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Abstract. We explore a method of statistical estimation called Maximum Entropy on the Mean (MEM) which6
is based on an information-driven criterion that quantifies the compliance of a given point with a7
reference prior probability measure. At the core of this approach lies the MEM function which is a8
partial minimization of the Kullback-Leibler divergence over a linear constraint. In many cases, it9
is known that this function admits a simpler representation (known as the Cramér rate function).10
Via the connection to exponential families of probability distributions, we study general conditions11
under which this representation holds. We then address how the associated MEM estimator gives12
rise to a wide class of MEM-based regularized linear models for solving inverse problems. Finally,13
we propose an algorithmic framework to solve these problems efficiently based on the Bregman14
proximal gradient method, alongside proximal operators for commonly used reference distributions.15
The article is complemented by a software package for experimentation and exploration of the MEM16
approach in applications.17
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1. Introduction. Many models for modern applications in various disciplines are based22

on some form of statistical estimation, for example the very common maximum likelihood23

(ML) principle. In this study, we consider an alternative approach known as the maximum24

entropy on the mean (MEM). At its core lies the MEM function κP induced by some reference25

distribution P and defined as26

κP (y) := inf {KL(Q|P ) : EQ = y,Q ∈ P(Ω)} ,2728

where P (Ω) stands for the set of probability measures on Ω ⊆ Rd, EQ is the expected value of29

Q ∈ P (Ω) and KL(Q|P ) stands for the Kullback-Leibler (KL) divergence of Q with respect to30

P [38] (see Section 2 for precise definitions). Thus, the MEM modeling paradigm stems from31

the principle of minimum discrimination information [37] which generalizes the well-known32

principal of maximum entropy [36]. In the context of information theory [24], the argmin of33

κP (y) is often referred to as the information projection of P onto the set {Q ∈ P (Ω) : EQ = y},34

the closest member of the set to P .35

Various forms and interpretations of MEM have been studied (see for example, [26, 30,36

31, 32, 34, 39, 40]) and found applications in various disciplines, including earth sciences37

[29, 42, 43, 45, 52], and medical imaging [1, 19, 22, 33, 35]. A version of the MEM method38
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was recently explored for blind deblurring of images possessing some form of fixed symbology39

(for example, in barcodes) [47, 46]. There one exploited the ability of of the MEM framework to40

facilitate the incorporation of nonlinear constraints via the introduction of a prior distribution.41

Despite its many interesting properties in both theory and applications, the MEMmethod-42

ology has yet to find its place as a mainstream tool for statistical estimation, particularly as it43

pertains to solving inverse problems. One factor that might have contributed to this centers44

on the practical issue that there are no dedicated optimization algorithms designed to tackle45

models based on the MEM methodology. Indeed, the MEM function is defined by means of46

an infinite-dimensional optimization problem. Previous attempts to solve models involving47

the MEM function relied on its finite-dimensional dual problem. To the best of the authors’48

knowledge, there are no dedicated optimization algorithms designed to tackle models based49

on the MEM methodology. Therefore, any researcher or practitioner wishing to employ the50

MEM framework must first overcome a notable barrier of deriving an appropriate optimization51

algorithm for its solution. In this work, our goal is to fill in this gap, providing an accessible52

gate to the MEM methodology.53

Our approach is based on the fundamental work by Brown [18, Chapter 6] and comple-54

ments [39] by first proving the equivalence of the MEM function to the Cramér’s rate func-55

tion, mostly known from its role in large deviation theory. Cramér’s rate function is defined56

by means of a finite-dimensional optimization problem as it is simply the convex conjugate of57

the log-normalizer (aka the comulant generating function) of the reference distribution P . In58

many cases (i.e., choices of P ) it admits a closed form expression while in others it can still59

be evaluated efficiently. The connection between these seemingly different functions is well60

established in the large deviations [27], statistics [18], and information theory [39] literature.61

Nonetheless, various assumptions imposed in the aforementioned works limit the scope of ex-62

isting results. Employing the framework of exponential families of probability distributions63

[18], we establish the equivalence between the two functions under very mild and natural con-64

ditions, allowing us to cover many distributions of practical interest. Thus, models involving65

MEM functions can be explicitly stated using the corresponding Cramér functions.66

Central to our study is the MEM estimator which is shown to be well defined under very67

mild conditions. We further recall an insightful connection between the MEM and ML esti-68

mators as presented in [18] for the case of a reference distribution from an exponential family.69

As with the ML counterpart, the MEM estimator has vast applications, and hence we restrict70

the remainder of the paper to a wide class of regularized linear models for solving inverse71

problems. Each model in this class involves two MEM functions, one in the role of a fidelity72

term and another as a regularizer (comparable to the maximum a priori (MAP) estimation73

framework which extends ML). Let us provide an example: given a measurement matrix74

A ∈ Rm×d, an observation vector ŷ ∈ Rm and an additional vector p ∈ [0, 1]d representing75

some prior knowledge, the following optimization problem76

min

{
1

2
∥Ax− ŷ∥22 +

d∑
i=1

[
xi log

(
xi
pi

)
+ (1− xi) log

(
1− xi
1− pi

)]
: x ∈ [0, 1]d

}
,77

︸ ︷︷ ︸
Fidelity

︸ ︷︷ ︸
Regularization

78

79

fits the MEM framework with normal (Gaussian) and Bernoulli reference distributions of the80
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fidelity and regularization terms, respectively. Other choices of reference distributions will81

lead to additional models that admit similar additive composite structure. Moreover, the82

closed form expressions of the two functions in our example follow from the definition of83

Cramér’s rate function. In models of these forms, concrete expressions and structures with84

distinct geometry can be exploited to customize appropriate optimization strategies. Here we85

highlight the class of Bregman proximal gradient (BPG) methods as an especially suitable86

choice for this family of models. Nevertheless, other methods are also viable alternatives; for87

example, adaptive and scaled, accelerated variants and dual decomposition methods which88

are defined by means of the same operators developed here.89

Our overall aim is to provide a self-contained, mathematically sound toolbox for working90

with the MEM methodology for a wide variety of models. For this reason, we provide a91

comprehensive list of Cramér functions and operators used in the algorithms, and complement92

it with a software package. We believe this sets the basis for (and hopefully triggers) further93

experimentation and exploration of the MEM approach in contemporary applications.94

The paper is organized as follows. In Section 2, we recall some concepts and preliminary95

results from convex analysis and probability theory which will be used in this work. In96

Section 3, we study the MEM and Cramér rate functions and establish the equivalence between97

the two under very mild and natural conditions. This allows us to use the accessible definition98

of the Cramér function and derive tractable expressions for a wide class of possible reference99

distributions which closes this section (see Table 1). Section 4 is devoted to the MEM models100

considered in this work, and in Section 5, we present the algorithms for solving such models.101

We end with a few concrete examples of problems and corresponding algorithms crafted from102

the operators derived in this work. An appendix provides deferred proofs and the details of a103

variety of Cramér rate function computations.104

2. Preliminaries.105

2.1. Convex Analysis. We recall here some definitions and results from convex analysis.106

Further details and proofs can be found in various textbooks such as [9, 11, 48].107

The affine hull of a set S ⊆ Rd is the smallest affine subspace containing S. For any point108

y ∈ S, we have the following relation109

aff S = y + span (S − y),(2.1)110111

where spanS stands for the linear hull of S.The dimension of aff S is defined as dim(aff S) :=112

dim (span (S − y)). The interior, closure and boundary of a set are denoted as intS, clS and113

bdS, respectively.114

The (Fenchel) conjugate of ψ : Rd → [−∞,∞] is defined as115

ψ∗(y) := sup{⟨y, x⟩ − ψ(x) : x ∈ Rd}.116117

The function ψ is proper if ψ(x) > −∞ for all x ∈ Rd and domψ := {x ∈ Rd : ψ(x) <∞} ≠ ∅.118

In addition, ψ is closed, if its epigraph {(x, α) ∈ Rd × R : ψ(x) ≤ α} is a closed set.119

If ψ is proper and convex then ψ∗ is closed, proper and convex. For a proper function120

ψ : Rd → (−∞,+∞], the Fenchel-Young inequality states that ψ(x) + ψ∗(y) ≥ ⟨y, x⟩. If ψ is121
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proper, closed and convex then we obtain that [11, Theorem 4.20]122

ψ(x) + ψ∗(y) = ⟨y, x⟩ ⇐⇒ y ∈ ∂ψ(x) ⇐⇒ x ∈ ∂ψ∗(y),(2.2)123124

where ∂ψ(x) := {g ∈ Rd : ψ(y) ≥ ψ(x) + ⟨g, y − x⟩ (y ∈ Rd)} is the subdifferential of ψ at125

x ∈ Rd.126

The indicator function of a set S ⊆ Rd is denoted by δS and defined as δS(x) = 0 if127

x ∈ S and δS(x) = +∞ otherwise. Its convex conjugate is known as the support function128

σS(y) := δ∗S(y) = sup{⟨y, x⟩ : x ∈ S}.129

Definition 2.1 (Essential smoothness and Legendre type). Let ψ : Rd → (−∞,+∞] be130

proper and convex. Then, ψ is called essentially smooth if it satisfies the following conditions:131

1. int (domψ) ̸= ∅;132

2. ψ is differentiable on int (domψ);133

3. ∥∇ψ(xk)∥ → ∞ for any sequence {xk ∈ int (domψ)}k∈N → x̄ ∈ bd (domψ).134

The last condition listed above is called steepness. An essentially smooth function ψ is said135

to be of Legendre type if it is strictly convex on int (domψ).136

For ψ : Rd → (−∞,+∞] closed and of Legendre type, the following hold [48, Theorem 26.5]:137

1. ψ∗ is of Legendre type.138

2. ∇ψ : int (domψ) → int (domψ∗) is a bijection with (∇ψ)−1 = ∇ψ∗.139

The Bregman distance induced by a function ψ of Legendre type is defined as [17]140

Dψ(y, x) = ψ(y)− ψ(x)− ⟨∇ψ(x), y − x⟩ (x ∈ int (domψ), y ∈ domψ).141142

For any (x, y) ∈ int (domψ)× domψ, the Bregman distance is nonnegative Dψ(y, x) ≥ 0, and143

equality holds if and only if x = y due to strict convexity of ψ [17]. However, in general, Dψ144

is not symmetric, unless ψ = (1/2)∥ · ∥2 [7, Lemma 3.16]. The Bregman distance induced by145

a function ψ of Legendre type satisfies the following additional properties [8, Theorem 3.7]:146

For any x, y ∈ int (domψ) it holds that147

Dψ(y, x) = Dψ∗(∇ψ(x),∇ψ(y)).(2.3)148149

The Bregman distance is strictly convex with respect to its first argument. Moreover, for two150

functions ψ1 and ψ2 differentiable at x ∈ int (domψ1) ∩ int (domψ2)151

Dαψ1+βψ2(y, x) = αDψ1(y, x) + βDψ2(y, x) (y ∈ domψ1 ∩ domψ2, α, β ∈ R).(2.4)152153

2.2. Probability Theory and Exponential Families. We recall some concepts from prob-154

ability theory with an emphasis on exponential families. For further detail, see e.g. [4, 18].155

Let M(Ω) be the set of σ-finite measures defined over a measurable space (Ω,Σ) where156

Ω ⊆ Rd and Σ is a σ-algebra on Ω. The support of ρ, namely the minimal closed measurable157

set A ∈ Σ such that ρ(Ω \ A) = 0, is denoted by Ωρ. We denote by Ωccρ := cl (convΩρ)158

the closure of the convex hull of the support Ωρ, which is known as the convex support of ρ.159

Recall further that, if µ is another measure defined over (Ω,Σ), then µ is absolutely continuous160

with respect to ρ (denoted by µ ≪ ρ) if for every A ∈ Σ such that ρ(A) = 0 it holds that161

µ(A) = 0. In this case, the Radon-Nikodym derivative is the unique function h = dµ
dρ such that162
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µ(A) =
∫
A hdρ for any A ∈ Σ. For a measurable space (Ω,Σ) we denote by ν ∈ M(Ω) the163

dominating measure. Throughout, we restrict ourselves to two scenarios: either Ω = Rd and164

ν is the Lebesgue measure or Ω is a countable subset of Rd and ν is the counting measure.165

Let P(Ω) be the set of probability measures defined over Ω and absolutely continuous with166

respect to ν. We emphasize that for P ∈ P(Ω) the support ΩP might be a proper subset of167

Ω, and thus there is no loss of generality in our setting even when Ω = Rd. Furthermore,168

for any set A ⊆ Rd the expression P (A) should be understood as P (A ∩ Ω). For P ∈ P(Ω),169

the Radon-Nikodym derivative fP := dP
dν is either a probability density or mass function,170

depending on the set Ω. In both cases, we will refer to fP as the density of the distribution.1171

The expected value (if it exists) and moment generating function of P ∈ P(Ω) are given by172

EP :=

∫
Ω
ydP (y) ∈ Rd and MP [θ] :=

∫
Ω
exp(⟨·, θ⟩)dP,173

174

respectively. For P ∈ M(Ω) absolutely continuous with respect to ν, we define175

ΘP :=

{
θ ∈ Rd :

∫
Ω
exp(⟨·, θ⟩)dP <∞

}
,176

177

and consider the function ψP : Rd → (−∞,+∞] given by178

ψP (θ) :=

log

∫
Ω
exp (⟨·, θ⟩) dP, θ ∈ ΘP ,

+∞, θ /∈ ΘP .
(2.5)179

180

Then FP := {fPθ(y) := exp (⟨y, θ⟩ − ψP (θ)) : θ ∈ ΘP }, is a standard exponential family gener-181

ated by P . Note that, the probability measure Pθ satisfying dPθ = fPθdP is, by construction, a182

probability measure such that Pθ and P are mutually absolutely continuous, hence ΩPθ = ΩP183

for all θ ∈ ΘP [4, Section 8.1]. The function ψP is called the log-normalizer (also known as184

the log-partition or log-Laplace transform of P ). The vector θ ∈ Rd is known as the natural185

parameter and the set ΘP = domψP is called the natural parameter space.2186

The following results summarize some well-known properties of the log-normalizer ψP .187

Proposition 2.2 (Convexity, [18, Theorem 1.13]). Let FP be an exponential family generated188

by P ∈ M(Ω). Then, the natural parameter space ΘP is a convex set and the log-normalizer189

function ψP : Rd → (−∞,+∞] is closed, proper and convex.190

Proposition 2.3 (Differentiability, [18, Theorem 2.2, Corollary 2.3]). Let FP be an exponential191

family generated by P ∈ M(Ω) and let θ ∈ intΘP . Then, the log normalizer ψP : Rd →192

(−∞,+∞] is infinitely differentiable at θ and it holds that ∇ψP (θ) = EPθ .193

The dimension of a convex set S ⊆ Rd, denoted by dimS, is equal to the affine dimension194

of aff S. We assume that the exponential family generated by P ∈ M(Ω) is minimal, i.e.,195

dimΘP = dimΩccP = d or, equivalently, intΘP ̸= ∅ and intΩccP ̸= ∅. This is not restrictive as a196

non-minimal exponential family can be always reduced to a minimal form [18, Theorem 1.9].197

The following result strengthens Proposition 2.2 for minimal exponential families.198

1We will interchangeably refer to P ∈ P(Ω) as either a distribution or measure.
2It is possible to define the exponential family FP over a subset of the natural parameter space [18, Definition

1.1], but this is not needed for our study.
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Proposition 2.4 (Strict convexity, [18, Theorem 1.13]). Let FP be a minimal exponential199

family generated by P ∈ M(Ω). Then, the log-normalizer function ψP : Rd → (−∞,+∞] is200

strictly convex over ΘP .201

If the log-normalizer ψP is essentially smooth (or ’steep’ in the exponential family terminology,202

see, e.g., [4, Theorem 5.27] and [18, Definition 3.2]), we say that the exponential family FP is203

steep. This condition is automatically satisfied when ΘP is open [4, Theorem 8.2]. While most204

exponential families encountered in practice have this property, there are relevant cases when205

this assumption is too restrictive (e.g., [18, Example 3.4]). Thus, in order to cover all examples206

provided in this work, we will assume that the exponential family is steep. Summarizing the207

above discussion and recalling Definition 2.1 we have the following corollary.208

Corollary 2.5. Let FP be a minimal and steep exponential family generated by P ∈ M(Ω).209

Then, the log normalizer function ψP is of Legendre type.210

From the last corollary we can see that ∇ψP forms a bijection between int (domψP ) = intΘP211

and int (domψ∗
P ). This relation, provides a dual representation of the log-normalizer ψP212

and, consequently, the distribution in question. The so-called mean value parametrization213

is obtained by applying a change of variables where the natural parameter θ is replaced by214

µ ∈ Rd such that µ = EPθ = ∇ψP (θ), i.e., θ = ∇ψ∗
P (µ).215

The Kullback-Leibler (KL) divergence (also known as the relative entropy) of a probability216

measure Q ∈ P(Ω) with respect to P ∈ P(Ω) is given by (see [38])217

KL(Q|P ) :=


∫
Ω
log

(
dQ

dP

)
dQ, Q≪ P,

+∞, otherwise.
218

219

It holds that KL(Q|P ) ≥ 0 with equality if and only if Q = P [38, Lemma 3.1]. Thus, the220

Kullback-Leibler information quantifies the dissimilarity between two probability measures.221

We note that, in general, KL(Q|P ) is not symmetric. Furthermore, KL(Q|P ) is jointly convex222

in (Q|P ). We record a special case for which the KL divergence is of particular interest.223

Remark 2.6 (Kullback-Leibler divergence for exponential family). Let FP be an exponential224

family generated by P ∈ M(Ω). Let θ1 ∈ ΘP and θ2 ∈ intΘP , thus for i = 1, 2 we have that225

fPθi ∈ FP . In this case, the KL divergence between the two measures Pθi ∈ P(Ω) such that226

dPθi := fPθidP (i = 1, 2) satisfies KL(Pθ2 |Pθ1) = DψP (θ1, θ2) [18, Proposition 6.3]. ♢227

3. Maximum entropy on the mean and Cramér’s rate function. For y ∈ Rd, the density228

fP (y) :=
dP

dν
(y)(3.1)229

230

provides an indication of the likelihood of y under the distribution P ∈ P(Ω). The method of231

Maximum Entropy on the Mean (MEM) suggests an alternative, information driven function232

κP : Rd → (−∞,+∞] given by233

κP (y) := inf {KL(Q|P ) : EQ = y,Q ∈ P(Ω)} .(3.2)234235

Here, κP measures how y complies with the distribution P , by seeking a distribution Q236

with expected value y that minimizes KL(·|P ). The distance, in terms of the KL divergence237
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(the information gain) between the resulting and the original distributions quantifies the238

compliance of y with P . We will refer to κP as the MEM function and to P as the reference239

distribution. Since KL(Q|P ) ≥ 0 and KL(Q|P ) = 0 if and only if Q = P , we find that the240

MEM function satisfies κP (y) ≥ 0 for any y ∈ Rd and κP (y) = 0 if and only if y = EP .241

In most cases of interest, the MEM function admits an alternative representation which242

sheds light on many of its additional properties (cf. Theorem 3.10). More precisely, under243

suitable conditions (cf. Theorem 3.8), the MEM function coincides with the Cramér rate244

function [25], to which we turn now. For a given reference distribution P ∈ P(Ω), recall the245

log-nomalizer previously defined for a general measure in (2.5):246

ψP (θ) := logMP [θ] = log

∫
Ω
exp (⟨·, θ⟩) dP.247

248

In the context of probability measures P , ψP is often known as the cumulant generating249

function. The Cramér rate function ψ∗
P associated with P is the conjugate of ψP , that is,250

ψ∗
P (y) = sup{⟨y, θ⟩ − ψP (θ) : θ ∈ Rd}.251

Our central assumption (which is not too restrictive in view of our discussion above) on the252

prior P and its exponential family FP is provided below. The additional condition 0 ∈ intΘP253

insures the existence of EP .254

Assumption 3.1. The reference distribution P ∈ P(Ω) generates a minimal and steep ex-255

ponential family FP such that 0 ∈ intΘP .256

The equivalence between the two seemingly different functions3 ψ∗
P and κP was previously257

established under various assumptions: the authors of [27, Theorem 5.2] (see also [28]) impose258

the (restrictive) assumption that ψP is finite. On the other hand, the results in [18, Theorem259

6.17] and [39, Proposition 1] (see also [13] and a closely related result in [54, Theorem 3.4]) do260

not address the challenging case when y resides on the boundary of the domain. This scenario261

turns out to be important if (and only if) the reference distribution is defined over a countable262

set. Here, we provide a complete proof that overcomes these assumptions previously imposed.263

Our approach emphasizes the role played by the convex support of the reference distribution264

and leads to natural and easy to verify conditions. To this end, we will first need to examine265

the domains domκP and domψ∗
P . For Cramér’s rate function ψ∗

P , a characterization of the266

domain is summarized in the following proposition.267

Proposition 3.2 (Domain of the Cramér rate function ψ∗
P [4, Theorems 9.1, 9.4 and 9.5]). Let268

P ∈ P(Ω) be a reference distribution satisfying Assumption 3.1. Then, intΩccP ⊆ domψ∗
P ⊆269

ΩccP . Moreover, the following hold:270

(a) If ΩP is finite, then domψ∗
P = ΩccP .271

(b) If ΩP is countable, then domψ∗
P ⊇ convΩP .272

(c) If ΩP is uncountable, then domψ∗
P = intΩccP .273

3ψ∗
P appears in Cramér’s Theorem central in large deviations theory [28]. A more general form of κP

appears in Sanov’s Theorem.
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In order to establish a similar characterization for the domain of the MEM function, we274

will need to make precise the relation between ΩP and the expected value EP for a given275

probability measure P ∈ P(Ω). To this end, we first recall some additional definitions and276

results (see, for example, [48, Section 6]). Consider two subsets S, Ŝ ⊆ Rd and assume further277

that S ⊆ Ŝ. Then clS ⊆ cl Ŝ, intS ⊆ int Ŝ and convS ⊆ conv Ŝ.278

Denote the closed Euclidean unit ball in Rd by Bd. The relative interior [48, Section 6] of279

a convex set S ⊆ Rd is defined as280

riS :=
{
x ∈ Rd : ∃τ > 0 such that (x+ τBd) ∩ aff S ⊆ S

}
.281

282

E.g., for the unit simplex ∆d := {y ∈ Rd+ : ⟨e, y⟩ = 1} we have ri∆d := {y ∈ Rd++ : ⟨e, y⟩ = 1}.283

Some facts which will be used in the sequel are summarized in the following lemma. Further284

details and proofs can be found in [48, Section 6, Theorem 13.1].285

Lemma 3.3 (On the relative interior). Let S ⊆ Rd be nonempty and convex. Then:286

(a) It holds that ri (clS) = riS and riS ⊆ S ⊆ clS.287

(b) If dimS = d then riS = intS and, in particular, intS ̸= ∅.288

(c) It holds that x ∈ riS if and only if σS−x(v) ≥ 0 where the last inequality is strict for289

every v ∈ Rd such that −σS(−v) ̸= σS(v).290

Lemma 3.4 (Domain of expected value). Let P ∈ P(Ω) and assume that EP exists. Then291

EP ∈ ri ΩccP = ri (convΩP ).292

Proof. By definition of σΩP , for any v ∈ Rd, it holds that −σΩP (−v) ≤ ⟨v, y⟩ ≤ σΩP (v).293

As P ∈ P(Ω), this implies, for all v ∈ Rd, that294

⟨v,EP ⟩ =
∫
ΩP

⟨v, y⟩dP (y) ≤ σΩP (v)

∫
ΩP

dP (y) = σΩP (v).(3.3)295

296

If there exists some subset A ⊆ ΩP such that P ({y ∈ A : ⟨v, y⟩ < σΩP (v)}) > 0, then the297

inequality in (3.3) is strict. We will show that, for any v ∈ Rd such that −σΩP (−v) ̸= σΩP (v),298

such a subset exists; the desired result then follows from Lemma 3.3 (c) and the equivalence299

σΩccP (v) = σΩP (v) [49, Theorem 8.24]. Indeed, let v ∈ Rd such that −σΩP (−v) ̸= σΩP (v), i.e.300

−σΩP (−v) < σΩP (v). Pick τ ∈ (−σΩP (−v), σΩP (v)) and consider A = {y ∈ ΩP : ⟨v, y⟩ ≤ τ}.301

As τ < σΩP (v), we have A ⊂ {y ∈ ΩP : ⟨v, y⟩ < σΩP (v)}, and302

P (A) = P ({y ∈ ΩP : ⟨−v, y⟩ ≥ −τ}) = P ({y ∈ ΩP : σΩP (−v) ≥ ⟨−v, y⟩ ≥ −τ}) > 0,303304

where the strict inequality follows from the definition of σΩP (−v) and σΩP (−v) > −τ . Hence,305

A satisfies the desired conditions, which establishes the result.306

We are now in a position to present and prove a characterization for the domain of the MEM307

function, analogous to Proposition 3.2. We will use the following notation308

QP (y) := {Q ∈ P(Ω) : EQ = y, Q≪ P}.309310

Observe that y ∈ domκP if and only if QP (y) ̸= ∅.311

Lemma 3.5 (Domain of the MEM function κP ). Let P ∈ P(Ω) be a reference distribution312

satisfying Assumption 3.1. Then:313
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(a) If ΩP is countable, then domκP = convΩP . Hence, if ΩP is finite, then domκP = ΩccP .314

(b) If ΩP is uncountable, then domκP = intΩccP .315

Proof. (a) Let y ∈ domκP , hence there exists Q ∈ QP (y). As Q ≪ P , we obtain316

ΩQ ⊆ ΩP , thus convΩQ ⊆ convΩP . Hence, by Lemma 3.3 (a) and Lemma 3.4, we317

know that y = EQ ∈ ri ΩccQ ⊆ convΩQ ⊆ convΩP . Thus, domκP ⊆ convΩP . For318

the converse inclusion, let y ∈ convΩP . By Carathéodory’s theorem [20], there exist319

n ≤ d+ 1 points p1, . . . , pn in ΩP such that y =
∑n

i=1 λipi for some λ ∈ ∆n. Consider320

a distribution Q ∈ P(Ω) satisfying Q({pi}) = λi for all i = 1, . . . , n. Then, Q ∈ QP (y)321

by construction. Thus, y ∈ domκP , and we can conclude that convΩP ⊆ domκP .322

(b) First, let y ∈ domκP , then there exists Q ∈ QP (y). Since Q ≪ P which satisfies323

Assumption 3.1, it holds that dimΩccQ = ΩccP = d. Otherwise, the probability measure324

Q (Q(ΩQ) = 1) is concentrated on a lower dimensional affine subspace in contradiction325

to the absolute continuity of Q with respect to P . Hence, using Lemma 3.4 and326

Lemma 3.3 (b), we obtain that y = EQ ∈ ri ΩccQ = intΩccQ ⊆ intΩccP . For the converse327

inclusion, by Proposition 3.2, y ∈ intΩccP = domψ∗
P = int (domψ∗

P ) = dom∇ψ∗
P , and328

we conclude that y = EPθ for θ = ∇ψ∗
P (y). Since Pθ ≪ P for Pθ from the exponential329

family generated by P , we find that Pθ ∈ QP (y) and therefore y ∈ domκP .330

Combining Lemma 3.5 with Proposition 3.2 yields the following corollary.331

Corollary 3.6. Let P ∈ P(Ω) be a reference distribution satisfying Assumption 3.1. Then,332

(a) If ΩP is countable and convΩP is closed (i.e., convΩP = ΩccP ), then domκP =333

domψ∗
P = ΩccP . In particular, domκP = domψ∗

P = ΩccP if ΩP is finite.334

(b) If ΩP is uncountable, then domκP = domψ∗
P = intΩccP .335

The following lemma will be crucial for proving the equivalence between the MEM function336

κP and Cramér’s rate function ψ∗
P . The proof of the lower bound follows similar arguments337

as in [18, Theorem 6.17] and [39, Proposition 1] and we include it here for completeness.338

Lemma 3.7. Let P ∈ P(Ω) be a reference distribution satisfying Assumption 3.1. Then:339

ψ∗
P (y) ≤ κP (y) ≤ ψ∗

P (y) +KL(Q|Pθ)−Dψ∗
P
(y,∇ψP (θ)) ,340

341

for any y ∈ domκP , Q ∈ QP (y) and θ ∈ intΘP .342

Proof. For any θ ∈ intΘP and Q ∈ QP (y) we obtain that Q ≪ Pθ due to the mutual343

absolute continuity between Pθ and P . Hence,344
345

(3.4) KL(Q|P ) =
∫
Ω
log

(
dQ

dP

)
dQ =

∫
Ω
log

(
dQ

dPθ

)
dQ+

∫
Ω
log

(
dPθ
dP

)
dQ346

= KL(Q|Pθ) +
∫
Ω
[⟨z, θ⟩ − ψP (θ)]dQ(z) = KL(Q|Pθ) + ⟨y, θ⟩ − ψP (θ),347

348

where the last identity uses y = EQ. Since (3.4) holds for all θ ∈ intΘP and KL(Q|Pθ) ≥ 0,349

KL(Q|P ) ≥ sup{⟨y, θ⟩ − ψP (θ) : θ ∈ intΘP } = ψ∗
P (y),(3.5)350351

due to the closedness of ψP , see Proposition 2.2. The lower bound for κP follows immediately352

from its definition and the above inequality.353
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As for the upper bound: by (3.4) and (2.2), for any Q ∈ QP (y) and θ ∈ intΘP , we have354

KL(Q|P ) = KL(Q|Pθ) + ⟨y, θ⟩ − ψP (θ)

= KL(Q|Pθ) + ⟨y −∇ψP (θ), θ⟩+ ⟨∇ψP (θ), θ⟩ − ψP (θ)

= KL(Q|Pθ)− [ψ∗
P (y)− ψ∗

P (∇ψP (θ))− ⟨y −∇ψP (θ), θ⟩] + ψ∗
P (y)

= KL(Q|Pθ)−Dψ∗
P
(y,∇ψP (θ)) + ψ∗

P (y).

355

356

Then the result follows due to the fact that κP (y) ≤ KL(Q|P ) for all Q ∈ QP (y).357

Theorem 3.8 (Equivalence between Cramér’s rate function and the MEM function). Let358

P ∈ P(Ω) satisfy Assumption 3.1, and assume that one of the following two conditions holds:359

(i) ΩP is uncountable.360

(ii) ΩP is countable and convΩP is closed (as is the case when ΩP is finite).361

Then, κP = ψ∗
P . In particular, κP is closed, proper and convex.362

Proof. First, let y ∈ intΩccP . By Assumption 3.1, ∇ψP is a bijection between int (domψP )363

= intΘP and int (domψ∗
P ) = intΩccP , where the latter uses Proposition 3.2. Thus, there exists364

θ ∈ intΘP such that y = ∇ψP (θ) = EPθ . Applying Lemma 3.7 with Q = Pθ yields365

κP (y) = ψ∗
P (y) (y ∈ intΩccP ).(3.6)366367

Due to Corollary 3.6, this establishes the result when ΩP is uncountable. To complete the368

proof, we only need to address the case when y ∈ bdΩccP under assumption (ii). By Corol-369

lary 3.6, in this case domκP = domψ∗
P = ΩccP and QP (y) ̸= ∅ for y ∈ bdΩccP . Consider any370

Q ∈ QP (y), then, by definition of κP , we have that371

κP (y) ≤ KL(Q|P ) < +∞.(3.7)372373

Choose any ŷ ∈ intΩccP and set θ̂ = ∇ψ∗
P (ŷ) (i.e., ŷ = ∇ψ(θ̂)). For any λ ∈ [0, 1) consider374

Qλ = λQ+ (1− λ)Pθ̂. Then, by linearity of Q 7→ EQ [46, Lemma 2], we obtain375

yλ := EQλ = λEQ + (1− λ)EPθ̂ = λy + (1− λ)ŷ.376
377

By convexity of ΩccP and the line segment principle [10, Lemma 6.28] we conclude that378

yλ ∈ intΩccP . Set θλ := ∇ψ∗
P (yλ) and observe that, by Lemma 3.7 and the nonnegativity379

of the Bregman distance, it holds that380

ψ∗
P (y) ≤ κP (y) ≤ ψ∗

P (y) + KL(Q|Qλ).(3.8)381382

In addition, due to (3.7) and the fact that Q ≪ P ≪ Pθ̂, we conclude that KL(Q|Pθ̂) <∞.383

Thus, by (3.8) and convexity of KL(Q|·), we obtain384

KL(Q|Qλ) ≤ λKL(Q|Q) + (1− λ)KL(Q|Pθ̂) → 0 as λ→ 1.385386

We refer to a solution of the optimization problem (3.2) as the MEM distribution and denote387

it as QMEM . By similar arguments to the ones used in order to establish the lower bound in388
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Lemma 3.7, one can show that, when y ∈ int(domκP ) = int(convΩP ), the MEM distribution389

is a particular member of the exponential family generated by the reference distribution P .390

More precisely, it holds that QMEM = Pθ where θ = ∇ψ∗
P (y) and consequently391

fQMEM
(x) =

dPθ
dP

(x) = exp

(
⟨x, θ⟩ − log

∫
Ω
exp(⟨·, θ⟩)dP

)
=

exp(⟨x, θ⟩)∫
Ω exp(⟨·, θ⟩)dP

.392

393

This, again, highlights the intimate connection between the MEM function and exponential394

families. The case y ∈ bd (domκP ) is more subtle and will be the topic of future research.395

In what follows, we assume that the reference distribution of the MEM function satisfies396

the conditions stated in Theorem 3.8, that is:397

Assumption 3.9. The distribution P ∈ P(Ω) satisfies one of the following conditions:398

(i) ΩP is uncountable.399

(ii) ΩP is countable and convΩP is closed (as is the case when ΩP is finite).400

Under Assumptions 3.1 and 3.9, the MEM function and the Cramér rate function coincide.401

As an immediate consequence, we obtain that the MEM function κP is of Legendre type.402

More importantly, we will see that the alternative representation by means of Cramér’s rate403

function is more tractable compared to the original definition given in (3.2).404

Theorem 3.10 (Properties of the MEM function). Let P ∈ P(Ω) satisfy Assumptions 3.1405

and 3.9. Then the following hold:406

(a) κP (y) ≥ 0 and equality holds if and only if y = EP .407

(b) κP is of Legendre type.408

(c) κP is coercive in the sense that lim∥y∥→∞ κP (y) = +∞ [9, Definition 11.10]. In409

particular, κP (y) is level bounded.410

(d) If MP is finite (which holds, in particular, when ΩP is bounded), then κP is superco-411

ercive in the sense that lim∥y∥→∞ κP (y)/∥y∥ = +∞ [9, Definition 11.10].412

Proof. Part (a) is evident from the definition of κP as given in (3.2) and [18, Proposition413

6.2]. Part (b) follows directly from the equivalence to the Cramér rate function ψ∗
P and414

Corollary 2.5. To see (c), observe that (a) implies that κP admits a unique minimizer EP415

which combined with the fact that κP is closed, proper and convex (since κP is of Legendre type416

due to (b)) establishes the result by [2, Proposition 3.1.3]. Lastly, if the moment generating417

function is finite, then so is ψP , and the supercoercivity of κP = ψ∗
P follows from [49, Theorem418

11.8(d)].4 If ΩP is bounded then domκP is bounded due to Lemma 3.5. In this case, κP = ψ∗
P419

is trivially supercoercive and the claim that ψP is finite follows from [49, Theorem 11.8(d)].420

The results presented in the remainder of this work are established under Assumptions 3.1421

and 3.9 which, in particular, ensure the equivalence between the MEM and Cramér rate422

functions. For this reason, we take this opportunity to standardize our nomenclature: between423

the two options (κP or ψ∗
P ) we will opt for the one that corresponds to the Cramér rate function424

ψ∗
P . This choice is motivated by our intent to emphasize the more computationally appealing425

definition and the connection to the log-normalizer function ψP . Nevertheless, in the definition426

4The definition of supercoercive convex functions we use here follows [9, Definition 11.10]. In [49] the
authors refer to such functions as coercive (see [49, Definition 3.25]).
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of some new concepts defined by means of Cramér’s rate function, we will adopt the MEM427

terminology in order to emphasize the motivation in the context of estimation.428

If the reference distribution belongs to an exponential family generated by some measure429

P ∈ M(Ω), i.e., if for some θ̂ ∈ ΘP we consider a new exponential family generated by the430

probability measure Pθ̂,
5 then the corresponding moment generating function takes the form431

MPθ̂
[θ] = exp

(
ψP (θ̂ + θ)− ψP (θ̂)

)
.(3.9)432

433

In this case, the Cramér rate functions that corresponds to Pθ̂ and P share a useful relation434

summarized in the following lemma. We include the simple proof in Appendix A.435

Lemma 3.11. Let FP be a minimal and steep exponential family generated by P ∈ M(Ω)436

and assume further that, for any θ ∈ intΘP , Assumption 3.9 holds for Pθ ∈ P(Ω). Then, for437

any θ̂ ∈ intΘP and y ∈ domψ∗
P , we have ψ∗

Pθ̂
(y) = Dψ∗

P
(y, ŷ) where ŷ := ∇ψP (θ̂) ∈ intΩccP .438

We list in Table 1 below a number of examples of Cramér rate functions that correspond439

to most of the popular distributions (i.e. choices of the reference distribution P ∈ P(Ω)).440

Some of the functions admit a closed form expression while others are given implicitly.6 The441

derivations and further details are included as a supplementary material. Observe that all442

cases considered below satisfy Assumptions 3.1 and 3.9 which guarantees the equivalence443

established in Theorem 3.8: indeed, with some exceptions, all the distributions in Table 1 are444

minimal with a natural parameter space ΘP open which implies steepness. These exceptions445

are: the multinomial distribution which is minimal under an appropriate reformulation, and446

the multivariate normal-inverse Gaussian which is steep (see supplementary material). Here,447

we provide the Cramér rate function of the multinomial distribution in minimal form. Thus,448

Assumption 3.1 holds for all the distributions given in Table 1. This comprehensive list449

complements and extends some previously established formulas [39, 54].450

Many computations are facilitated in the presence of separability as described in the451

following remark.452

Remark 3.12 (Separability of ψ∗
P ). In most examples, the reference distribution P ∈ P(Ω)453

admits a separable structure of the form P (y) = P1(y1)P2(y2) · · ·Pd(yd) where Pi ∈ P(Ωi),454

Ωi ⊂ R, i.e., each component corresponds to an i.i.d. random variable. In this case, since455

MP [θ] =
∏d
i=1MPi [θi] [50, Section 4.4], we have456

ψ∗
P (y) = sup

{
⟨y, θ⟩ − log (MP [θ]) : θ ∈ Rd

}
=

d∑
i=1

sup {yiθi − log (MPi [θi]) : θi ∈ R} .457

Hence, in most of our examples below we will consider only the case d = 1. ♢458

In Table 1 we employ the convention that 0 log(0) = 0 and define459

∆(d) :=

{
y ∈ Rd+ :

d∑
i=1

yi ≤ 1

}
and I(p) := {y ∈ Rd : yi = 0 (pi = 0)} (p ∈ Rd).460

5Recall from the definition of FP that Pθ̂ is the probability measure with
dP

θ̂
dP

(y) = exp(⟨y, θ̂⟩ − ψP (θ̂)).
6One can evaluate Cramér’s rate function value at a point of interest by solving a nonlinear system.
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Reference Distribution (P ) Cramér Rate Function (ψ∗
P (y)) domψ∗

P

Multivariate Normal
(µ ∈ Rd,Σ ∈ Sd : Σ ≻ 0)

1
2 (y − µ)TΣ−1(y − µ) Rd

Multivar. Normal-inverse Gaussian(
µ, β ∈ Rd, α, δ ∈ R,Σ ∈ Rd×d:
δ > 0, Σ ≻ 0, α ≥

√
βTΣβ

)
γ :=

√
α2 − βTΣβ

α
√
δ2 + (y − µ)TΣ−1(y − µ)− βT (y − µ)− δγ Rd

Gamma (α, β ∈ R++) βy − α+ α log
(
α
βy

)
R++

Laplace (µ ∈ R, b ∈ R++)

0, y = µ,√
1 + ρ(y)2 − 1 + log

(√
1+ρ(y)2−1

ρ(y)2/2

)
, y ̸= µ,

(ρ(y) := (y − µ)/b)

R

Poisson (λ ∈ R++) y log(y/λ)− y + λ R+

Multinomial (n ∈ N, p ∈ ∆(d):∑d
i=1 pi < 1)

∑d
i=1 yi log

(
yi
npi

)
+
(
n−

∑d
i=1 yi

)
log
(

n−
∑d

i=1 yi
n(1−

∑d
i=1 pi)

)
n∆(d) ∩ I(p)

Negative Multinomial (p ∈ [0, 1)d,

y0 ∈ R++, p0 := 1−
∑d
i=1 pi > 0)

∑d
i=0 yi log

(
yi
piȳ

)
(ȳ :=

∑d
i=0 yi) Rd+ ∩ I(p)

Discrete Uniform(
a, b ∈ Z : a ≤ b,
µ := (a+ b)/2, n := b− a+ 1

)
{
0, y = µ,

(y − µ)θ − log
(
e(b−µ+1)θ−e(a−µ)θ

n(eθ−1)

)
, y ̸= µ,

where θ ∈ R : y + eθ

eθ−1
= (b+1)e(b+1)θ−aeaθ

e(b+1)θ−eaθ

[a, b]

Continuous Uniform(
a, b ∈ R : a < b, µ := (a+ b)/2

) {
0, y = µ,

(y − µ)θ − log
(
e(b−µ)θ−e(a−µ)θ

(b−a)θ

)
, y ̸= µ,

where θ ∈ R : y + 1
θ = bebθ−aeaθ

ebθ−eaθ

(a, b)

Logistic (µ ∈ R, s ∈ R++)

{
0, y = µ,

(y − µ)θ − log (B(1− sθ, 1 + sθ)) , y ̸= µ,

where θ ∈ R+ : y − µ = 1
θ +

πs
tan (−πsθ)

R

Table 1: Cramér rate functions for popular distributions.

Remark 3.13 (On Table 1). We provide some additional comments on Table 1 here.461

(a) (Special cases)462

– As special cases of the Gamma distribution we obtain Chi-squared with pa-463

rameter k (α = k/2, β = 1/2), Erlang (α positive integer) and exponential464

(α = 1) distributions.465
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– As special cases of the multinomial distribution, we obtain binomial (d = 1,466

n > 1), Bernoulli (d = 1, n = 1) and categorical (d > 1, n = 1) distributions.467

– As special cases of the negative multinomial distribution we obtain the negative468

binomial (d = 1) and (shifted) geometric (d = 1, y0 = 1) distributions.469

(b) (Statistical interpretation) For many reference distributions, ψ∗
P recovers well-known470

functions from information theory and related areas. Here, the MEM provides an in-471

formation driven, statistical interpretation for these functions. Examples include the472

squared Mahalanobis distance (multivariate normal), pseudo-Huber loss (multivariate473

normal-inverse Gaussian), Itakura-Saito distance (Gamma), Burg entropy (exponen-474

tial), Fermi-Dirac entropy (Bernoulli), and the generalized cross entropy (Poisson).475

♢476

4. The MEM Estimator and Models for Inverse Problems. In this section we show how477

the MEM function can be used in various modeling paradigms. We start by presenting the478

MEM estimator and explore some of its properties. We then discuss its (primal and dual)479

analogy to the maximum likelihood (ML) estimator. Finally we will illustrate its efficacy by480

considering a class of linear models involving a regularization term.481

4.1. The Maximum Entropy on the Mean Estimator. The maximum entropy on the482

mean (MEM) function gives rise to an information driven criterion for measuring the compli-483

ance of given data with a prior distribution. Based on this function, we can define the MEM es-484

timator as given in Definition 4.1 below. First, we introduce some additional terminology and485

notation that will be used in the sequel. Let Ω ⊆ Rd and let FΛ = {Pλ : λ ∈ Λ ⊆ Rd} ⊂ P(Ω)486

be a parameterized family of distributions indexed by λ ∈ Λ such that EPλ1 = EPλ2 if and487

only if λ1 = λ2. We call FΛ as the reference family and say that it satisfies Assumptions 3.1488

and 3.9 if they hold for each Pλ ∈ FΛ. When FΛ is an exponential family (in this case Λ is489

the natural parameter space ΘP for some P ∈ M(Ω)) the MEM estimator was studied in [18,490

Chapter 6]. We stress that, in our presentation, FΛ need not be an exponential family.491

Definition 4.1 (MEM estimator). Let FΛ ⊂ P(Ω) be a reference family satisfying Assump-492

tions 3.1 and 3.9 and assume that EPλ1 = EPλ2 if and only if λ1 = λ2. For an observation493

ŷ ∈ Rd, let Pλ̂ ∈ FΛ be such that ŷ = EPλ̂, and let S∗ ⊆ Rd be (nonempty) closed. The MEM494

estimator is defined as495

yMEM(ŷ, FΛ, S
∗) := argmin{ψ∗

Pλ̂
(y) : y ∈ S∗}.496

497

In order to simplify notation, in what follows, we will write yMEM := yMEM(ŷ, FΛ, S
∗) when498

the dependence on the triple (ŷ, FΛ, S
∗) is clear from the context.499

Remark 4.2 (The observation vector and its domain). In Definition 4.1, the condition that500

Pλ̂ ∈ FΛ is chosen such that ŷ = EPλ̂ implies that the reference distribution is indexed by the501

observation vector ŷ. This condition combined with Assumption 3.1 entails that ŷ ∈ intΩccPλ̂
502

must hold due to Lemma 3.4. ♢503

In order to establish the well-definedness of the MEM estimator, we will use the following504

extension of [18, Lemma 5.4]. The proof is included in Appendix A.505
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Lemma 4.3. Let ϕ : Rd → (−∞,+∞] be closed and Legendre-type, let φ : Rd → (−∞,+∞]506

be proper, closed and convex such that int (domϕ) ∩ domφ ̸= ∅. Assume that one of the507

functions is coercive while the other is bounded from below. Then there exists a unique solution508

y∗ ∈ Rd to min{ϕ(y) + φ(y) : y ∈ Rd}, which also satisfies y∗ ∈ int (domϕ) ∩ domφ.509

Theorem 4.4 (Well-definedness of the MEM estimator). Let FΛ ⊂ P(Ω) be a reference510

family satisfying Assumptions 3.1 and 3.9. For ŷ ∈ Rd, let Pλ̂ ∈ FΛ such that ŷ = EPλ̂, and511

let S∗ ⊆ Rd be closed with S∗ ∩ domψ∗
Pλ̂

̸= ∅. Then, the MEM estimator yMEM exists. If, in512

addition, S∗ is convex and int (domψ∗
Pλ̂
)∩S∗ ̸= ∅, yMEM is unique and in int (domψ∗

Pλ̂
)∩S∗.513

Proof. Recall that, by Theorem 3.10, ψ∗
Pλ̂

is coercive and of Legendre type (proper, closed,514

steep and strictly convex on the interior of its domain). Observe that S∗ ⊂ Rd is closed and515

S∗ ∩ domψ∗
Pλ̂

̸= ∅. Thus, the function ψ∗
Pλ̂

+ δS∗ is proper, closed and coercive. Hence, the516

existence of the MEM estimator follows from [2, Remark 3.4.1, Theorem 3.4.1]. The case517

when S∗ is convex and int (domψ∗
Pλ̂
) ∩ S∗ ̸= ∅ follows from Lemma 4.3 with ϕ = ψ∗

Pλ̂
and518

φ = δS due to the coercivity of ψ∗
Pλ̂

and the fact that δS is bounded from below.519

4.1.1. Analogy Between MEM and ML (for Exponential Families). Maximum likelihood520

(ML) is arguably the most popular principle for statistical estimation. Here, the estimated521

parameters are chosen as the most likely to produce a given sample of observed data while522

satisfying model assumptions. More precisely, for some Ω ⊆ Rd, the model is defined by523

means of a nonempty, closed set S ⊆ Rd of admissible parameters and a parameterized family524

of distributions FΛ = {Pλ : λ ∈ Λ ⊆ Rm} ⊂ P(Ω) with densities fPλ . Given a sample of525

observed data ŷ ∈ Rd, the ML estimator λML(ŷ, FΛ, S) is defined as526

λML(ŷ, FΛ, S) := argmax{log fPλ(ŷ) : λ ∈ S ∩ Λ}.527528

In order to simplify notation, we will write λML := λML(ŷ, FΛ, S) when the dependence on the529

triple (ŷ, FΛ, S) is clear from the context.530

An intriguing connection between the ML and MEM estimator comes to light when Λ is531

the natural parameter space ΘP of an exponential family induced by P ∈ M(Ω). The MEM532

estimator can then be retrieved by solving one of two alternative optimization problems each533

of which has a closely related problem that yields the ML estimator. One problem is driven534

by information theoretic arguments, while the other emphasizes a connection motivated by535

convex duality. These connections were previously observed in [18, Chapter 6] (also [14]) and536

are summarized in the following theorem whose proof is in Appendix A. For consistency, we537

denote the ML estimator as θML.538

Theorem 4.5 (MEM and ML estimator analogy). Let FP be a minimal and steep exponential539

family generated by P ∈ M(Ω) and assume that, for any θ ∈ intΘP , Assumption 3.9 holds540

with respect to Pθ ∈ P(Ω). Let S, S∗ ⊆ Rd such that S ∩ domψP ̸= ∅ and S∗ ∩ domψ∗
P ̸= ∅.541

Finally, let ŷ ∈ intΩccP and set θ̂ := ∇ψ∗
P (ŷ). Then the following hold:542

(a) (Primal analogy) If S∗∩int (domψ∗
P ) ̸= ∅ and ∇ψ∗

P (S
∗∩int (domψ∗

P )) = S∩int (domψP ),543

then yMEM = ∇ψP (θMEM) where544

θMEM ∈ argmin{KL(Pθ|Pθ̂) : θ ∈ S} and θML ∈ argmin{KL(Pθ̂|Pθ) : θ ∈ S}.(4.1)545546

This manuscript is for review purposes only.



16 Y. VAISBOURD, R. CHOKSI, A. GOODWIN, T. HOHEISEL, C.-B. SCHÖNLIEB

(b) (Dual analogy): We have547

yMEM ∈ argmin{Dψ∗
P
(y, ŷ) : y ∈ S∗} and θML ∈ argmin{DψP (θ, θ̂) : θ ∈ S}.(4.2)548

549

The primal and dual analogy between the MEM and ML estimator for exponential families550

clarifies that the two are symmetric principles.551

4.2. Examples - Linear Models. To illustrate the versatility of the MEM estimation552

framework, we will consider the broad class of linear models which are among the most553

popular paradigms in statistical estimation with applications in numerous fields such as image554

processing, bio-informatics, machine learning etc.555

We assume that the set S∗ of admissible mean value parameters is the image of a convex556

set X ⊆ Rd under a linear mapping defined by a measurement matrix A ∈ Rm×d. In many557

practical scenarios, this matrix satisfies some application-related properties, which in combi-558

nation with the set X restricts the image space to a subset of Rm. We will denote by C the559

set of all matrices that satisfy such a condition for the application in question. The second560

component in the model is FΛ = {Pλ : λ ∈ Λ ⊆ Rm} ⊂ P(Ω), a reference family indexed by561

λ ∈ Λ such that EPλ1 = EPλ2 if and only if λ1 = λ2. The reference distribution is specified562

from this family by means of the observation vector ŷ. From Remark 4.2 it follows that such563

a family of distributions must satisfy ŷ ∈ intΩccPλ̂
for λ̂ such that EPλ̂ = ŷ. In some cases, this564

condition imposes additional assumptions that must be satisfied by the measurement vector.565

We will denote the set of measurement vectors that satisfy such an assumption with respect566

to the family of distributions under consideration by D := {y ∈ Rm : EPλ = y (λ ∈ Λ)}. To567

summarize, an MEM estimator of the linear model outlined above is obtained by solving568

min
{
ψ∗
Pλ̂
(Ax) : x ∈ X

}
(λ̂ ∈ Λ : EPλ̂ = ŷ),(4.3)569

570

under the following set of assumptions:571

Assumption 4.6 (MEM estimation for linear models).572

1. The reference family FΛ satisfies Assumptions 3.1 and 3.9.573

2. The set X ⊆ Rd is nonempty and convex.574

3. A ∈ C and for any x ∈ X it holds that Ax ∈ domψ∗
P .575

4. The observation vector satisfies ŷ ∈ D.576

In the following table, we present some examples of MEM linear models that correspond to577

particular choices of a reference family. In all cases, we assume that the reference family578

admits a separable structure as outlined in Remark 3.12. The vectors ai (i = 1, . . . ,m) stand579

for the ith row of the matrix A. We set580

C0 := {A ∈ Rm×d
+ : A has no zero rows or columns}.581
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Reference family Objective function (ψ∗
Pλ̂

◦A) C X D

Normal
1

2
∥Ax− ŷ∥22 Rm×d Rd Rm

Poisson

m∑
i=1

[⟨ai, x⟩ log (⟨ai, x⟩/ŷi)− ⟨ai, x⟩+ ŷi] C0 Rd+ Rm++

Gamma (β = 1)

m∑
i=1

[⟨ai, x⟩ − ŷi log (⟨ai, x⟩)− (ŷi − ŷi log (ŷi))] C0 Rd++ Rm+

Table 2: Linear models under the MEM estimation framework for various reference families.

Remark 4.7. Additional models are readily available by choosing any of the reference582

distributions presented in Table 1. Alternatively, one may consider a family of linear models583

where the natural parameters are the ones restricted to the image of a convex set under a584

linear mapping. This class of models is commonly referred to as generalized linear models585

with a canonical link function [44]. ♢586

The MEM linear model with reference family that corresponds to the normal distribution587

coincides with its ML counterpart, resulting in the celebrated least-squares model [15]. This588

phenomenon is unique for the normal distribution and is a direct consequence of the fact that589

the squared Euclidean norm is the only self-conjugate function [48, Section 12].590

Linear inverse models under the Poisson noise assumption have been successfully applied in591

various disciplines including fluorescence microscopy, optical/infrared astronomy and medical592

applications such as positron emission tomography (PET) (see, for example, [14, 53]). The593

MEM linear model with Poisson reference distribution outlined in Table 2 was previously594

suggested in [6, Subsection 5.3] as an example for the algorithmic setting considered in that595

work (see further details in Section 5 where we expand on the framework considered in [6]).596

If, for example, X = Rd and rgeA = Rm with m < d, then x ∈ Rd such that yML =597

yMEM = Ax = ŷ. This outcome is not a result of a deep statistical characteristic but a simple598

consequence of the model’s ill-posedness, a situation when the desired solution is not uniquely599

characterized by the model. Situations like this are among the reasons which motivate the use600

of regularizers which allow to incorporate some additional (prior) knowledge of the solution.601

This approach give rise to the following extended version of model (4.3)602

min
{
ψ∗
Pλ̂
(Ax) + φ(x) : x ∈ X

}
(λ̂ ∈ Λ : EPλ̂ = ŷ),(4.4)603

604

where, in our setting, φ : Rd → (−∞,+∞] stands for a proper, closed and convex function.605

In (4.4), the optimization formulation is designed to find a solution (model estimator) that606

balances between two criteria represented by the fidelity term ψ∗
Pλ̂

◦A and the regularization607

term φ. While the fidelity term penalizes the violation between the model and observations,608

the regularization term incorporates prior information (belief) on the solution, and in many609

cases, when the problem with the fidelity term alone is ill-posed, it also serves as a regularizer.610
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In the context of MEM, the Cramér rate function can be used to penalize violations of the611

solution vector x ∈ Rd with respect to some prior reference measure R ∈ P(Ω) that satisfies612

Assumptions 3.1 and 3.9. In other words, we can set φ(x) = ψ∗
R(x).613

In many applications, the desired reference distribution of the regularizer will admit a614

separable structure (à la Remark 3.12). While this is advantageous from an algorithmic per-615

spective (cf. Remark 5.3), other alternatives are viable. Non-separable priors can be consid-616

ered in order to promote desirable correlations between the entries of the solution to problem617

(4.4). E.g., by considering the multinomial, negative multinomial, multivariate normal in-618

verse Gaussian or multivariate normal (with non-diagonal correlation matrix in the latter)619

reference distributions intrinsically give rise to non-separable modeling. But there are other620

options which involve separable reference distributions with a composite structure such as621

φ(x) = ψ∗
R(Lx) or φ(x) =

d∑
i=1

ψ∗
R(Lix),(4.5)622

623

where L ∈ Rr×d, Li ∈ Rr×d. For example, new variants of the well-known (discrete) total624

variation (TV) regularizer [51] can be considered by replacing the norm appearing in the625

original definition by a Cramér rate function while keeping the first-order finite difference ma-626

trix (further details are given in the end of Section 5). Different reference distributions might627

be used to promote desirable, application-specific, properties of the solution. Nevertheless, for628

all choices of reference distribution the resulting function will admit some desirable properties,629

including convexity, differentiability and coerciveness as established in Theorem 3.10. As we630

will see in the following section, these properties allows us to consider a unified algorithmic631

approach for tackling problem (4.4).632

5. Algorithms. The optimization formulations of statistical estimation problems as pre-633

sented in the previous section are solved by optimization algorithms. Customized methods,634

such as the ones we consider here, allow to leverage the structure of a given problem, thus635

resulting in a significant efficiency improvement compared to general purpose solvers. The636

structure of problems which are of interest for us is given by the additive composite model637

min{f(x) + g(x) : x ∈ Rd},(5.1)638639

where f, g : Rd → (−∞,+∞] are proper, closed and convex.640

We will assume that both the fidelity and regularization term, represented by f and g,641

respectively, are continuously differentiable on the interior of their domain. This assumption642

holds for all the modeling paradigms discussed in the previous section. In particular, model643

(4.4) is recovered with f = ψ∗
P ◦ A and g = ψ∗

R. Our focus on this type of problem is for644

convenience only as our goal is merely to illustrate how modern first-order methods can be used645

for computing MEM estimators, much like their popular ML counterparts. We point out that646

we are not limited to this setting. Other models can be considered as well, e.g., by blending647

a fidelity term originating from an MEM modeling paradigm with a traditional regularizer or648

vice versa. In this case, similar algorithms are applicable under suitable adjustments.649

The method we consider is the Bregman proximal gradient (BPG) method. This first-650

order iterative algorithm admits a comparably mild per-iteration complexity and as such it is651
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particularly suitable for contemporary large-scale applications. It is important to notice that652

many other methods, including second-order and primal-dual decomposition methods, can be653

also considered in some scenarios and can benefit from the operators derived in this work.654

Before we present the BPG method, we need to define its fundamental components [6, 16].655

Smooth adaptable kernel: Let f : Rd → (−∞,+∞] be proper, closed and continuously656

differentiable on int (dom f). Then h : Rd → (−∞,+∞] of Legendre type is a smooth adaptable657

kernel with respect to f if domh ⊆ dom f and there exists L > 0 such that Lh− f is convex.658

Bregman proximal operator: Let g : Rd → (−∞,+∞] be closed and proper and h : Rd →659

(−∞,+∞] of Legendre type. Then the Bregman proximal operator is defined as660

proxhg (x̄) := argmin {g(x) +Dh(x, x̄) : x ∈ Rn} (x̄ ∈ int (domh)).(5.2)661662

The BPG method is applicable under the following assumption.663

Assumption 5.1. Consider problem (5.1) and assume that there exists a function of Le-664

gendre type h : Rd → (−∞,+∞] such that:665

1. h is a smooth adaptable kernel with respect to f .666

2. h induces a computationally efficient Bregman proximal operator with respect to g.667

The BPG method reads:668

(BPG Method) Pick t ∈ (0, 1/L] and x0 ∈ int (domh). For k = 0, 1, 2, . . . compute

xk+1 = proxhtg
(
∇h∗

(
∇h(xk)− t∇f(xk)

))
.

669

For h = (1/2)∥ · ∥22 and f convex, Lh − f is convex if and only if ∇f is L-Lipschitz. In this670

case, the Bregman proximal operator reduces to the classical proximal operator and the BPG671

method is the well-knows proximal gradient algorithm [11].672

The BPG method for solving (5.1) exhibits a sublinear convergence rate [6]. Under suitable673

assumptions, the convergence improves to linear [5]. Accelerated variants, which improve674

practical performance and have superior theoretical guarantees under additional assumptions,675

are also available [3, 12]. For simplicity’s sake, we confine ourselves with the basic BPG676

scheme, but the operators to be presented can be readily applied to the enhanced algorithms.677

In order to customize the method to a particular instance of problem (5.1), a smooth678

adaptable kernel and corresponding Bregman proximal operator must be specified. To illus-679

trate this idea for MEM estimation, we focus on the linear models discussed in the previous680

section. In particular, we consider the model (4.4) where φ = ψ∗
R. We assume that Assump-681

tion 4.6 holds and that the prior reference measure R ∈ P(Ω) satisfies Assumptions 3.1 and 3.9.682

Furthermore, we assume that domψR ⊆ X which allows us to disregard the constraint x ∈ X.683

The latter assumption holds in many practical situations and we assume it here for simplicity.684

Otherwise, one can simply apply the BPG method with g = ψ∗
R + δX (under the appropriate685

adjustments to the proximal operator). In Table 3 below, we summarize the smooth adaptable686

kernels suitable for the models described in the previous section, see Table 2. In all cases,687

the smooth adaptable function admits a separable structure of the form h(x) =
∑d

j=1 hj(xj)688

where hj : R → (−∞,+∞] (j = 1, . . . , d) is a (univariate) function of Legendre type. As we689

will see in what follows, this property is very desirable as it give rise to a computationally690
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efficient implementation of the Bregman proximal operator. For completeness, we include the691

explicit formulas for the operators involved in the BPG method.692

Reference family Kernel (hj) Constant (L) [∇h(x)]j [∇h∗(z)]j

Normal (1/2)x2j ∥A∥2 :=
√
λmax(ATA) xj zj

Poisson xj log(xj) ∥A∥1 := max
j=1,2,...,d

m∑
i=1

|Ai,j | log(xj) + 1 exp(zj − 1)

Gamma (β = 1) − log(xj) ∥ŷ∥1 :=

m∑
i=1

|ŷi| −1/xj −1/zj

Table 3: Smooth adaptable kernels and related operators that correspond to the objective
function (f = ψ∗

Pθ̂
◦A) of the linear models listed in Table 2.

The kernel and related constant that correspond to the normal reference family is a well-known693

consequence due to the Lipschitz gradient continuity, a special case of the smooth adaptability694

property considered here.7 The kernel and related constant that correspond to the Poisson695

reference family is due to [6, Lemma 8]. The kernel and related constant that correspond to696

the Gamma distribution follows from [6, Lemma 7].697

We now discuss the special form of the Bregman proximal operator in the setting of the698

linear model (4.4) with φ = ψ∗
R. According to (5.2), for any t > 0, the Bregman proximal699

operator is defined by the smooth adaptable kernel h and the regularizer g = ψ∗
R as follows:700

proxhtψ∗
R
(x̄) = argmin

{
tψ∗
R(u) +Dh(u, x̄) : u ∈ Rd

}
.(5.3)701

702

The following theorem records that, in our setting, the above operator is well defined.703

Theorem 5.2 (Well-definedness of the Bregman proximal operator). Let h : Rd → (−∞,+∞]704

be of Legendre type and let R ∈ P(Ω) be a reference distribution satisfying the conditions in705

Assumptions 3.1 and 3.9. Assume further that int (domh)∩domψ∗
R ̸= ∅. Then, for any t > 0706

and x̄ ∈ int (domh), the Bregman proximal operator defined in (5.3) produces a unique point707

in int (domh) ∩ domψ∗
R.708

Proof. Since x̄ ∈ int (domh), the function Dh(·, x̄) is proper. In addition, since h is of709

Legendre type, so is Dh(·, x̄). Finally, Dh(·, x̄) is bounded below (by zero) by convexity of710

h. The result follows from Lemma 4.3 with ϕ = Dh and φ = tψ∗
R due to the aforementioned711

properties of Dh and the coercivity of tψ∗
R (Theorem 3.10 and t > 0).712

We now show that this operator is also computationally tractable. For many reference distri-713

butions, this fact stems from the following separability property.714

7More precisely, the equivalence holds for convex functions such as the ones considered here. For the
nonconvex case see an extension of the smooth adaptability condition presented in [16].

This manuscript is for review purposes only.
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Remark 5.3 (Separability of the Bregman proximal operator). In all cases under con-715

sideration, the smooth adaptable kernel h : Rd → (−∞,+∞] admits a separable struc-716

ture h(x) =
∑d

j=1 hj(xj). Therefore, by (2.4), the induced Bregman distance satisfies:717

Dh(x, y) =
∑d

i=1Dhi(xi, yi). If, in addition, the Cramér rate function admits a separable718

structure ψ∗
R =

∑d
i=1 ψ

∗
Ri

(cf. Remark 3.12), then the optimization problem defining the719

Bregman proximal operator is separable and can be evaluated for each component of x̄. ♢720

Given a particular instance of problem (5.1), with fidelity term f = ψ∗
Pλ̂

◦ A and regularizer721

g = ψ∗
R, one can derive a formula for the corresponding Bregman proximal operator. These722

formulas are summarized in Tables 4, 5, and 6 for each of the combinations of linear models723

(by using a compatible kernel generating distance from Table 3) and regularizers from Table 1.724

Some formulas are given in a closed form, others must be evaluated numerically through a725

solution of a nonlinear system.8 Due to Remark 5.3, for most of the regularizer reference726

distributions (excluding only the multivariate normal, multinomial and negative multinomial)727

the resulting subproblem is separable. Thus, for the sake of simplicity and without loss of gen-728

erality, we assume that d = 1, i.e., the resulting formulas correspond to one entry of the vector729

produced by the operator. The general case follows by applying the operator components-730

wise on all the elements of a vector x̄ ∈ Rd. An implementation of the operators along with731

selected algorithms, applications, and detailed derivations of the operators can be found under:732

733

https://github.com/yakov-vaisbourd/MEMshared.734

The following table lists the formulas of Bregman proximal operators for the normal linear735

family. In this case, the operator reduces to the classical proximal operator [41].736

Reference Distribution (R) Proximal Operator (x+ = proxtψ∗
R
(x̄))

Multivariate Normal
(µ ∈ Rd,Σ ∈ Sd : Σ ≻ 0)

x+ = (tI +Σ)−1(Σx̄+ tµ)

Multivariate Normal-inverse
Gaussian

(
µ, β ∈ Rd, α, δ ∈ R,

Σ ∈ Rd×d : δ > 0, Σ ≻ 0,

α2 ≥ βTΣβ, γ :=
√
α2 − βTΣβ

) x+ =
(
I + ρΣ−1

)−1 (
tβ + x̄+ ρΣ−1µ

)
, where ρ ∈ R+ :

(ρδ)2 + ∥
(
ρ−1I +Σ−1

)−1
(tβ + x̄− µ) ∥2Σ−1 = (αt)2

Gamma (α, β ∈ R++) x+ =
(
x̄− tβ +

√
(x̄− tβ)2 + 4tα

)
/2

continued . . .

8The solution of the nonlinear system can be efficiently approximated by various methods. In our imple-
mentation, building upon the fact that the systems involve monotonic functions (since they stem from the
optimality conditions of a convex problem), we used a variant of safeguarded Newton-Raphson method.
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. . . continued

Reference Distribution (R) Proximal Operator (x+ = proxtψ∗
R
(x̄))

Laplace (µ ∈ R, b ∈ R++) x+ =

{
µ, x̄ = µ,

µ+ bρ, x̄ ̸= µ,

where ρ ∈ R : α1ρ
3 + α2ρ

2 + α3ρ+ α4 = 0,

with α1 = (b/t)2b2, α2 = 2(b/t)2b(µ− x̄),

α3 = (b/t)2(µ− x̄)2 − 2(b/t)b− 1, α4 = −2(b/t)(µ− x̄)

Poisson9 (λ ∈ R++) x+ = tW
(
λex̄/t

t

)
Multinomial (n ∈ N, p ∈ ∆(d):∑d
i=1 pi < 1)

x+ ∈ Rd+ ∩ I(p) : (x+i − x̄i)/t+ log

(
x+
i (1−

∑d
j=1 pj)

pi(n−
∑d

j=1 x
+
j )

)
= 0

Negative Multinomial (p ∈ [0, 1)d,

x0 ∈ R++, p0 := 1−
∑d
i=1 pi > 0)

x+ ∈ Rd+ ∩ I(p) : (x+i − x̄i)/t+ log

(
x+
i

pi(x0+
∑d

j=1 x
+
j )

)
= 0,

Discrete Uniform
(a, b ∈ R : a < b)

x+ = x̄− tθ+ where θ+ = 0 if x̄ = (a+ b)/2,

otherwise: θ+ ∈ R \ {0}:

t(θ+ − x̄/t) + (b+1)e(b+1)θ+−aeaθ+

e(b+1)θ+−eaθ+
= eθ

+

eθ+−1

Continuous Uniform
(a, b ∈ R : a ≤ b)

x+ = x̄− tθ+ where θ+ = 0 if x̄ = (a+ b)/2,

otherwise: θ+ ∈ R \ {0}:

t(θ+ − x̄/t) + bebθ
+
−aeaθ+

ebθ+−eaθ+
= 1

θ+

Logistic (µ ∈ R, s ∈ R++): x+ = x̄− tθ+ where θ+ = 0 if x̄ = µ,

otherwise: θ+ ∈ R \ {0}:

tθ+ + 1
θ+ + πs

tan (−πsθ+) = x̄− µ

Table 4: Bregman Proximal Operators - Normal Linear Model (h = 1
2∥ · ∥

2).

Recall that the Cramér rate function induced by a uniform (discrete/continuous) or logistic737

reference distribution does not admit a closed form. To compute their proximal operator738

we appeal to the corresponding dual of the subproblem in (5.3). This is done via Moreau739

decomposition (see, e.g., [11, Theorem 6.45]) which applies when the Bregman proximal op-740

erator (5.3) reduces to the classical proximal operator (i.e., when h = (1/2)∥ · ∥22). For the741

9We denote by W : R → R the Lambert W function (see, for example, [23]).
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general case, we will employ a result summarized in Lemma 5.4 and Corollary 5.5 below. The742

proofs of both results can be found in Appendix A. Some notation is needed: for a function743

g : Rd → (−∞,+∞] proper, closed and convex and of h : Rd → (−∞,+∞] of Legendre type744

we set745

iconvhg (x̄) := argmin
{
g(x) + h(x̄− x) : x ∈ Rd

}
.(5.4)746

747

This is the (possibly empty) solution of the optimization problem defining the infimal convo-748

lution (g□h)(x̄) := inf
{
g(x) + h(x̄− x) : x ∈ Rd

}
.749

Lemma 5.4. Let g : Rd → (−∞,+∞] be proper, closed and convex and let h : Rd →750

(−∞,+∞] be of Legendre type. Let x̄ ∈ int (domh) and assume that there exists a unique751

point x+ := proxhg (x̄) satisfying x
+ ∈ int (domh)∩ dom g. Then, y+ := iconvh

∗
g∗ (∇h(x̄)) exists752

and it holds that ∇h(x+) + y+ = ∇h(x̄).753

The following corollary adapts the above lemma to the setting considered in our study. Fur-754

thermore, we complement this result with a simple observation which is particularly useful755

for Bregman proximal operator computations.756

Corollary 5.5. Let h : Rd → (−∞,+∞] be of Legendre type and let R ∈ P(Ω) satisfy757

Assumptions 3.1 and 3.9. Assume further that int (domh) ∩ domψ∗
R ̸= ∅. For t > 0 and x̄ ∈758

int (domh), let x+ := proxhtψ∗
R
(x̄) and θ+ := iconvh

∗

tψR(·/t)(x̄). Then, ∇h(x+) + θ+ = ∇h(x̄).759

In particular, θ+ = 0 (and x+ = x̄) if and only if x̄ = ER.760

The formulas of Bregman proximal operators for the Poisson and Gamma (β = 1) linear fam-761

ilies are included in Appendix A. We close our study with particular models and algorithms.762

763

Barcode Image Deblurring. Restoration of a blurred and noisy image represented by a764

vector ŷ ∈ Rd can be cast as the following optimization problem:765

min

{
1

2
∥Ax− ŷ∥22 + τφ∗

R(x) : x ∈ Rd
}
.(5.5)766

767

A ∈ Rd×d is the blurring operator and τ > 0 is a regularization parameter. The noise is768

assumed to be Gaussian which explains the least-squares fidelity term which can be justified769

from the viewpoint of both the ML and, as we know from our study, the MEM framework.770

If the original image is a 2D barcode, a natural choice for the reference measure R ∈ P(Ω)771

inducing φ∗
R is a separable Bernoulli distribution with p = 1/2 due to the binary nature of772

each pixel and no preference at each pixel to take either value.10 Additional information773

(symbology) can be easily incorporated by an appropriate adjustment of the parameter for774

each known pixel (see [47]). Using the appropriate proximal operator from Table 4, the BPG775

method for solving the model takes the form776

xk+1
i ∈ R : xk+1

i + tτ log

(
xk+1
i

1− xk+1
i

)
= xki − t[AT (Axk − ŷ)]i, (i = 1, 2, . . . , d).777

778

10As mentioned in Remark 3.13, Bernoulli is a special case of the multinomial distribution. This, one
dimensional, distribution is used to form a d-dimensional i.i.d as described in Remark 3.12.

This manuscript is for review purposes only.



24 Y. VAISBOURD, R. CHOKSI, A. GOODWIN, T. HOHEISEL, C.-B. SCHÖNLIEB

As mentioned above, our focus on the Bregman proximal gradient method is only for illustra-779

tion purposes. Favorable accelerated algorithms that employ the proximal operators derived780

in this work are readily available and should be used in practice. The acceleration scheme781

applicable here is known as the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [12].782

783

Natural Image Deblurring. For natural image deblurring there is no obvious structure such784

as the binary one for barcodes. However, it is customary to assume that the image is piecewise785

smooth. A popular model that promotes piecewise constant restoration is the Rudin, Osher786

and Fatemi (ROF) model [51] based on the total variation (TV) regularizer
∑d

i=1 g(Lix).787

Here, Li ∈ R2×d extracts the difference between the pixel i and two adjacent pixels while g788

stands for either the l1 (isotropic TV) or l2 (anisotropic TV) norm. Variants which admit the789

same structure with other choices of g are also considered in the literature: in [21, Subsection790

6.2.3], a model with the Huber norm for g was shown to promote restoration prone to artificial791

flat areas. Alternatively, one may consider the pseudo-Huber norm that corresponds to an792

MEM regularizer induced by the multivariate normal inverse-Gaussian reference distribution793

with parameters µ = β = 0, α = 1 and Σ = I. The resulting model is similar to (5.5)794

where the regularization term is substituted by
∑d

i=1 ψ
∗
R(Lix). This model can be tackled by795

a primal-dual decomposition method that employs the appropriate proximal operator from796

Table 4. For example, using the separability of the proximal operator [11, Theorem 6.6] and797

the extended Moreau decomposition [11, Theorem 6.45], the update formula of the Chambolle-798

Pock algorithm [21, Algorithm 1] reads799

yk+1
i = ρi

1+ρi
(yk + sLiz

k) (i = 1, 2, . . . , d),

with ρi ∈ R+ : ρ2i (sδ)
2 +

(
ρi

1+ρi

)2
∥yki + sLiz

k∥22 = 1,

xk+1 = (I + τATA)−1
(
xk − τ(LT yk+1 −AT ŷ)

)
,

zk+1 = 2xk+1 − xk,

800

801

where LT = [LT1 , . . . , L
T
d ] ∈ Rd×2d, yk ∈ R2d : (yk)T = [(yk1 )

T , . . . , (ykd)
T ] with yki ∈ R2 for all802

i = 1, 2, . . . , d) and s, τ are some positive step-sizes satisfying sτ∥L∥22 < 1.803

We point out that an efficient implementation of the above algorithm that takes into ac-804

count the sparse and structured nature of the matrices L and A, respectively, will result in a805

per-iteration complexity of the order O(d log d). The same statement is true with regard to806

the BPG method in the previous and following examples.807

808

Poisson Linear Inverse Problem. Poisson linear inverse problems play a prominent role809

in various physical and medical imaging applications. The linear model proposed in [6, Sub-810

section 5.3] is simply the MEM linear model with Poisson reference distribution. The authors811

of [6] suggest l1-regularization to deploy their BPG method. Alternatively, one may consider812

the MEM function induced by the Laplace distribution with parameters µ = 0 and b = 1.813
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This setting leads to the following update formula of the BPG method. For i = 1, 2, . . . , d:814

x̄k+1
i = exp

log(xki )− t
m∑
j=1

aji log(⟨aj , xk⟩/ŷj)

 ,

xk+1
i ∈ R : t2xk+1

i + 2t log

(
xk+1
i

x̄k+1
i

)
= xk+1

i

[
log

(
xk+1
i

x̄k+1
i

)]2
.

815

816
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France, 93 (1965), pp. 273–299.903

[42] J. Navaza, On the maximum-entropy estimate of the electron density function, Acta Crystallogr. A, 41904
(1985), pp. 232–244.905

[43] J. Navaza, The use of non-local constraints in maximum-entropy electron density reconstruction, Acta906
Crystallogr. A, 42 (1986), pp. 212–223.907

[44] J. A. Nelder and R. W. Wedderburn, Generalized linear models, J. R. Stat. Soc. Ser. A-G., 135908
(1972), pp. 370–384.909

[45] E. Rietsch et al., The maximum entropy approach to inverse problems-spectral analysis of short data910
records and density structure of the Earth, J. Geophys., 42 (1977), pp. 489–506.911
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Appendix A. Deferred Proofs and Tables.929

A.1. Deferred Proofs.930

Proof (for Lemma 3.11). For y ∈ domψ∗
P , we have931

ψ∗
Pθ̂
(y)

(3)
= sup

{
⟨y, θ⟩ − log

(
MPθ̂

[θ]
)
: θ ∈ Rd

}
(3.9)
= sup

{
⟨y, θ⟩ − [ψP (θ̂ + θ)− ψP (θ̂)] : θ ∈ Rd

}
= ψ∗

P (y) + ψP (θ̂)− ⟨y, θ̂⟩.

932

933

The result follows from the definition of the Bregman distance, (2.2) and θ̂ ∈ int (domψP ).934

Proof (for Lemma 4.3). Existence and uniqueness of the solution follows from [9, Corol-935

lary 11.15]. It remains to show that y∗ ∈ int (domϕ)∩ domφ. Evidently, y∗ ∈ domϕ∩ domφ936

thus it is sufficient to show that y∗ ∈ int (domϕ). Using [9, Theorem 16.2] and [9, Corollary937

16.38] we have 0 ∈ ∂ϕ(y∗) + ∂φ(y∗), in particular ∂ϕ(y∗) ̸= ∅. Since ϕ is of Legendre type we938

conclude that y∗ ∈ int (domϕ) [48, Theorem 26.1].939

Proof (for Theorem 4.5). Since FP is assumed to be minimal and steep, it is easy to940

verify (recall (3.9)) that Pθ satisfies Assumption 3.1 for any θ ∈ intΘP . As we assume941

S ∩ domψP ̸= ∅ and S∗ ∩ domψ∗
P ̸= ∅, the MEM and ML estimator exist due to Theorem 4.4942

and [18, Theorem 5.7], respectively. We now prove (b). Since FP is an exponential family, we943

have log fPθ(ŷ) = ⟨ŷ, θ⟩ − ψP (θ) and the ML estimator is a solution to944

max{log fPθ(ŷ) : θ ∈ S} = max{⟨ŷ, θ⟩ − ψP (θ) : θ ∈ S}

= −min{DψP (θ,∇ψ
∗
P (ŷ)) : θ ∈ S} − ψP (∇ψ∗

P (ŷ)) + ⟨ŷ,∇ψ∗
P (ŷ)⟩.

945

946

Omitting terms independent of the minimization and using that θ̂ = ∇ψ∗
P (ŷ), the formulation947

for the ML estimator follows. To obtain the formulation for the MEM estimator, observe that,948
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due to Lemma 3.11, we have949

min{ψ∗
Pθ̂
(y) : y ∈ S∗} = min{Dψ∗

P
(y,∇ψP (θ̂)) : y ∈ S∗}.950

951

Thus, the result follows by recalling that ŷ = ∇ψP (θ̂).952

We now turn to prove (a). Since S∗ ∩ int (domψ∗
P ) ̸= ∅ we obtain by Theorem 4.4 that953

yMEM ∈ S∗∩int (domψ∗
P ). This fact combined with the assumption∇ψ∗

P (S
∗∩int (domψ∗

P )) =954

S ∩ int (domψP ) implies that ∇ψ∗
P (yMEM) ∈ S ∩ int (domψP ). Thus, (a) follows from (b) due955

to the Bregman distance dual representation property (2.3) and Remark 2.6.956

Proof (for Lemma 5.4). By the optimality condition of the optimization problem in the957

definition of the Bregman proximal operator (5.2) we obtain that958

∇h(x̄)−∇h(x+) ∈ ∂g(x+).959960

Since g is assumed to be proper, closed and convex, (2.2) yields961

x+ ∈ ∂g∗
(
∇h(x̄)−∇h(x+)

)
.(A.1)962963

Setting ỹ := ∇h(x̄)−∇h(x+) and observing that x+ = ∇h∗(∇h(x̄)− ỹ) we can rewrite (A.1)964

as965

∇h∗(∇h(x̄)− ỹ) ∈ ∂g∗(ỹ).966967

It is now easy to verify that the above is nothing else but the optimality condition for ȳ, thus,968

ỹ = y+ and we can conclude that ∇h(x+) + y+ = ∇h(x̄), establishing the desired result.969

Proof (for Corollary 5.5). By Theorem 3.10 we have that ψ∗
R is proper, closed and convex970

and thus ψ∗∗
R = ψR due to [11, Theorem 4.8]. By Theorem 5.2 we know that x+ is well971

defined. The proof of the first part then follows directly from Lemma 5.4 (with g = tψ∗
R and972

y+ = θ+) and [11, Theorem 4.14(a)]. To see that θ+ = 0 if and only if x̄ = ER, observe973

that the objective function in the subproblem defining the Bregman proximal operator (5.3)974

is greater equal than zero, and equality holds if and only if x̄ = ER with x+ = x̄. Thus, the975

statement holds true in view of the first part of the current corollary.976

A.2. Bregman Proximal Operators for Poisson and Gamma (β = 1) Linear Families.977

The following table lists the formulas of Bregman proximal operators for the Poisson and978

Gamma (β = 1) linear families, respectively. Observe that by Theorem 5.2 the Bregman979

proximal operator is well defined if int (domh) ∩ domψ∗
R ̸= ∅. Since int (domh) = Rd++ this980

implies that for the multinomial and negative multinomial distributions we must assume that981

pi > 0 for all i = 1, 2, . . . , d. Furthermore, for the sake of simplicity we include the normal and982

normal inverse-Gaussian distributions. The multivariate variants can be found in the software983

documentation along with further explanations.984
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Reference Distribution (R) Bregman Proximal Operator (x+ = proxhtψ∗
R
(x̄))

Normal
(µ, σ ∈ R : σ > 0)

x+ = σ
tW

(
t
σ x̄e

tµ
σ

)
Normal-inverse Gaussian(
µ, α, β, δ ∈ R : δ > 0,

α ≥ |β|, γ :=
√
α2 − β2

) x+ ∈ R++ :

(tα/σ)(x+ − µ) = (tβ − log(x+/x̄))
√
δ2 + (x+ − µ)2/σ

Gamma (α, β ∈ R++) x+ = αt

W(αt exp(tβ)
x̄ )

Laplace (µ ∈ R, b ∈ R++) x+ =

{
µ, x̄ = µ,

µ+ bρ, x̄ ̸= µ,

where ρ ∈ R : ρ+ 2b
t log

(
µ+bρ
x̄

)
= b2ρ

t2 log2
(
µ+bρ
x̄

)
Poisson (λ ∈ R++) x+ = x̄1−τλτ (τ := t

t+1 )

Multinomial (n ∈ N, p ∈ int∆(d)) x+i = γi (n− ρ)
τ

(
τ := t

t+1 , γi :=

[
pix̄i

1/t

1−
∑d

j=1 pj

]τ)
where ρ ∈ R : ρ = (n− ρ)

t
t+1

(∑d
i=1 γi

)
Negative Multinomial (p ∈ (0, 1)d,

x0 ∈ R++, p0 := 1−
∑d
i=1 pi > 0)

x+ ∈ Rd+ ∩ I(p) : log
(
x+
i

x̄i

)
+ t log

(
x+
i

pi(x0+
∑d

j=1 x
+
j )

)
= 0,

Discrete Uniform
(a, b ∈ R : a < b)

x+ = x̄e−tθ
+

where θ+ = 0 if x̄ = (a+ b)/2,

otherwise: θ+ ∈ R \ {0}:
(b+1)exp((b+1)θ+)−aexp(aθ+)

exp((b+1)θ+)−exp(aθ+) = exp(θ+)
exp(θ+)−1 + exp(x̄− tθ+ − 1)

Continuous Uniform
(a, b ∈ R : a ≤ b)

x+ = x̄e−tθ
+

where θ+ = 0 if x̄ = (a+ b)/2,

otherwise: θ+ ∈ R \ {0}:
bexp(bθ+)−aexp(aθ+)
exp(bθ+)−exp(aθ+) = 1

θ+ + exp(x̄− tθ+ − 1)

Logistic (µ ∈ R, s ∈ R++): x+ = x̄e−tθ
+

where θ+ = 0 if x̄ = µ,

otherwise: θ+ ∈ R \ {0}:
1
θ+ + πs

tan(−πsθ+) + µ = exp (x̄− tθ+ − 1)

Table 5: Bregman Proximal Operators - Poisson Linear Model (hj(x) = xj log xj)
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Reference Distribution (R) Bregman Proximal Operator (x+ = proxhtψ∗
R
(x̄))

Normal
(µ, σ ∈ R : σ > 0)

x+ =
(
(t/σ)µ− 1/x̄+

√
((t/σ)µ− 1/x̄)2 + 4(t/σ)

)
/(2t/σ)

Normal-inverse Gaussian(
µ, α, β, δ ∈ R : δ > 0,

α ≥ |β|, γ :=
√
α2 − β2

) x+ ∈ R++ :

tα(x+ − µ)x+ =
(
(tβ − 1/x̄)x+ + 1

)√
δ2 + (x+ − µ)2

Multivariate Normal-inverse

Gaussian
(
µ, β ∈ Rd, α, δ ∈ R,

Σ = σI, σ > 0 : δ > 0, Σ ≻ 0,

α2 ≥ βTΣβ, γ :=
√
α2 − βTΣβ

) x+i = (wi + ρµi +
√

(wi + ρµi)2 + 4ρ)/(2ρ),

with wi = tβi − 1/x̄i and ρ ∈ R+ :

(ρδ)2 + 1
4σ

∑d
i=1

(
wi +

√
(wi + µiρ)2 + 4ρ

)2

= (αt/σ)2

Gamma (α, β ∈ R++) x+ = x̄(tα+ 1)/(x̄tβ + 1)

Laplace (µ ∈ R, b ∈ R++) x+ =

{
µ, x̄ = µ,

µ+ bρ, x̄ ̸= µ,

where ρ ∈ R : α1ρ
3 + α2ρ

2 + α3ρ+ α4 = 0,

with α1 = b2((b/x̄)2 − t2), α2 = 2b(µ((b/x̄)2 − t2)− b2(t+ 1)/x̄),

α3 = b2((1− µ/x̄)2 + 2t(1− 2µ/x̄))− t2µ2, α4 = 2tbµ(1− µ/x̄)

Poisson (λ ∈ R++) x+ ∈ R+ : t log
(
x+

λ

)
= 1

x+
− 1

x̄

Multinomial (n ∈ N, p ∈ ri∆(d)) x+ ∈ rin∆(d) : t log

(
x+i (1−

∑d
j=1 pj)

pi(n−
∑d

j=1 x
+
j )

)
= 1

x+i
− 1

x̄i

Negative Multinomial (p ∈ (0, 1)d,

x0 ∈ R++, p0 := 1−
∑d
i=1 pi > 0)

x+ ∈ Rd++ : t log

(
x+i

pi(x0+
∑d

i=j x
+
j )

)
= 1

x+i
− 1

x̄i
,

Discrete Uniform
(a, b ∈ R : a < b)

x+ = x̄/(x̄tθ+ + 1) where θ+ = 0 if x̄ = (a+ b)/2,

otherwise: θ+ ∈ R \ {0}:
(b+1) exp((b+1)θ)−a exp(aθ)

(exp((b+1)θ)−exp(aθ)
= exp(θ)

exp(θ)−1
+ x̄

tx̄θ++1

Continuous Uniform
(a, b ∈ R : a ≤ b)

x+ = x̄/(x̄tθ+ + 1) where θ+ = 0 if x̄ = (a+ b)/2,

otherwise: θ+ ∈ R \ {0}:
b exp(bθ+)−a exp(aθ+)

exp(bθ+)−exp(aθ+)
= 1

θ+
+ x̄

tx̄θ++1

Logistic (µ ∈ R, s ∈ R++): x+ = x̄/(x̄tθ+ + 1) where θ+ = 0 if x̄ = µ,

otherwise: θ+ ∈ R \ {0}:
1
θ+

+ πs
tan (−πsθ+)

+ µ = x̄
x̄tθ++1

Table 6: Bregman Proximal Operators - Gamma (β = 1) Linear Model (hj(x) = − log(xj))

This manuscript is for review purposes only.
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