these are well-known results, but the proof based on Corollary 4.8
and Theorem 4.7, respectively, unifies this in a very elegant and convenient way.
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4.4.2 Conjugate of pointwise maximum of convex functions

In what follows we denote the unit simplex in Rm by ∆m, i.e.

∆m =

{
v ∈ Rm

∣∣∣∣∣ vi ≥ 0,
m∑
i=1

vi = 1

}
.

The following result provides the conjugate for the pointwise maximum of finitely many
convex functions. It therefore, slightly generalizes (at least in the finite dimensional case)
the results established for the case of two functions in [15] and alternatively proven in [5].

Proposition 4.14. For f1, . . . , fm ∈ Γ0(E) define f := maxi=1,...,m fi. Then f ∈ Γ0(E)
with

f ∗(x) = min
v∈∆m

( m∑
i=1

vifi

)∗
(x).

Proof. Define F : E→ (Rm)• by

F (x) =

{
(f1(x), . . . , fm(x)) if x ∈

⋂m
i=1 dom fi,

+∞• otherwise,

and g : Rm → R by g(v) = max1≤i≤m vi. Then f = g ◦ F (with the conventions made in
Section 4.2) and we observe that F is Rm

+ -convex and g is Rm
+ -increasing with dom g = Rm.

Hence, Theorem 4.7 c) is applicable with the qualification condition (4.4) trivially satisfied.
Thus, for all x ∈ E, we obtain

(g ◦ F )∗(x) = min
v∈Rm+

g∗(v) + 〈v, F 〉∗ (x)

= min
v∈Rm+

δ∆m(v) + 〈v, F 〉∗ (x)

= min
v∈∆m

( m∑
i=1

vifi

)∗
(x)

where the second equality follows from Exercise 3.5.7.

5 A New Class of Matrix Support Functionals

From this point on we set

E := Rn×m × Sn and κ := dimE.

Then E is a Euclidean space equipped with the inner product

〈(X, V ), (Y,W )〉 = tr (XTY ) + tr (VW ).
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5.1 The matrix-fractional function

We consider the function φ : E→ R ∪ {+∞} given by

φ(X, V ) =

{
1
2
tr (XTV −1X) if V � 0,

+∞ else
(5.1)

which is referred to as the matrix-fractional function, see [6, Example 3.4] and [11, Exam-
ple 3.6.0.0.2]. However, we reserve this moniker for its closure, see below. The function φ
from (5.1) occurs in a myriad of different situations as the following two examples indicate;
the first of which concerns a variational characterization of the nuclear norm.

Example 5.1 (Nuclear norm smoothing). The nuclear norm ‖·‖∗ is a popular regularizer
in matrix optimization to promote low-rank solutions, see e.g. [13]. Hsieh and Olsen [20,
Lemma 1] found an interesting variational representation

‖X‖∗ = min
V ∈Sn++

1

2
tr (V ) + φ(X, V ) (5.2)

using φ from (5.1).

The second example puts the function φ in the context of maximum-likelihood estimation.

Example 5.2 (Covariance estimation). Suppose yi ∈ Rn (i = 1, . . . , N) are measurements
of a random vector y that is normally distributed with mean value µ ∈ Rn and covariance
matrix Σ ∈ Sn++, which are both unknown. In order to estimate them, one considers the
optimization problem

max
µ∈Rn,Σ∈Sn++

1

(2π)n/2

N∏
i=1

1

(det Σ)1/2
exp

(
−1

2
(yi − µ)TΣ−1(yi − µ)

)
of maximizing the density with respect to mean value and covariance. This is, by the
monotonicity of the logarithm, equivalent to the optimization problem

min
µ∈Rn,Σ∈Sn++

N∑
i=1

1

2
(yi − µ)TΣ−1(yi − µ) +

N

2
log det Σ.

Using the function φ from (5.1) this reads

min
(Y,Σ)∈Rn×m×Sn

φ(Y − [µ, . . . , µ],Σ)−
(
−N

2
log det Σ

)
.

From a convex-analytical perspective, the function φ defined in (5.1) has one major draw-
back, namely it is not closed. As our study will show its closure is γ : E → R ∪ {+∞}
given by

γ(X, V ) :=

{
1
2
tr
(
XTV †X

)
if V � 0, rgeX ⊂ rgeV,

+∞ else.
(5.3)

We will refer to γ as the matrix-fractional function while [11] refers to γ as the pseudo
matrix-fractional function.
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Proposition 5.3. For the functions γ from (5.3) and φ from (5.1) we have:

a) epi γ =

{
(X, V, α)| ∃Y ∈ Sm :

(
V X
XT Y

)
� 0, 1

2
tr (Y ) ≤ α

}
.

b) epiφ =

{
(X, V, α)| ∃Y ∈ Sm :

(
V X
XT Y

)
� 0, V � 0, 1

2
tr (Y ) ≤ α

}
.

Moreover, epi γ = cl (epiφ), or equivalently, γ = clφ.

Proof. a) First note that

Y � XTV †X ⇒ tr (Y ) ≥ tr (XTV †X). (5.4)

We have

(X, V, α) ∈ epi γ ⇔ V � 0, rgeX ⊂ rgeV,
1

2
tr (XTV †X) ≤ α

⇔ ∃Y ∈ Sm : V � 0, rgeX ⊂ rgeV, Y � XTV †X,
1

2
tr (Y ) ≤ α

⇔ ∃Y ∈ Sm :

(
V X
XT Y

)
� 0,

1

2
tr (Y ) ≤ α,

where the second equivalence follows from (5.4) and the fact that we may take Y =
XTV †X, and the final equivalence follows from Lemma A.5.
b) Analogous to a) with the additional condition that V � 0 in each step.
In order to show that cl (epiφ) = epi γ, we first note that, as γ is lsc, epi γ is closed. More-
over, since obviously epiφ ⊂ epi γ, the inclusion cl (epiφ) ⊂ epi γ follows immediately.

In order to see the converse inclusion, let (X, V, α) ∈ epi γ. Now, set Vk := V + 1
k
In � 0

and put αk := α + γ(X, Vk)− γ(X, V ) for all k ∈ N. Then, by definition, we have

αk = α + γ(X, Vk)− γ(X, V ) ≥ γ(X, Vk) = φ(X, Vk),

i.e., (X, Vk, αk) ∈ epiφ for all k ∈ N. Clearly, Vk → V with Vk nonsingular, and so
V −1
k → V + (e.g., see [22, p. 153]). Consequently, φ(X, Vk) = γ(X, Vk)→ γ(X, V ) so that
αk → α. Therefore, (X, Vk, αk)→ (X, V, α), and so epi γ = cl (epiφ), i.e., γ = clφ.

It is fairly easy to see now that the matrix-fractional function γ is closed, proper, convex
as its epigraph is a closed, convex cone. By Hörmander’s theorem (Theorem 3.68) it
hence must be a support function - the question is which set it supports! We will answer
this question as a by-product of our subequent analysis, in which we will consider a
significantly generalized version of the matrix-fractional function. We would also like to
point out that the fact that γ is a support function was already observed in the special
case m = n = 1 in [24, p. 83].
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5.2 The generalized matrix-fractional function

We now want to study the GMF in more detail. To this end the following definition is
crucial.

KS :=
{
V ∈ Sn

∣∣ uTV u ≥ 0, (u ∈ S)
}
, (5.5)

where S is a subspace of Rn, that is, KS is the set of all symmetric matrices that are
positive definite with respect to the given subspace S. Observe that if P ∈ Sn is the
orthogonal projection onto S, then

KS = {V ∈ Sn | PV P � 0} . (5.6)

Clearly, KS is a convex cone, and, for S = Rn, it reduces to Sn+. Given a matrix A ∈ Rp×n,
the cones KkerA play a special role in our analysis. For this reason, we simply write KA
to denote KkerA, i.e. KA := KkerA.

Proposition 5.4 (KS and its polar). Let S be a nonempty subspace of Rn and let P be
the orthogonal projection onto S. Then the following hold:

a) K◦S = cone
{
−vvT | v ∈ S

}
= {W ∈ Sn | W = PWP � 0} .

b) intKS =
{
V ∈ Sn

∣∣ uTV u > 0 (u ∈ S \ {0})
}
.

c) aff (K◦S) = span
{
vvT | v ∈ S

}
= {W ∈ Sn | rgeW ⊂ S} .

d) ri (K◦S) =
{
W ∈ K◦S

∣∣ uTWu < 0 (u ∈ S \ {0})
}

when S 6= {0} and

ri (K◦{0}) = {0} (since K{0} = Sn).

Proof. a) Put B :=
{
−ssT | s ∈ S

}
⊂ Sn− and observe that

cone B =

{
−

r∑
i=1

λisis
T
i | r ∈ N, si ∈ S, λi ≥ 0 (i = 1, . . . , r)

}
.

We have cone B =
{
W ∈ Sn− | W = PWP

}
: To see this, first note that cone B ⊂{

W ∈ Sn− | W = PWP
}

. The reverse inclusion invokes the spectral decomposition of
W =

∑n
i=1 λiqiq

T
i for λ1, . . . , λn ≤ 0. In particular, this representation of cone B shows

that it is closed. We now prove the first equality in a): To this end, observe that

KS =
{
V ∈ Sn

∣∣ sTV s ≥ 0 (s ∈ S)
}

=
{
V ∈ Sn

∣∣ 〈V, −ssT〉 ≤ 0 (s ∈ S)
}

= (cone B)◦,

where the third equality uses simply the linearity of the inner product in the second
argument. Polarization then gives

K◦S = (cone B)◦◦ = cone B = cone B.

b)The proof is straightforward and follows the pattern of proof for intSn+ = Sn++.
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c) With B as defined above, observe that

aff K◦S = spanK◦S = spanB,

since 0 ∈ K◦S , which shows the first equality. It is hence obvious that aff KS ⊂ {W ∈ Sn | rgeW ⊂ S}.
On the other hand, every W ∈ Sn such that rgeW ⊂ S has a decomposition W =∑rankW

i=1 λiqiq
T
i where λi 6= 0 and qi ∈ rgeW ⊂ S for all i = 1, . . . , rankW , i.e. W ∈

spanB = aff K◦S .

d) Set R :=
{
W ∈ K◦S

∣∣ uTWu < 0 (u ∈ S \ {0})
}

and let W ∈ ri (K◦S) \ R ⊂ K◦S .
Then there exists u ∈ S with ‖u‖ = 1 such that uTWu = 0. Then for every ε > 0 we
have uT (W + εuuT )u = ε > 0. Therefore W + εuuT ∈ (Bε(W ) ∩ aff (K◦S)) \ K◦S for all
ε > 0, and hence W /∈ ri (K◦S), which contradicts our assumption. Hence, ri (K◦S) ⊂ R.

To see the reverse implication assume there were W ∈ R \ ri (K◦S), i.e. for all k ∈ N
there exists Wk ∈ B 1

k
(W ) ∩ aff (K◦S) \ K◦S . In particular, there exists {uk ∈ S | ‖uk‖ = 1}

such that uTkWkuk ≥ 0 for all k ∈ N. W.l.o.g. we can assume that uk → u ∈ S \ {0}.
Letting k → ∞, we find that uTWu ≥ 0 since Wk → W . This contradicts the fact that
W ∈ R.

5.2.1 Quadratic optimization with affine equality constraints

Given (A, b) ∈ Rp×n ×Rp with b ∈ rgeA we consider the quadratic optimization problem

min
u∈Rn

1

2
uTV u− xTu s.t. Au = b, (5.7)

and its optimal value function

v(x, V ) := inf
u∈Rn

{
1

2
uTV u− xTu | Au = b

}
. (5.8)

The following result is well known.

Lemma 5.5 (Solvabilty of equality constrained QPs). For (x, V,A, b) ∈ Rn×Sn×Rp×n×
Rp consider the quadratic optimization problem (5.7). Then (5.7) has a solution if and
only if the following three conditions hold:

i) b ∈ rgeA (i.e. (5.7) is feasible);

ii) x ∈ rge
[
V AT

]
;

iii) V ∈ KA.

If, however, b ∈ rgeA, but ii) or iii) are violated, we have v(x, V ) = −∞.

Proof. This is a standard result. It is an immediate consequence of [19, Exercise 5, page
17]. We leave the details to the reader as an exercise.
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We now provide an explicit formula for the optimal value function (5.8). Here, given
A ∈ Rp×n, the matrix

M(V ) :=

(
V AT

A 0

)
, (5.9)

which is often referred to as a bordered matrix in the literature [10, 12, 22], will be useful.
It also plays a central role in our subsequent analysis. We record an interesting result on
invertibility of the bordered matrix before we continue our study.

Proposition 5.6 (Invertibility of bordered matrix). The bordered matrix M(V ) is in-
vertible if and only if rankA = p and V ∈ intKA in which case

M(V )−1 =

(
P (P TV P )−1P T

(
I − P (P TV P )−1P TV

)
A†

(A†)T
(
I − V P (P TV P )−1P T

)
(A†)T

(
V P (P TV P )−1P TV − V

)
A†

)
,

where P ∈ Rn×(n−p) is any matrix whose columns form an orthonormal basis of kerA.

Proof. For the characterization of the invertibility of M(V ) see e.g. [10, Th. 7]. The
inversion formula can be found in [12, Th. 1] and is easily verified by direct matrix
multiplication.

We now provide an explicit formula for the optimal value function in (5.8).

Theorem 5.7. For b ∈ rgeA and v given by (5.8) we have

v(x, V ) =

 −1
2

(
x
b

)T
M(V )†

(
x
b

)
if x ∈ rge [V AT ], V ∈ KA,

−∞ else.

Proof. If b ∈ rgeA, Lemma 5.5 tells us that if x /∈ rge
[
V AT

]
or V is not positive

semidefinite on kerA, we have v(V, x) = −∞. Hence, we need only show the expression
for v when x ∈ rge

[
V AT

]
and V is positive semidefinite on kerA. Again, Lemma 5.5

tells us that, in this case, a solution to (5.7) exists. The first-order necessary optimality
conditions at

ū ∈ argminu∈Rn

{
1

2
uTV u− xTu s.t. Au = b

}
6= ∅

are that there exists ȳ ∈ Rp for which(
V AT

A 0

)(
ū

ȳ

)
=

(
x

b

)
,

or equivalently, (
ū

ȳ

)
∈
(
V AT

A 0

)†(
x

b

)
+ ker

(
V AT

A 0

)
.
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Plugging such a pair
(
ū
ȳ

)
into the objective function yields

1

2
ūTV ū− xT ū =

1

2
ūT (V ū− x︸ ︷︷ ︸

=−AT ȳ

)− 1

2
xT ū

= −1

2
ūTAT︸ ︷︷ ︸

=bT

ȳ − 1

2
xT ū

= −1

2

(
x

b

)T(
ū

ȳ

)
= −1

2

(
x

b

)T (
V AT

A 0

)†(
x

b

)T
,

where the last equation is due to the fact that(
x

b

)
∈ rge

(
V AT

A 0

)
=

(
ker

(
V AT

A 0

))⊥
.

Since all such points yield the same optimal value, this concludes the proof.

5.2.2 The generalized matrix fractional function

Given A ∈ Rp×n and B ∈ Rp×m such that rgeB ⊂ rgeA, Theorem 5.7 motivates an
inspection of a generalization of the matrix fractional function defined by

ϕA,B : (X, V ) ∈ E 7→

{
1
2
tr
((

X
B

)T
M(V )†

(
X
B

))
if rge

(
X
B

)
⊂ rgeM(V ), V ∈ KA,

+∞, else.
(5.10)

Theorem 5.7 then compactly reads

−v(x, V ) = ϕA,b(x, V )

for some b ∈ rgeA. Moreover, for A = 0 and B = 0 we recover the matrix-fractional
function from (5.3), i.e.

ϕ0,0 = γ.

this motivates us to call ϕA,B the generalized matrix-fractional function (GMF). We
already argued in Section 5.1 that the matrix-fractional function γ is a support function.
Naturally, this begs the question whether this is also true for the GMF. The following
result gives a positive answer to this by showing that the GMF defined by A,B is the
support function of the set

D(A,B) :=

{(
Y,−1

2
Y Y T

)
∈ E

∣∣ Y ∈ Rn×m : AY = B

}
. (5.11)

Theorem 5.8. Let A ∈ Rp×n and B ∈ Rp×m such that rgeB ⊂ rgeA and let D(A,B) be
given by (5.11). Then

σD(A,B)(X, V ) = ϕA,B(X, V ).
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In particular,

domσD(A,B) =dom ∂σD(A,B) =

{
(X, V ) ∈ E

∣∣∣∣ rge

(
X

B

)
⊂ rgeM(V ), V ∈ KA

}
.

Moreover, we have

int (domσD(A,B)) = {(X, V ) ∈ E | V ∈ intKA} .

Proof. By direct computation,

σD(A,B)(X, V ) = sup
(U,W )∈D(A,B)

〈(X, V ), (U,W )〉

= sup
U : AU=B

{
tr (XTU)− 1

2
tr (UUTV )

}
= sup

U : AU=B

{
tr (XTU)− 1

2
tr

(
m∑
i=1

ui(ui)TV

)}

= sup
U : AU=B

{
m∑
i=1

(xi)Tui − 1

2
(ui)TV ui

}

= −
m∑
i=1

{
inf

u: Au=bi

1

2
uTV u− (xi)Tu

}
(5.12)

=
m∑
i=1

{
1
2

(
xi

bi

)T
M(V )†

(
xi

bi

)
if

(
xi

bi

)
∈ rgeM(V ), V ∈ KA,

+∞ else

=


1

2
tr

((
X

B

)T
M(V )†

(
X

B

))
if rge

(
X

B

)
⊂rgeM(V ), V ∈ KA,

+∞ else.

Here, the sixth equation exploits Theorem 5.7. This establishes the representation for
σD(A,B) as well as for its domain. In addition, since

∂σD(A,B)(X, V ) = argmax {〈(X, V ), (U,W )〉 | (U,W ) ∈ D(A,B)} ,

Theorem 5.7 also yields the equivalence domσD(A,B) = dom ∂σD(A,B).
In order to see that domσD(A,B) is closed, let {(Xk, Vk) ∈ domσD(A,B)} → (V,X).

In particular, rgeXk ⊂ rge [Vk A
T ] and Vk ∈ KA. These properties are preserved by

passing to the limit, hence (X, V ) ∈ domσD(A,B), i.e., domσD(A,B) is closed.
It remains to prove the expression for int (domσD(A,B)). First we show that O :=

{(X, V ) ∈ E | V �kerA 0} is open. For this purpose, let (X, V ) ∈ O. Suppose q := rankA
and let P ∈ Rn×(n−q) be such that its columns form a basis of kerA so that P TV P is
positive definite. Using the fact that Sn++ = int Sn+ (e.g., see [3, Ch. 1, Ex. 1]), there
exists an ε > 0 such that

‖W − V ‖ ≤ ε ⇒ P TWP � 0 ∀W ∈ Sn.
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Hence, Bε(X, V ) ⊂ O so that O is open.
Next, we show that O ⊂ domσD(A,B). Again let (X, V ) ∈ O, so that V �kerA 0.

By Finsler’s lemma (see Lemma A.6) we readily infer that rge [V AT ] = Rn, and so
rgeX ⊂ rge [V AT ]. Hence (X, V ) ∈ domσD(A,B) yielding O ⊂ domσD(A,B). Since O is
open and O ⊂ domσD(A,B), we have O ⊂ int

(
domσD(A,B)

)
.

We now show the reverse inclusion. Let (X, V ) ∈ domσD(A,B) \O. Hence V is positive
semidefinite, but not positive definite on kerA. Therefore, there exists x ∈ kerA \ {0}
such that xTV x = 0 . Define

Vk := V − 1

k
I ∈ Sn (k ∈ N).

Then, for all k ∈ N, xTVkx = −‖x‖
2

k
< 0 , so that (X, Vk) /∈ domσD(A,B) for all k ∈ N while

(X, Vk)→ (X, V ). Hence (X, V ) ∈ bd
(
domσD(A,B)

)
, that is, (X, V ) /∈ int (domσD(A,B)).

Consequently, O ⊃ int
(
domσD(A,B)

)
.

Justified by Theorem 5.8, from now on we will σD(A,B) = ϕA,B interchangeably and also
refer to σD(A,B) as the generalized matrix-fractional function or simply GMF.

We state the case A = 0 and B = 0 explicitly.

Corollary 5.9. We have γ = σD(0,0).

5.2.3 Convex analysis of the generalized matrix-fractional function

Theorem 5.8 allows us to invoke the whole machinery for support functions and its dual-
ity correspondence with indicator functions, see Section 3.5.3, and its rich subdifferential
calculus, see Corollary 3.87. These results already foreshadow that we need a good de-
scription of the closed convex hull of D(A,B). This will be achieved by the following
set

Ω(A,B) :=

{
(Y,W ) ∈ E

∣∣∣∣ AY = B and
1

2
Y Y T +W ∈ K◦A

}
(5.13)

as the next result shows. We also set Ω := Ω(0, 0).

Theorem 5.10. Let D(A,B) and Ω(A,B) be s given by (5.11) and (5.13), respectively.
Then

convD(A,B) = Ω(A,B).

Proof. We first show that Ω(A,B) is itself a closed convex set. Obviously, Ω(A,B) is
closed since K◦A is closed and the mappings Y 7→ AY and (Y,W ) 7→ 1

2
Y Y T + W are

continuous.
So we need only show that Ω(A,B) is convex: To this end, let (Yi,Wi) ∈ Ω(A,B), i =

1, 2 and 0 ≤ λ ≤ 1. Then there exist Mi ∈ K◦A, i = 1, 2 such that Wi = −1
2
YiY

T
i + Mi.
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Observe that A((1− λ)Y1 + λY2) = B. Moreover, we compute that

1

2
((1− λ)Y1 + λY2)((1− λ)Y1 + λY2)T + ((1− λ)W1 + λW2)

=
1

2
((1−λ)Y1+λY2)((1−λ)Y1+λY2)T +

(
(1−λ)(−1

2
Y1Y

T
1 +M1)+λ(−1

2
Y2Y

T
2 +M2)

)
=

1

2
λ(1− λ)(−Y1Y

T
1 + Y1Y

T
2 + Y2Y

T
1 − Y2Y

T
2 ) + (1− λ)M1 + λM2

=λ(1− λ)

(
−1

2
(Y1 − Y2)(Y1 − Y2)T

)
+ (1− λ)M1 + λM2.

Since rge (Y1 − Y2) ⊂ kerA, this shows λ(1− λ)
(
−1

2
(Y1 − Y2)(Y1 − Y2)T

)
+ (1− λ)M1 +

λM2 ∈ K◦A. Consequently, Ω(A,B) is a closed convex set.
Next note that if (Y,−1

2
Y Y T ) ∈ D(A,B), then (Y,−1

2
Y Y T ) ∈ Ω(A,B) since 0 ∈ K◦A.

Hence, convD(A,B) ⊂ Ω(A,B).
It therefore remains to establish the reverse inclusion: For these purposes, let (Y,W ) ∈

Ω(A,B). By Carathéodory’s theorem, there exist µi ≥ 0, vi ∈ kerA (i = 1, . . . , N) such
that

W = −1

2
Y Y T −

N∑
i=1

µiviv
T
i ,

where N = n(n+1)
2

+ 1. Let 0 < ε < 1. Set λ1 := 1− ε and λ2 = . . . = λN+1 = λ := ε/N .

Denote Y1 := Y/
√

1− ε. Take Zi ∈ Rn×m, i = 1, . . . , N such that AZi = B. Finally, set

Vi =

[√
2µi
λ
vi, 0, . . . , 0

]
∈ Rn×m and Yi+1 = Zi + Vi, (i = 1, . . . , N).

Observe that

N+1∑
i=1

λiYi =
√

1− εY +
ε

N

N+1∑
i=2

Yi =
√

1− εY +
ε

N

N∑
i=1

Zi +

√
ε

N

N∑
i=1

V̄i,

where V̄i = [
√

2µivi, 0, . . . , 0], i = 1, . . . , N , and

−1

2

N+1∑
i=1

λiYiY
T
i = −1

2
Y Y T − 1

2

N∑
i=1

ε

N

(
ZiZ

T
i + ZiV

T
i + ViZ

T
i

)
−

N∑
i=1

µiviv
T
i

= W −
N∑
i=1

1

2

(
ε

N
ZiZ

T
i +

√
ε

N
ZiV̄

T
i +

√
ε

N
V̄iZ

T
i

)
,

.

Therefore(
√

1− εY +
ε

N

N∑
i=1

Zi +

√
ε

N

N∑
i=1

V̄i, W −
N∑
i=1

1

2

(
ε

N
ZiZ

T
i +

√
ε

N
ZiV̄

T
i +

√
ε

N
V̄iZ

T
i

))

=

(
N+1∑
i=1

λiYi, −1

2

N+1∑
i=1

λiYiY
T
i

)
. (5.14)
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By Carathéodory’s theorem (see Theorem 3.5) we have

convD(A,B)=

{(
κ+1∑
i=1

λiYi,−
1

2

κ+1∑
i=1

λiYiY
T
i

)∣∣∣∣λ ∈ Rκ+1
+ ,

∑κ+1
i=1 λi = 1, Yi ∈ Rn×m

AYi = B (i = 1, . . . , κ+ 1)

}
.

By letting ε ↓ 0 in (5.14), we find (Y,W ) ∈ convD(A,B) thereby concluding the proof.

Let us state the immediate consequence of the above theorem.

Corollary 5.11. Let Ω(A,B) be given by(5.13). Then

ϕA,B = σD(A,B) = σΩ(A,B) and γ = σΩ.

The conjugacy relation between indicator and support functions, see Proposition 3.66,
now gives the following immediate consequence of Theorem 5.10.

Corollary 5.12 (Conjugate of GMF). We have

σ∗D(A,B) = δΩ(A,B).

In order to derive the subdifferential for ϕA,B = σD(A,B), we use the relation

∂σC(x) = {z ∈ convC | x ∈ NconvC (z)} (5.15)

from Corollary 3.87. Therefore, we first need the normal cone to Ω(A,B).

Proposition 5.13 (The normal cone to Ω(A,B)). Let Ω(A,B) be as given by (5.13) and
let (Y,W ) ∈ Ω(A,B). Then

NΩ(A,B) (Y,W ) =

(X, V ) ∈ E

∣∣∣∣∣∣ V ∈ KA,
〈
V,

1

2
Y Y T +W

〉
= 0

and rge (X − V Y ) ⊂ (kerA)⊥


Proof. Observe that Ω(A,B) = C1 ∩ C2 ⊂ E where

C1 :=
{
Y ∈ Rn×m | AY = B

}
× Sn and C2 := {(Y,W ) | F (Y,W ) ∈ K◦A} ,

with F (Y,W ) := 1
2
Y Y T + W . Clearly, C1 is affine, hence convex, and C2 is also convex,

which can be seen by an analogous reasoning as for the convexity of Ω(A,B) (cf. the
proof of Theorem 5.10). Therefore, [24, Corollary 23.8.1] tells us that

NΩ(A,B) (Y,W ) = NC1 (Y,W ) +NC2 (Y,W ) , (5.16)

where
NC1 (Y,W ) =

{
R ∈ Rn×m ∣∣ rgeR ⊂ (kerA)⊥

}
× {0}.

We now compute NC2 ((Y,W )). First recall that for any nonempty closed convex cone
C ⊂ E , we have NC (x) = {z ∈ C◦ | 〈z, x〉 = 0} for all x ∈ C. Next, note that

∇F (Y,W )∗U = (UY, U) (U ∈ Sn),
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so that ∇F (Y,W )∗U = 0 if and only if U = 0. Hence, by [25, Exercise 10.26 Part (d)],

NC2 (Y,W ) =

{
(V Y, V )

∣∣∣∣ V ∈ KA, 〈V, 1

2
Y Y T +W

〉
= 0

}
.

Therefore, by (5.16), NΩ(A,B) (Y,W ) is given by{
(X, V )

∣∣∣∣ rge (X − V Y ) ⊂ (kerA)⊥, V ∈ KA,
〈
V,

1

2
Y Y T +W

〉
= 0

}
,

which proves the result.

By combining (5.15) and Proposition 5.13 we obtain a simplified representation of the
subdifferential of the support function σD(A,B).

Corollary 5.14 (The subdifferential of σD(A,B)). Let D(A,B) be as given in (5.11). Then,
for all (X, V ) ∈ domσD(A,B), we have

∂σD(A,B) (X, V ) =

(Y,W ) ∈ Ω(A,B)

∣∣∣∣∣∣
∃Z ∈ Rp×m : X = V Y + ATZ,〈
V,

1

2
Y Y T +W

〉
= 0

 .

Proof. This follows directly from the normal cone description in Proposition 5.13 and the
relation (5.15).

We infer from Corollary 5.14 that the GMF is continuously differentiable on the interior
of its domain, and we give an explicit formula for the gradient in this case.

Corollary 5.15. Let D(A,B) be as given in (5.11). Then σD(A,B) is (continuously)
differentiable on the interior of its domain with

∇σD(A,B)(X, V ) =

(
Y,−1

2
Y Y T

)
((X, V ) ∈ int (dom σD(A,B)))

where Y := A†B + (P (P TV P )−1P T )(X − A†X), P ∈ Rn×(n−p) is any matrix whose
columns form an orthonormal basis of kerA and p := rankA.

Proof. We first recall from Theorem 5.8 that (X, V ) ∈ int dom σD(A,B) if and only if
V ∈ intKA. By Corollary 5.14, (Y,W ) ∈ ∂σD(A,B)(X, V ) if and only if there exists
Z ∈ Rp×m such that

AY = B (5.17)

V Y + ATZ = X (5.18)〈
V,

1

2
Y Y T +W

〉
= 0 (5.19)

1

2
Y Y T +W ∈ K◦A. (5.20)
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We now observe that (5.17)-(5.18) are equivalent to

M(V )

(
Y
Z

)
=

(
X
B

)
.

As V ∈ intKA, by Proposition 5.6 this implies

Y = A†B + P (P TV P )−1P T (X − A†X).

Moreover (5.19), (5.20) and V ∈ intKA readily imply that 1
2
Y Y T + W = 0, which

concludes the proof.

We state the special case A = 0 and B = 0 (i.e. σD(A,B) = γ) as a separate result, which
by the way, was well known all along, see e.g. [6], and can be derived by standard calculus
methods.

Corollary 5.16. The matrix-fractional function γ from (5.3) is (continuously) differen-
tiable on the interior of its domain with

∇γ(X, V ) =

(
V −1X,−1

2
V −1XXTV −1

)
((X, V ) ∈ Rn×m × Sn++).

Remark 5.17. We would like to point out that in [7, Proposition 4.3] the following
description of the closed convex hull of D(A,B) was established:

convD(A,B) =

{
(Z(d⊗ Im),−1

2
ZZT ) | (d, Z) ∈ F(A,B)

}
, (5.21)

where d⊗ Im := (d1Im, . . . , dκ+1Im)T ∈ Rm(κ+1)×m and

F(A,B) :=

{
(d, Z) ∈ Rκ+1 × Rn×m(κ+1)

∣∣∣∣∣ d ≥ 0, ‖d‖ = 1,

AZi = diB (i = 1, . . . , κ+ 1)

}
. (5.22)

The description in (5.21) was obtained by computing the convex hull of D(A,B) first, see
[7, Lemma 4.2], using ”brute force” in the form of Carathéodory’s Theorem (cf. Theorem
3.5), and then determining the closure of said convex hull. Although the representation
of convD(A,B) from (5.21) was successfully used in [7] to study some convex-analytical
properties of the GMF and it yielded some interesting applications, the description from
Theorem 5.10 is much more powerful due to its simplicity.

5.3 The geometry of Ω(A,B)

We now compute the relative interior and the affine hull of Ω(A,B). We will rely heavily
and expand on the results established in Section 3.1.4. In particular, Theorem 3.29 will
be very useful as we will use this result to get a representation for the relative interior of
Ω(A,B) directly, and then mimic its technique of proof to tackle its affine hull.

Lemma 5.18. Let A,B ⊂ E be convex with riA ∩ riB 6= ∅. Then aff (A ∩ B) = aff A ∩
aff B.
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Proof. The inclusion aff (A ∩ B) ⊂ aff A ∩ aff B is clear since the latter set is affine and
contains A ∩B.

For proving the reverse inclusion, we can assume w.l.o.g. that 0 ∈ riA ∩ riB =
ri (A ∩ B), where for the latter equality we refer to Proposition 3.26. In particular we
have

aff A = R+A, aff B = R+B and aff (A ∩B) = R+(A ∩B), (5.23)

see Exercise 3.1.7 and the discussion afterwards. Now, let x ∈ aff A ∩ aff B. If x = 0
there is nothing to prove. If x 6= 0, by (5.23), we have x = λa = µb for some λ, µ > 0 and
a ∈ A, b ∈ B. W.l.o.g we have λ > µ, and hence, by convexity of B, we have

a =
(

1− µ

λ

)
0 +

µ

λ
b ∈ B.

Therefore x = λa ∈ R+(A ∩B) = aff (A ∩B), see (5.23).

We now prove a result analogous to Theorem 3.29.

Proposition 5.19. In addition to the assumptions of Theorem 3.29 assume that D is
affine. Then (y, z) ∈ aff C if and only if y ∈ D and z ∈ aff Cy.

Proof. We imitate the proof of Theorem 3.29: Let L : (y, z) 7→ z. Since D is assumed to
be affine (hence D = aff D = riD), we have

D = L(C) = L(riC) = L(aff C), (5.24)

where we invoke the fact that linear mappings commute with the relative interior (Propo-
sition 3.28) and the affine hull (Exercise 3.1.6). Now fix y ∈ D = riD and define the
affine set My := {(y, z) | z ∈ E2} = {y} × E2. Then, by (5.24), there exists z ∈ E2 such
that y = L(y, z) and (y, z) ∈ riC. Hence, riMy ∩ riC 6= ∅ and we can invoke Lemma 5.18
to obtain

aff My ∩ aff C = aff (My ∩ C) = aff ({y} × Cy) = {y} × aff Cy.

Hence, if y ∈ D, z ∈ aff Cy, we have (y, z) ∈ {y} × aff Cy = My ∩ aff C ⊂ aff C.
In turn, for (y, z) ∈ C, we have (y, z) ∈ My ∩ aff C = {y} × Cy, hence z ∈ Cy 6= ∅, so

y ∈ D.

We are now in a position to prove the desired result on the relative interior and the affine
hull of Ω(A,B).

Proposition 5.20. For Ω(A,B) given by (5.13) the following hold:

a) ri Ω(A,B) =
{

(Y,W ) ∈ E
∣∣ AY = B and 1

2
Y Y T +W ∈ ri (K◦A)

}
.

b) aff Ω(A,B) =
{

(Y,W ) ∈ E
∣∣ AY = B and 1

2
Y Y T +W ∈ spanK◦A

}
,

where spanK◦A = span
{
vvT | v ∈ kerA

}
.

Proof. We apply the format of Theorem 3.29 and Proposition 5.19, respectively, for C :=
Ω(A,B). Then

D = {Y | AY = B } and CY =

{
K◦A − 1

2
Y Y T , if AY = B,
∅, else

(Y ∈ Rn×m).
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a) Apply Theorem 3.29 and observe that ri (K◦A − 1
2
Y Y T ) = ri (K◦A)− 1

2
Y Y T .

b) Apply Proposition 5.19 and observe that D is affine, and that aff (K◦A − 1
2
Y Y T ) =

aff (K◦A)− 1
2
Y Y T .

As a direct consequence of Propositions 5.4 and 5.20, we obtain the following result for
the special case (A,B) = (0, 0).

Corollary 5.21. It holds that

conv

{
(Y,−1

2
Y Y T )

∣∣ Y ∈ Rn×m
}

=

{
(Y,W ) ∈ E

∣∣∣∣ W +
1

2
Y Y T � 0

}
,

and

int

(
conv

{
(Y,−1

2
Y Y T )

∣∣ Y ∈ Rn×m
})

=

{
(Y,W ) ∈ E

∣∣∣∣ W +
1

2
Y Y T ≺ 0

}
.

We conclude this section by giving representations for the horizon cone and polar of
Ω(A,B).

Proposition 5.22 (The polar of Ω(A,B)). Let Ω(A,B) be as given in (5.13). Then

Ω(A,B)◦ =

{
(X, V )

∣∣∣∣∣ rge
(
X
B

)
⊂ rgeM(V ), V ∈ KA,

1
2
tr
((

X
B

)T
M(V )†

(
X
B

))
≤ 1

}
.

Moreover,

Ω(A,B)∞ = {0n×m} × K◦A (5.25)

and

(Ω(A,B)◦)∞=

{
(X, V )

∣∣∣∣∣ rge
(
X
B

)
⊂ rgeM(V ), V ∈ KA,

1
2
tr
((

X
B

)T
M(V )†

(
X
B

))
≤ 0

}
. (5.26)

Proof. For any nonempty convex set C ⊂ E, observe that

{z | σC (z) ≤ 1} = {z | 〈z, x〉 ≤ 1, (x ∈ C)} = C◦,

see Definition 3.72. Consequently, our expression for Ω(A,B)◦ follows from Theorem 5.8.
To see (5.25), let (Y,W ) ∈ Ω(A,B) and recall that (S, T ) ∈ Ω(A,B)∞ if and only if

(Y + tS,W + tT ) ∈ Ω(A,B) for all t ≥ 0. In particular, for (S, T ) ∈ Ω(A,B)∞, we have
A(Y + tS) = B and

1

2

[
Y Y T + t(SY T + Y ST ) +

t2

2
SST

]
+ (W + tT ) ∈ K◦A (t > 0). (5.27)

Consequently, AS = 0 and, if we divide (5.27) by t2 and let t ↑ ∞, we see that SST ∈ K◦A.
But SST ∈ KA since rgeS ⊂ kerA, so we must have S = 0. If we now divide (5.27) by
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t and let t ↑ ∞, we find that T ∈ K◦A. Hence the set on the left-hand side of (5.25) is
contained in the one on the right. To see the reverse inclusion, simply recall that K◦A is a
closed convex cone so that K◦A +K◦A ⊂ K◦A.

Finally, we show (5.26). Since (0, 0) ∈ Ω(A,B)◦, we have (S, T ) ∈ (Ω(A,B)◦)∞ if and
only if (tS, tT ) ∈ Ω(A,B)◦ for all t > 0, or equivalently, for all t > 0,

tT ∈ KA and ∃ (Yt, Zt) ∈ Rn×m × Rp×m s.t.

(
tS

B

)
= M(tT )

(
Yt
Zt

)
with

1

2
tr

((
Yt
Zt

)T
M(tT )

(
Yt
Zt

))
≤ 1,

or equivalently, by taking Ẑt := t−1Zt,

T ∈ KA and ∃ (Yt, Ẑt) ∈ Rn×m × Rp×m s.t.

(
S

B

)
= M(T )

(
Yt

Ẑt

)
with

t

2
tr

((
Yt

Ẑt

)T
M(T )

(
Yt

Ẑt

))
≤ 1.

If we take
(
Yt
Ẑt

)
:= M(T )†

(
S
B

)
, we find that (S, T ) ∈ (Ω(A,B)◦)∞ if and only if

T ∈ KA and
t

2
tr

((
S

B

)T
M(T )†

(
S

B

))
≤ 1 (t > 0),

which proves the result.

5.4 σΩ(A,0) as a gauge

Note that the origin is an element of Ω(A,B) if and only if B = 0. In this case the support
function of Ω(A, 0) equals the gauge of Ω(A, 0)◦ This fact and an explicit representation
for both γΩ(A,0)◦ and γΩ(A,0) will be given in the following theorem.

Theorem 5.23 (σD(A,0) is a gauge). Let Ω(A,B) be as given in (5.13). Then

σΩ(A,0) (X, V ) = γΩ(A,0)◦ (X, V ) = γ◦Ω(A,0)(X, V ), (5.28)

and

γΩ(A,0) (Y,W )=σΩ(A,0)◦ (Y,W )

=

{
1
2
σ−1

min(−Y †W (Y †)T ) if rgeY ⊂kerA ∩ rgeW,W ∈ K◦A,
+∞ else,

(5.29)

where σmin(−Y †W (Y †)T ) is the smallest singular value of −Y †W (Y †)T when such a singu-
lar value exists and +∞ otherwise, e.g. when Y = 0. Here we interpret 1

∞ as 0 (0 = 1
∞),

and so, in particular, γΩ(A,0) (0,W ) = δK◦A (W ).
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Proof. The statement in (5.28) follows from Proposition 3.74. To show (5.29), first observe
that

tΩ(A, 0)=

{
(Y,W )

∣∣∣∣ AY = 0 and
1

2
Y Y T + tW ∈ K◦A

}
, (5.30)

whose straightforward proof is left to the reader.
Given t̄ ≥ 0, by (5.30), (Y,W ) ∈ tΩ(A, 0) for all t > t̄ if and only if AY = 0 and

1
2
Y Y T + tW ∈ K◦A for all t > t̄. By Proposition 5.4 a), this is equivalent to AY = 0 and

1

2
Y Y T + tW = P

(
1

2
Y Y T + tW

)
P � 0 (t > t̄), (5.31)

where, again, P is the orthogonal projection onto kerA. Dividing this inequality by t and
taking the limit as t ↑ ∞ tells us that W = PWP � 0. Since Y Y T is positive semidefinite,
inequality (5.31) also tells us that kerW ⊂ kerY T , i.e. rgeY ⊂ rgeW . Consequently,

dom γΩ(A,0) ⊂ {(Y,W ) | rgeY ⊂kerA ∩ rgeW,W ∈ K◦A} .

Now suppose (Y,W ) ∈ dom γΩ(A,0). Let Y = UΣV T be the reduced singular-value de-
composition of Y where Σ is an invertible diagonal matrix and U, V have orthonormal
columns. Since rgeY ⊂ rgeW = (kerW )⊥, we know that UTWU is negative definite,
and so Σ−1UTWUΣ−1 is also negative definite. Multiplying (5.31) on the left by Σ−1UT

and on the right by UΣ−1 gives

µI � −2Σ−1UTWUΣ−1 (0 < µ ≤ µ̄),

where µ̄ = t̄−1. The largest µ̄ satisfying this inequality is

σmin(−2Y †W (Y †)T ) = σmin(−2Σ−1UTWUΣ−1) > 0,

or equivalently, the smallest possible t̄ in (5.31) is 1/σmin(−2Y †W (Y †)T ), which proves
the result.

5.5 Applications

5.5.1 Conjugate of variational Gram functions

Given a set M ⊂ Sn+, the associated variational Gram function (VGF) [9, 21] is given by

ΩM : Rn×m → R ∪ {+∞}, ΩM(X) =
1

2
σM(XXT ).

Since σM = σconvM there is no loss in generality to assume that M is closed and convex.
For the remainder we let

F : Rn×m → Sn, F (X) =
1

2
XXT . (5.32)

Then ΩM = σM ◦ F fits the composite scheme studied in Section 4.3. It is obvious that
rgeF = Sn+. The following lemma clarifies the K-convexity properties of F .
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Lemma 5.24. Let F be given by (5.32). Then Sn+ is the smallest closed convex cone in
Sn with respect to which F is convex.

Proof. Let K be the smallest closed convex cone in Sn such that F is K-convex. On the
one hand, since F is Sn+-convex, K ⊂ Sn+. On the other hand, by Lemma 4.3,

(−K)◦ = KF := {V ∈ Sn | 〈V, F 〉 is convex} .

Now fixing V ∈ Sn for all X ∈ Rn×m the mapping ∇2 〈V, F 〉 (X) : Rn×m × Rn×m → R is
given by

∇2 〈V, F 〉 (X)[D,H] =

〈
V,

1

2
(HDT +DHT )

〉
.

Clearly, this symmetric bilinear form is positive semidefinite if and only if V ∈ Sn+, which
proves that

KF = Sn+.

Finally, by taking the polarity and using the fact that (Sn+)◦ = −Sn+ we get

K = −(−K)◦ = −K◦F = −(Sn+)◦ = Sn+.

Corollary 5.25. Let M ⊂ Sn+ be nonempty, closed and convex, and let F be given by
(5.32). Then the following hold:

a) We have −hznσM ⊃ Sn+. In particular, F is (−hznσM)-convex.

b) ri (hznσM) ⊂ ri (domσM).

c) The following are equivalent:

i) rgeF ∩ ri (domσM − Sn+) 6= ∅;
ii) rgeF ∩ ri (domσM + hznσM) 6= ∅;

iii) M is bounded.

Proof. a) We have cone M ⊂ Sn+ as M ⊂ Sn+, and hence,

−hznσM = −(cone M)◦ ⊃ −(Sn+)◦ = Sn+.

b) Since M is a subset of the closed convex cone cone M , cone M = (cone M)∞ ⊃ M∞.
Furthermore, because they lie entirely in Sn+, they are both pointed and hence, by Exercise
3.2.5, ∅ 6= int [(cone M)◦] ⊂ int [(M∞)◦]. Therefore,

ri (hznσM) = ri [(cone M)◦] = int [(cone M)◦]

⊂ int [(M∞)◦] = ri [(M∞)◦]

= ri (domσM) = ri (domσM),

where the equality between the second line and the third line follows from Theorem 3.81
and the equality in the last line follows from Proposition 3.23 b).
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c) i) ⇒ ii): This follows immediately from a) and the fact that both domσM and hznσM
have nonempty interiors and Corollary 3.27.

ii)⇔iii): Observe that

∅ 6= int [(M∞)◦] = {W ∈ Sn | tr (WV ) < 0 (V ∈M∞ \ {0})} .

In particular, also taking into account a), we have

ri (domσM + hznσM) = ri (domσM) + ri (hznσM)

= ri [(M∞)◦] + ri [(cone M)◦]

= ri [(M∞)◦ + (cone M)◦]

= ri [(M∞)◦] = int [(M∞)]◦

where (M∞)◦ + (cone M)◦ = (M∞)◦ as 0 ∈ (cone M)◦ ⊂ (M∞)◦ are convex cones. As
rgeF = Sn+, condition ii) is equivalent to the condition

F :=
{
W ∈ Sn+ | tr (VW ) < 0 (V ∈M∞ \ {0})

}
6= ∅.

We claim that

F :=

{
Sn+ if M is bounded,
∅ if else.

The first case is clear, since M∞ = {0} if (and only if) M is bounded, see Proposition
3.39, in which case the condition restricting F is vacuous.

On the other hand, if M is unbounded, then there exists V ∈ M∞ \ {0} ⊂ Sn+ \ {0}.
But then tr (VW ) ≥ 0 for all W ∈ Sn+, see Exercise 1.0.1, which proves the second case.

All in all, we have established the equivalence between ii) and iii).

iii) ⇒ i): Follows readily from the fact that (M∞)◦ = {0}◦ = Sn here.

Our analysis in Section 4.3 combined with our findings in Section 5.2.3 allows for a very
short proof of the conjugate function Ω∗M in case M is bounded (hence compact). This
covers what was proven in [21, Proposition 3.4] entirely and one case of [9, Proposition
5.10].

Corollary 5.25 c) shows that our framework does not apply when M is unbounded as
the crucial condition (4.4) is violated then.

Theorem 5.26. Let M ⊂ Sn+ be nonempty, convex and compact. Then Ω∗M is finite-valued
and given by

Ω∗(X) =
1

2
min
V ∈M

{
tr (XTV †X) | rgeX ⊂ rgeV

}
.

Proof. Let K := Sn+. Recall that (cone M)◦ = hzn σM . Then F given by (5.32) is K-
convex by Lemma 5.24 and Corollary 5.25 a), and g is K-increasing by Lemma 4.10 and
Corollary 5.25 a). By Corollary 5.25 c) we find that condition (4.4) for σM ◦M and K is
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satisfied if (and only if) M is bounded. Hence, we can apply Corollary 4.9 and Lemma
4.5 a) and Corollary 5.11 to infer that

Ω∗(X) = min
V ∈−K◦

δM(V ) + 〈V, F 〉∗ (X)

= min
V ∈M

σK-epiF (X,−V )

= min
V ∈M

σΩ(X, V )

= min
V ∈M

γ(X, V )

= min
V ∈M

{
1

2
tr (XTV †X) | rgeX ⊂ rgeV

}
As M is compact this proves also the finite-valuedness.

5.5.2 Relation of the GMF and the nuclear norm

We now want to exapand on the intriguing relation between the GMF and the nuclear
that was already foreshadowed in Example 5.1. Here we use the following notation for
the matrix A ∈ Rp×n.

KerA :=
{
V ∈ Rn×n | AV = 0

}
and RgeA :=

{
W ∈ Rn×n | rgeW ⊂ rgeA

}
.

Theorem 5.27. Let p : Rn×m → R be defined by

p(X) = inf
V ∈Sn

σΩ(A,0)(X, V ) +
〈
Ū , V

〉
for some Ū ∈ Sn+ ∩KerA and set C(Ū) :=

{
Y
∣∣ 1

2
Y Y T � Ū

}
. Then we have:

a) p∗ = δC(Ū)∩KerA is closed, proper, convex.

b) p = σC(Ū)∩KerA = γC(Ū)◦+RgeAT is sublinear, finite-valued, nonnegative and symmet-
ric (i.e. a seminorm).

c) If Ū � 0 with 2Ū = LLT (L ∈ Rn×n) and A = 0 then p = σC(Ū) = ‖LT (·)‖∗, i.e. p
is a norm with C(Ū)◦ as its unit ball and γC(Ū) as its dual norm.

Proof. a) Observe that σΩ(A,0)(X, V ) +
〈
Ū , V

〉
= σΩ(A,0)+{0}×{Ū}(X, V ). As Ω(A, 0) +

{0}×{Ū} is nonempty, closed and convex, Theorem 3.101 yields p∗ = δΩ(A,0)+{0}×{Ū}(·, 0)
which is closed and convex. Now observe that

dom δΩ(A,0)+{0}×{Ū}(·, 0) =

{
Y

∣∣∣∣ Y ∈ KerA,
1

2
Y Y T − Ū ∈ K◦A

}
= KerA ∩ C(Ū)

6= ∅.

Here we use the first identity uses the definition of Ω(A, 0). The second one is due to the
fact that with RgeY Y T = RgeY ⊂ KerA and Ū ∈ KerA. The nonemptiness is clear as
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0 ∈ KerA ∩ C(Ū). All in all, we have p∗ = δKerA∩C(Ū) which is closed proper, convex, see
Theorem 3.101.

b) We have

p = p∗∗

= σC(Ū)∩KerA

= γ(C(Ū)∩KerA)◦

= γcl (C(Ū)◦+RgeAT )

= γC(Ū)◦+RgeAT .

The first identity is due to Theorem 3.101 c). The second uses a), the third follows
from Proposition 3.74. The sublinearity of p is clear. The finite-valuedness is also clear
since the domain of p is the whole space (clear?) and p is proper. Since 0 ∈ C(Ū) the
nonnegativity follows as well, and the symmetry is due to the symmetry of C(Ū).

c) Consider the case Ū = 1
2
I: By part a), we have p∗ = δ{Y | Y Y T�I }. Observe that{

Y
∣∣ Y Y T � I

}
= {Y | ‖Y ‖2 ≤ 1} =: BΛ

is the closed unit ball of the spectral norm. Therefore, p = σBΛ
= ‖ · ‖B◦Λ = ‖ · ‖∗, cf.

Corollary 3.76.
To prove the general case suppose that 2Ū = LLT . Then it is clear that C(Ū) ={

Y
∣∣ L−1Y ∈ C(1

2
I)
}

, and therefore

p(X) = σC(Ū)(X)

= sup
Y :L−1Y ∈C( 1

2
I)

〈Y, X〉

= sup
Y :L−1Y ∈C( 1

2
I)

〈
L−1Y, LTX

〉
= σC( 1

2
I)(L

TX)

= ‖LTX‖∗.

Here the first identity is due to part b) (with A = 0) and the last one follows from the
special case considered above.

We point out that Theorem 5.27 significantly generalizes the result by Hsieh and Olsen
eluded to in Example 5.1.

For another result along these lines, which also generalized the Hsieh and Olsen result,
we refer the interested reader to [7, Theorem 5.7].

A Background from Linear Algebra

Here we gather some background material and notation from linear algebra that we use
in our study. Most of the results (unless stated otherwise) can be found in e.g. [17, 18].
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Symmetric and orthogonal matrices

Recall that the set
O(n) :=

{
A ∈ Rn×n ∣∣ ATA = I

}
is a group (in fact, a subgroup of the the invertible matrices in Rn×n) called the orthogonal
group with its members being called orthogonal matrices.

An important subspace of Rn×n is

Sn =
{
A ∈ Rn×n ∣∣ AT = A

}
,

the space of all n× n symmetric matrices.
In Linear Algebra it is shown that any symmetric matrix is orthogonally similar to

a diagonal matrix with real entries (the eigenvalues), which is usually subsumed in the
following theorem.

Theorem A.1 (Spectral Theorem). Let A ∈ Sn. Then there exists U ∈ O(n) orthogonal
such that

A = UTdiag (λ1, . . . , λn)U

and λ1, . . . , λn ∈ R.

Some important subsets of Sn are:

• Sn+ :=
{
A ∈ Sn

∣∣ xTAx ≥ 0 (x ∈ Rn)
}

(positive semidefinite matrices),

• Sn++ :=
{
A ∈ Sn

∣∣ xTAx > 0 (x ∈ Rn \ {0})
}

(positive definite matrices),

• Sn− :=
{
A ∈ Sn

∣∣ xTAx ≤ 0 (x ∈ Rn)
}

(negative semidefinite matrices),

• Sn−− :=
{
A ∈ Sn

∣∣ xTAx < 0 (x ∈ Rn \ {0})
}

(negative definite matrices).

Note that
Sn− = −Sn+ and Sn−− = −Sn++.

For A,B ∈ Sn, we also make use of the convention

A � B :⇐⇒ A−B ∈ Sn+

and
A � B :⇐⇒ A−B ∈ Sn++.

An immediate consequence of the spectral theorem is the existence of a square root of a
positive semidefinite matrix.

Corollary A.2 (Square root of a positive semidefinite matrix). For A ∈ Sn+ there exists
a unique matrix B ∈ Sn+ such that B2 = A.

In the scenario of Corollary A.2, we put
√
A := A1/2 := B and call it the square root of

A. Moreover, we define A−1/2 :=
√
A−1 = (

√
A)−1.
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Singular value decomposition and the Moore-Penrose Pseudoinverse

An important theoretical and computational tool for matrix analysis is the following well-
known theorem which is also a consequence of the spectral theorem applied to the positive
semidefinite matrix

√
ATA.

Theorem A.3 (Singular-value decomposition). Let A ∈ Rm×n and put r := rankA. Then
there exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n as well as a matrix Σ ∈ Rm×n

with

Σ =

(
diag (σ1, . . . σr) 0

0 0

)
, σ1, . . . , σr > 0

such that A = UΣV T .

The scalars σ1, . . . , σr are called the singular-values of A, and they coincide with the
positive eigenvalues of

√
ATA.

The singular-value decomposition of a matrix gives rise to a whole class of matrix
norms, namely the Schatten norms. For A ∈ Rm×n the Schatten p-norm is the p-norm of
the vector of singular values, i.e.

‖A‖p := ‖σ‖p :=

(
r∑
i=1

σpi

) 1
p

,

where σ = (σ1, . . . , σr) is the vector of singular-values of A. The nuclear norm is the
Schatten 1-norm, and often denoted by ‖ · ‖∗.

Theorem A.4 (Moore-Penrose pseudoinverse). Let A ∈ Sn+ with rankA = r and the
spectral decomposition

A = QΛQT with Λ =


λ1

...
λr

0
...

0

 , Q ∈ O(n).

Then the matrix

A† := QΛ†QT with Λ† :=


λ−1

1

...
λ−1
r

0
...

0

 ,

called the (Moore-Penrose) pseudoinverse of A, has the following properties:

a) AA†A = A and A†AA† = A†;

b) (AA†)T = AA† and (A†A)T = A†A;

c) (A†)T = (AT )†;
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d) If A � 0, then A† = A−1;

e) AA† = PrgeA, i.e. AA† is the projection onto the image of A. In particular, if
b ∈ rgeA, we have

{x ∈ Rn | Ax = b} = A†b+ kerA.

In fact, the Moore-Penrose pseudoinverse can be uniquely defined through properties a)
and b) from above for any matrix A ∈ Cm×n, see, e.g. [18], but we confine ourselves with
the positive semidefinite case.

Using the Moore-Penrose pseudoinverse, one has the following extension of the Schur
complement, see [16, Th. 16.1] for a proof or [6, App. A.5.5].

Lemma A.5 (Schur complement). Let S ∈ Sn, T ∈ Sm, R ∈ Rn×m. Then(
S R
RT T

)
� 0 ⇐⇒ [S � 0, rgeR ⊂ rgeS, T −RTS†R � 0].

The next result is referred to in the literature as Finsler’s Lemma and originally goes
back to [14], and can also be found in [10, Th. 2].

Lemma A.6 (Finsler’s lemma). Let A ∈ Rp×n and V ∈ Sn. Then

V �kerA 0 ⇐⇒ ∃ε > 0 : V + εATA � 0.

Exercises for Section A

1.0.1 (Trace of product of semdefinite matrices) Let A,B ∈ Sn+.

a) Is AB symmetric positive definite?

b) Show that tr (AB) ≥ 0.
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