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Maximum Entropy on the Mean and the Cramér Rate Function in Statistical
Estimation and Inverse Problems: Properties, Models, and Algorithms*

Yakov Vaisbourd?, Rustum Choksit, Ariel Goodwin®, Tim Hoheisel’, and Carola-Bibiane
Schonlieb?

Abstract. We explore a method of statistical estimation called Mazimum Entropy on the Mean (MEM) which
is based on an information-driven criterion that quantifies the compliance of a given point with a
reference prior probability measure. At the core of this approach lies the MEM function which is a
partial minimization of the Kullback-Leibler divergence over a linear constraint. In many cases, it
is known that this function admits a simpler representation (known as the Cramér rate function).
Via the connection to exponential families of probability distributions, we study general conditions
under which this representation holds. We then address how the associated MEM estimator gives
rise to a wide class of MEM-based regularized linear models for solving inverse problems. Finally,
we propose an algorithmic framework to solve these problems efficiently based on the Bregman
proximal gradient method, alongside proximal operators for commonly used reference distributions.
The article is complemented by a software package for experimentation and exploration of the MEM
approach in applications.

Key words. Maximum Entropy on the Mean, Statistical Estimation, Cramér Rate Function, Kullback-Leibler
Divergence, Prior Distribution, Regularization, Linear Inverse Problems, Bregman Proximal Gra-
dient, Convex Duality, Large Deviations.
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1. Introduction. Many models for modern applications in various disciplines are based
on some form of statistical estimation, for example the very common mazimum likelihood
(ML) principle. In this study, we consider an alternative approach known as the mazimum
entropy on the mean (MEM). At its core lies the MEM function xp induced by some reference
distribution P and defined as

rp(y) = inf {KL(Q|P) : Eq = y,Q € P(V)},

where P(£) stands for the set of probability measures on  C RY, E, is the expected value of
Q € P(Q) and KL(Q|P) stands for the Kullback-Leibler (KL) divergence of  with respect to
P [38] (see Section 2 for precise definitions). Thus, the MEM modeling paradigm stems from
the principle of minimum discrimination information [37] which generalizes the well-known
principal of maximum entropy [36]. In the context of information theory [24], the argmin of
kp(y) is often referred to as the information projection of P onto the set {Q € P(Q?) : Eqg =y},
the closest member of the set to P.

Various forms and interpretations of MEM have been studied (see for example, [26, 30,
31, 32, 34, 39, 40]) and found applications in various disciplines, including earth sciences
[29, 42, 43, 45, 52], and medical imaging [1, 19, 22, 33, 35]. A version of the MEM method

*Submitted to the editors DATE.
fDepartment of Mathematics and Statistics, McGill University
tDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge.

1

This manuscript is for review purposes only.



39

40

Gt s W N =

=)

S|

S v v ot Ot Ot Ot Ut Ot gt Ut
S © & c co
o ©

(@)
—_

62
63
64
65
66
67
68
69
70
71
72
73
74
75

76

2 Y. VAISBOURD, R. CHOKSI, A. GOODWIN, T. HOHEISEL, C.-B. SCHONLIEB

was recently explored for blind deblurring of images possessing some form of fixed symbology
(for example, in barcodes) [47, 46]. There one exploited the ability of of the MEM framework to
facilitate the incorporation of nonlinear constraints via the introduction of a prior distribution.

Despite its many interesting properties in both theory and applications, the MEM method-
ology has yet to find its place as a mainstream tool for statistical estimation, particularly as it
pertains to solving inverse problems. One factor that might have contributed to this centers
on the practical issue that there are no dedicated optimization algorithms designed to tackle
models based on the MEM methodology. Indeed, the MEM function is defined by means of
an infinite-dimensional optimization problem. Previous attempts to solve models involving
the MEM function relied on its finite-dimensional dual problem. To the best of the authors’
knowledge, there are no dedicated optimization algorithms designed to tackle models based
on the MEM methodology. Therefore, any researcher or practitioner wishing to employ the
MEM framework must first overcome a notable barrier of deriving an appropriate optimization
algorithm for its solution. In this work, our goal is to fill in this gap, providing an accessible
gate to the MEM methodology.

Our approach is based on the fundamental work by Brown [18, Chapter 6] and comple-
ments [39] by first proving the equivalence of the MEM function to the Cramér’s rate func-
tion, mostly known from its role in large deviation theory. Cramér’s rate function is defined
by means of a finite-dimensional optimization problem as it is simply the convex conjugate of
the log-normalizer (aka the comulant generating function) of the reference distribution P. In
many cases (i.e., choices of P) it admits a closed form expression while in others it can still
be evaluated efficiently. The connection between these seemingly different functions is well
established in the large deviations [27], statistics [18], and information theory [39] literature.
Nonetheless, various assumptions imposed in the aforementioned works limit the scope of ex-
isting results. Employing the framework of exponential families of probability distributions
[18], we establish the equivalence between the two functions under very mild and natural con-
ditions, allowing us to cover many distributions of practical interest. Thus, models involving
MEM functions can be explicitly stated using the corresponding Cramér functions.

Central to our study is the MEM estimator which is shown to be well defined under very
mild conditions. We further recall an insightful connection between the MEM and ML esti-
mators as presented in [18] for the case of a reference distribution from an exponential family.
As with the ML counterpart, the MEM estimator has vast applications, and hence we restrict
the remainder of the paper to a wide class of regularized linear models for solving inverse
problems. Each model in this class involves two MEM functions, one in the role of a fidelity
term and another as a regularizer (comparable to the mazimum a priori (MAP) estimation
framework which extends ML). Let us provide an example: given a measurement matrix
A € R™*? an observation vector § € R™ and an additional vector p € [0, l]d representing
some prior knowledge, the following optimization problem

d
. 1 ) T 1 —a . d
mm{2||Ax—y||2+§ {xﬂog <pi>+(1_$i)10g<1_pi>:| cx€[0,1] }

=1

Fidelity Regularization

fits the MEM framework with normal (Gaussian) and Bernoulli reference distributions of the
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MEM AND CRAMER RATE FUNCTION IN STATISTICAL ESTIMATION 3

fidelity and regularization terms, respectively. Other choices of reference distributions will
lead to additional models that admit similar additive composite structure. Moreover, the
closed form expressions of the two functions in our example follow from the definition of
Cramér’s rate function. In models of these forms, concrete expressions and structures with
distinct geometry can be exploited to customize appropriate optimization strategies. Here we
highlight the class of Bregman proximal gradient (BPG) methods as an especially suitable
choice for this family of models. Nevertheless, other methods are also viable alternatives; for
example, adaptive and scaled, accelerated variants and dual decomposition methods which
are defined by means of the same operators developed here.

Our overall aim is to provide a self-contained, mathematically sound toolbox for working
with the MEM methodology for a wide variety of models. For this reason, we provide a
comprehensive list of Cramér functions and operators used in the algorithms, and complement
it with a software package. We believe this sets the basis for (and hopefully triggers) further
experimentation and exploration of the MEM approach in contemporary applications.

The paper is organized as follows. In Section 2, we recall some concepts and preliminary
results from convex analysis and probability theory which will be used in this work. In
Section 3, we study the MEM and Cramér rate functions and establish the equivalence between
the two under very mild and natural conditions. This allows us to use the accessible definition
of the Cramér function and derive tractable expressions for a wide class of possible reference
distributions which closes this section (see Table 1). Section 4 is devoted to the MEM models
considered in this work, and in Section 5, we present the algorithms for solving such models.
We end with a few concrete examples of problems and corresponding algorithms crafted from
the operators derived in this work. An appendix provides deferred proofs and the details of a
variety of Cramér rate function computations.

2. Preliminaries.

2.1. Convex Analysis. We recall here some definitions and results from convex analysis.
Further details and proofs can be found in various textbooks such as [9, 11, 48].

The affine hull of a set S C R? is the smallest affine subspace containing S. For any point
y € S, we have the following relation

(2.1) aff S = y + span (S — y),

where span S stands for the linear hull of S.The dimension of aff S is defined as dim(aff S) :=
dim (span (S — y)). The interior, closure and boundary of a set are denoted as int S, cl S and
bd S, respectively.

The (Fenchel) conjugate of 1 : R? — [—00, 00| is defined as

Y (y) = sup{{y, @) — y(z) : w € RY).
The function 1 is proper if ¢)(z) > —oo for all z € R? and dom ) := {z € R? : ¢)(z) < oo} # 0.
In addition, ¢ is closed, if its epigraph {(z,a) € R x R : 9)(z) < a} is a closed set.

If 4 is proper and convex then * is closed, proper and convex. For a proper function
Y : R — (o0, 4+00], the Fenchel-Young inequality states that ¢(x) + *(y) > (y,x). If ¢ is
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proper, closed and convex then we obtain that [11, Theorem 4.20)]
(2.2) V(z)+9T(y) = (y,2) <= yeN(z) <= z€N(y),

where OY(z) == {g € R : ¥(y) > ¥(z) + {9,y — x) (y € RY)} is the subdifferential of ¢ at
r € R

The indicator function of a set S C R? is denoted by ds and defined as d5(z) = 0 if
x € S and dg(r) = 400 otherwise. Its convex conjugate is known as the support function
os(y) = d5(y) = sup{(y, z) : = € S}.

Definition 2.1 (Essential smoothness and Legendre type). Let ¢ : R* — (—o0,+o00] be
proper and convex. Then, 1 is called essentially smooth if it satisfies the following conditions:

1. int (dom)) # 0;

2. 4 is differentiable on int (dom));

3. [|[VY(zF)|| — oo for any sequence {x* € int (dom 1)) }reny — Z € bd (dom ).
The last condition listed above is called steepness. An essentially smooth function i is said
to be of Legendre type if it is strictly convex on int (dom)).

For ¢ : R — (—o00, +00] closed and of Legendre type, the following hold [48, Theorem 26.5]:
1. ¢* is of Legendre type.
2. Vi) : int (dom1)) — int (dom ¢*) is a bijection with (Vi)~! = Vy*.

The Bregman distance induced by a function ¢ of Legendre type is defined as [17]

Dy(y,z) = ¢¥(y) — () — (VY(2),y —z)  (z € int (dom ),y € dom)).

For any (x,y) € int (dom ) x dom 1), the Bregman distance is nonnegative Dy (y,z) > 0, and
equality holds if and only if = y due to strict convexity of ¢ [17]. However, in general, Dy
is not symmetric, unless v = (1/2)|| - ||? [7, Lemma 3.16]. The Bregman distance induced by
a function v of Legendre type satisfies the following additional properties [8, Theorem 3.7]:
For any x,y € int (dom 1)) it holds that

(2'3) DW(yax) = Dw* (Vlb(l’)»vlb(y))

The Bregman distance is strictly convex with respect to its first argument. Moreover, for two
functions 11 and 19 differentiable at x € int (dom ) N int (dom 1)3)

(24) Da¢1+,3w2 (y,x) = aDlh (y7x) + BD¢2(Z/7$) (y € dom 11 N dom s, aaB € R)

2.2. Probability Theory and Exponential Families. We recall some concepts from prob-
ability theory with an emphasis on exponential families. For further detail, see e.g. [4, 18].

Let M(Q) be the set of o-finite measures defined over a measurable space (€2,%) where
QO CR? and ¥ is a o-algebra on Q. The support of p, namely the minimal closed measurable
set A € ¥ such that p(Q2\ A) = 0, is denoted by Q,. We denote by Q¢ := cl(conv ()
the closure of the convex hull of the support €2,, which is known as the convexr support of p.
Recall further that, if p is another measure defined over (2, X)), then p is absolutely continuous
with respect to p (denoted by p < p) if for every A € 3 such that p(A) = 0 it holds that
1(A) = 0. In this case, the Radon-Nikodym derivative is the unique function h = Z—ZL such that
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MEM AND CRAMER RATE FUNCTION IN STATISTICAL ESTIMATION 5

1(A) = [, hdp for any A € X. For a measurable space (Q2,%) we denote by v € M(Q) the
dominating measure. Throughout, we restrict ourselves to two scenarios: either Q = R? and
v is the Lebesgue measure or € is a countable subset of R? and v is the counting measure.
Let P(2) be the set of probability measures defined over 2 and absolutely continuous with
respect to v. We emphasize that for P € P(Q) the support 2p might be a proper subset of
Q, and thus there is no loss of generality in our setting even when Q = R%. Furthermore,
for any set A C R the expression P(A) should be understood as P(AN Q). For P € P(Q),
the Radon-Nikodym derivative fp := ‘é—f is either a probability density or mass function,
depending on the set €. In both cases, we will refer to fp as the density of the distribution.’

The expected value (if it exists) and moment generating function of P € P(Q) are given by
Ep := /deP(y) eR?  and  Mplf] := /Qexp(c, 6))dP,
respectively. For P € M(2) absolutely continuous with respect to v, we define
Op = {0 eR?: /Qexp(<-,c9>)dP < oo},
and consider the function ¢p : R* — (—o0, +00] given by

log/ exp (- 0))dP, 0 € Op,
Q
—+00, 0 ¢ @p.

(2.5) b (0) =

Then Fp = {fp,(y) :=exp ((y,0) —¢¥p(#)) : § € Op}, is a standard ezponential family gener-
ated by P. Note that, the probability measure Py satisfying dFPy = fp,dP is, by construction, a
probability measure such that Py and P are mutually absolutely continuous, hence Qp, = Qp
for all # € ©p [4, Section 8.1]. The function ¥ p is called the log-normalizer (also known as
the log-partition or log-Laplace transform of P). The vector # € R? is known as the natural
parameter and the set ©p = domp is called the natural parameter space.”

The following results summarize some well-known properties of the log-normalizer ¥ p.

Proposition 2.2 (Convexity, [18, Theorem 1.13]). Let Fp be an exponential family generated
by P € M(Q). Then, the natural parameter space ©p is a conver set and the log-normalizer
function ¥p : R* — (—oc0, +00] is closed, proper and convex.

Proposition 2.3 (Differentiability, [18, Theorem 2.2, Corollary 2.3]). Let Fp be an exponential
family generated by P € M(Q) and let 0 € intOp. Then, the log normalizer yp : RY —
(—00, +00] is infinitely differentiable at 6 and it holds that Vip(8) = Ep,.

The dimension of a convex set S C R? denoted by dim S, is equal to the affine dimension
of aff S. We assume that the exponential family generated by P € M(Q) is minimal, i.e.,
dim©p = dim Q% = d or, equivalently, int © p # () and int Q% # (. This is not restrictive as a
non-minimal exponential family can be always reduced to a minimal form [18, Theorem 1.9].
The following result strengthens Proposition 2.2 for minimal exponential families.

'"We will interchangeably refer to P € P(f2) as either a distribution or measure.
2Tt is possible to define the exponential family Fp over a subset of the natural parameter space [18, Definition
1.1], but this is not needed for our study.

This manuscript is for review purposes only.



199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

6 Y. VAISBOURD, R. CHOKSI, A. GOODWIN, T. HOHEISEL, C.-B. SCHONLIEB

Proposition 2.4 (Strict convexity, [18, Theorem 1.13]). Let Fp be a minimal exponential
family generated by P € M(Q). Then, the log-normalizer function p : RT — (—o0, 4+-00] is
strictly convex over Op.

If the log-normalizer ¥ p is essentially smooth (or ’steep’ in the exponential family terminology,
see, e.g., [4, Theorem 5.27] and [18, Definition 3.2]), we say that the exponential family Fp is
steep. This condition is automatically satisfied when O p is open [4, Theorem 8.2]. While most
exponential families encountered in practice have this property, there are relevant cases when
this assumption is too restrictive (e.g., [18, Example 3.4]). Thus, in order to cover all examples
provided in this work, we will assume that the exponential family is steep. Summarizing the
above discussion and recalling Definition 2.1 we have the following corollary.

Corollary 2.5. Let Fp be a minimal and steep exponential family generated by P € M(RQ).
Then, the log normalizer function ¥p is of Legendre type.

From the last corollary we can see that Vip forms a bijection between int (domp) = int ©p
and int (dom}). This relation, provides a dual representation of the log-normalizer ¢ p
and, consequently, the distribution in question. The so-called mean value parametrization
is obtained by applying a change of variables where the natural parameter 0 is replaced by
p € RY such that u = Ep, = Vepp(0), i.e., 0 = Vbl (u).

The Kullback-Leibler (KL) divergence (also known as the relative entropy) of a probability
measure ) € P(§2) with respect to P € P(2) is given by (see [38])

iQ
KL(Q|P) = /Qlog<dp>dQ’ ek

400, otherwise.

It holds that KL(Q|P) > 0 with equality if and only if @ = P [38, Lemma 3.1]. Thus, the
Kullback-Leibler information quantifies the dissimilarity between two probability measures.
We note that, in general, KL(Q|P) is not symmetric. Furthermore, KL(Q|P) is jointly convex
in (Q|P). We record a special case for which the KL divergence is of particular interest.

Remark 2.6 (Kullback-Leibler divergence for exponential family). Let Fp be an exponential
family generated by P € M(Q2). Let 6; € Op and 0y € int ©p, thus for i = 1,2 we have that
fp,, € Fp. In this case, the KL divergence between the two measures Py, € P(£2) such that

dPy, := fp, dP (i =1,2) satisfies KL(Pp,|Pp,) = Dy, (01, 62) [18, Proposition 6.3]. O
3. Maximum entropy on the mean and Cramér’s rate function. For y € R?, the density
dP
1 = —
(3.1) fr(y) =)

provides an indication of the likelihood of y under the distribution P € P(£2). The method of
Mazimum Entropy on the Mean (MEM) suggests an alternative, information driven function
kp : RY — (—o0, +00] given by

(3.2) kp(y) == nf {KL(Q|P) : Eqg =y,Q € P(Q)}.

Here, kp measures how y complies with the distribution P, by seeking a distribution @
with expected value y that minimizes KL(-|P). The distance, in terms of the KL divergence
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MEM AND CRAMER RATE FUNCTION IN STATISTICAL ESTIMATION 7

(the information gain) between the resulting and the original distributions quantifies the
compliance of y with P. We will refer to kp as the MEM function and to P as the reference
distribution. Since KL(Q|P) > 0 and KL(Q|P) = 0 if and only if @ = P, we find that the
MEM function satisfies £p(y) > 0 for any y € R? and rp(y) = 0 if and only if y = Ep.

In most cases of interest, the MEM function admits an alternative representation which
sheds light on many of its additional properties (cf. Theorem 3.10). More precisely, under
suitable conditions (cf. Theorem 3.8), the MEM function coincides with the Cramér rate
function [25], to which we turn now. For a given reference distribution P € P({2), recall the
log-nomalizer previously defined for a general measure in (2.5):

$p(8) = log Mp[d] = log /Q exp ((-,0)) dP.

In the context of probability measures P, 1p is often known as the cumulant generating
function. The Cramér rate function 1} associated with P is the conjugate of 1 p, that is,

Vp(y) = sup{(y,0) —¥p(0) : 0 € R}

Our central assumption (which is not too restrictive in view of our discussion above) on the
prior P and its exponential family Fp is provided below. The additional condition 0 € int ©p
insures the existence of Ep.

Assumption 3.1. The reference distribution P € P(§) generates a minimal and steep ex-
ponential family Fp such that 0 € int Op.

The equivalence between the two seemingly different functions® Yy and kp was previously
established under various assumptions: the authors of [27, Theorem 5.2] (see also [28]) impose
the (restrictive) assumption that ¢ p is finite. On the other hand, the results in [18, Theorem
6.17] and [39, Proposition 1] (see also [13] and a closely related result in [54, Theorem 3.4]) do
not address the challenging case when y resides on the boundary of the domain. This scenario
turns out to be important if (and only if) the reference distribution is defined over a countable
set. Here, we provide a complete proof that overcomes these assumptions previously imposed.
Our approach emphasizes the role played by the convex support of the reference distribution
and leads to natural and easy to verify conditions. To this end, we will first need to examine
the domains dom kp and domp. For Cramér’s rate function 1}, a characterization of the
domain is summarized in the following proposition.

Proposition 3.2 (Domain of the Cramér rate function v}, [4, Theorems 9.1, 9.4 and 9.5]). Let
P € P(Q) be a reference distribution satisfying Assumption 3.1. Then, int Q% C dom} C
Q%F. Moreover, the following hold:

(a) If Qp is finite, then dom ), = Q5.

(b) If Qp is countable, then dom )}, O conv Qp.

(¢) If Qp is uncountable, then dom 7}, = int QF.

34% appears in Cramér’s Theorem central in large deviations theory [28]. A more general form of kp
appears in Sanov’s Theorem.
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In order to establish a similar characterization for the domain of the MEM function, we
will need to make precise the relation between 2p and the expected value Ep for a given
probability measure P € P(€2). To this end, we first recall some additional definitions and
results (see, for example, [48, Section 6]). Consider two subsets S, S C R? and assume further
that S C S. Then cl S C clg, intS C int S and conv S - conv S.

Denote the closed Euclidean unit ball in R? by B;. The relative interior [48, Section 6] of
a convex set S C R? is defined as

riS = {xERd:EIT>OsuChthat ($+TBd)ﬂaﬁS§S}.

E.g., for the unit simplez Ay := {y € RL : (e,y) = 1} we haveriAg := {y € RY, : (e,y) = 1}.
Some facts which will be used in the sequel are summarized in the following lemma. Further
details and proofs can be found in [48, Section 6, Theorem 13.1].

Lemma 3.3 (On the relative interior). Let S C RY be nonempty and convex. Then:

(a) It holds that ri(clS) =1iS and riS C S CclS.

(b) If dim S = d then riS = int S and, in particular, int S = (.

(c) It holds that x € riS if and only if og—_,(v) > 0 where the last inequality is strict for

every v € RY such that —og(—v) # og(v).

Lemma 3.4 (Domain of expected value). Let P € P(Q2) and assume that Ep exists. Then
Ep € riQ% =ri(conv2p).

Proof. By definition of oq,, for any v € R?, it holds that —oq,(—v) < (v,y) < o, (v).
As P € P(R), this implies, for all v € RY, that

(3.3) (v, Ep) = /Q (0,9)dP(y) < 0a, (v) /Q dP(y) = oo, (v).

P

If there exists some subset A C Qp such that P({y € A : (v,y) < oq,(v)}) > 0, then the
inequality in (3.3) is strict. We will show that, for any v € RY such that —oq, (—v) # oq, (v),
such a subset exists; the desired result then follows from Lemma 3.3 (c) and the equivalence
oqee(v) = oqp(v) [49, Theorem 8.24]. Indeed, let v € RY such that —oq,(—v) # oq,(v), i.e.
—0q,(—v) < 0qp(v). Pick 7 € (—oq,(—v),00,(v)) and consider A = {y € Qp : (v,y) < 7}.
As 7 < oq,(v), we have A C {y € Qp: (v,y) < 0q,(v)}, and

P(A)=P({y eQp:(-v,y) > —7}) = P({y € Qp : 00, (—v) = (-v,y) > —7}) >0,

where the strict inequality follows from the definition of o, (—v) and o, (—v) > —7. Hence,
A satisfies the desired conditions, which establishes the result. |

We are now in a position to present and prove a characterization for the domain of the MEM
function, analogous to Proposition 3.2. We will use the following notation

Op(y) ={Q e P(Q):Eg =y, Q < P}.
Observe that y € dom kp if and only if Qp(y) # 0.

Lemma 3.5 (Domain of the MEM function kp). Let P € P(Q) be a reference distribution
satisfying Assumption 3.1. Then:
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(a) IfQp is countable, then dom kp = conv Qp. Hence, if Qp is finite, then dom kp = QF.
(b) If Qp is uncountable, then dom kp = int Q5.

Proof. (a) Let y € domkp, hence there exists @ € Qp(y). As Q < P, we obtain
Qg C Qp, thus convQg C convQp. Hence, by Lemma 3.3 (a) and Lemma 3.4, we
know that y = Eg € ri QCQC C conv g C convQp. Thus, domkp C conv{lp. For
the converse inclusion, let y € convQp. By Carathéodory’s theorem [20], there exist
n < d+ 1 points pi,...,p, in Qp such that y = > | A;p; for some X € A,,. Consider
a distribution @ € P(Q) satisfying Q({p;}) = \; foralli =1,... ,n. Then, Q € Qp(y)
by construction. Thus, y € dom xp, and we can conclude that convQp C dom kp.

(b) First, let y € domkp, then there exists Q € Qp(y). Since ) < P which satisfies
Assumption 3.1, it holds that dim Qf = Q% = d. Otherwise, the probability measure
Q (Q(2g) = 1) is concentrated on a lower dimensional affine subspace in contradiction
to the absolute continuity of @ with respect to P. Hence, using Lemma 3.4 and
Lemma 3.3 (b), we obtain that y = Eq € riQf = int Qff C int QF. For the converse
inclusion, by Proposition 3.2, y € int Q¥ = dom ¢} = int (dom¢}) = dom V¢, and
we conclude that y = Ep, for § = V¢ (y). Since Py < P for Py from the exponential
family generated by P, we find that Py € Qp(y) and therefore y € dom kp. [ |

Combining Lemma 3.5 with Proposition 3.2 yields the following corollary.

Corollary 3.6. Let P € P(2) be a reference distribution satisfying Assumption 3.1. Then,

(a) If Qp is countable and convQp is closed (i.e., convQp = QF), then domrp =
domvyp = QF. In particular, dom kp = dom ¢}, = QF if Qp is finite.

(b) If Qp is uncountable, then dom kp = dom ¢}, = int Q.

The following lemma will be crucial for proving the equivalence between the MEM function
kp and Cramér’s rate function 5. The proof of the lower bound follows similar arguments
as in [18, Theorem 6.17] and [39, Proposition 1] and we include it here for completeness.

Lemma 3.7. Let P € P(Q) be a reference distribution satisfying Assumption 3.1. Then:

Vp(y) < kp(y) < ¢¥p(y) + KL(Q|Py) — Dy, (y, Vibp(0))

for any y € domkp, Q € Qp(y) and O € int Op.

Proof. For any 6 € intOp and Q € Qp(y) we obtain that @ < Py due to the mutual
absolute continuity between Py and P. Hence,

(3.4) KL(Q]P)_/Iog (dQ> dQ = /Qlog <£>d@+/ (dp">dcg
—KL(QIRy) + [ [(6) = 6 (6)dQ(:) = KL(QIs) + (1,6) — 6 (0)

where the last identity uses y = Eg. Since (3.4) holds for all § € int © p and KL(Q|Fy) > 0

(3.5) KL(Q|P) = sup{(y,0) —¥p(0) : 0 € int Op} = p(y),

due to the closedness of ¥ p, see Proposition 2.2. The lower bound for xp follows immediately
from its definition and the above inequality.
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As for the upper bound: by (3.4) and (2.2), for any @ € Qp(y) and # € int O p, we have

KL(Q|P) =KL(Q|Fp) + (y,0) — vp(0)
= KL(Q|Pp) + (y — Vipp(0),0) + (Vipp(6),0) — vp(0)
= KL(Q|Pp) — Wp(y) — ¥p(VYp(0)) — (y — Viop(0),0)] + b (y)
= KL(Q|Pp) — Dyy, (v, VYp(0)) + ¢p(y).

Then the result follows due to the fact that kp(y) < KL(Q|P) for all Q € Qp(y). [ ]

Theorem 3.8 (Equivalence between Cramér's rate function and the MEM function).  Let
P € P(Q) satisfy Assumption 3.1, and assume that one of the following two conditions holds:
(i) Qp is uncountable.
(ii) Qp is countable and conv Qp is closed (as is the case when Qp is finite).
Then, kp = Y. In particular, kp is closed, proper and convex.

Proof. First, let y € int Q%. By Assumption 3.1, Vip is a bijection between int (dom¢p)
= int O p and int (dom¢}) = int Q}, where the latter uses Proposition 3.2. Thus, there exists
6 € int © p such that y = Vyp(0) = Ep,. Applying Lemma 3.7 with Q = Py yields

(3.6) kp(y) =vply)  (y € intQF).

Due to Corollary 3.6, this establishes the result when Qp is uncountable. To complete the
proof, we only need to address the case when y € bd Q% under assumption (ii). By Corol-
lary 3.6, in this case dom kp = dom ¢} = Q¥ and Qp(y) # 0 for y € bd Q. Consider any
Q € 9p(y), then, by definition of kp, we have that

(3.7) rkp(y) < KL(Q|P) < +oo.

Choose any § € int Q% and set 6 = VyL(g) (e, g = V) (f)). For any A € [0,1) consider
Qx = AQ + (1 — A\)P;. Then, by linearity of @ + Eq [46, Lemma 2], we obtain

Y\ = EQx = )\EQ + (1 — )\)Epé = )\y + (1 — )\)gj

By convexity of Q% and the line segment principle [10, Lemma 6.28] we conclude that
yx € It QF. Set 6y := Vyp(yx) and observe that, by Lemma 3.7 and the nonnegativity
of the Bregman distance, it holds that

(3.8) Vp(y) < kp(y) < ¥p(y) + KLQ|Qx).

In addition, due to (3.7) and the fact that Q < P < P;, we conclude that KL(Q|F;) < oo
Thus, by (3.8) and convexity of KL(Q|-), we obtain

KL(Q|Qx) < AKL(Q|Q) + (1= VKL(Q|P) 0 as A — 1. m

We refer to a solution of the optimization problem (3.2) as the MEM distribution and denote
it as Qu - By similar arguments to the ones used in order to establish the lower bound in
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Lemma 3.7, one can show that, when y € int(dom xp) = int(conv Qp), the MEM distribution
is a particular member of the exponential family generated by the reference distribution P.
More precisely, it holds that @z = Py where 6 = V5 (y) and consequently

_ dPy

This, again, highlights the intimate connection between the MEM function and exponential
families. The case y € bd (dom kp) is more subtle and will be the topic of future research.

In what follows, we assume that the reference distribution of the MEM function satisfies
the conditions stated in Theorem 3.8, that is:

Assumption 3.9. The distribution P € P(Q) satisfies one of the following conditions:
(i) Qp is uncountable.
(i) Qp is countable and conv Qp is closed (as is the case when Qp is finite).

Under Assumptions 3.1 and 3.9, the MEM function and the Cramér rate function coincide.
As an immediate consequence, we obtain that the MEM function xp is of Legendre type.
More importantly, we will see that the alternative representation by means of Cramér’s rate
function is more tractable compared to the original definition given in (3.2).

Theorem 3.10 (Properties of the MEM function). Let P € P(Q) satisfy Assumptions 3.1
and 3.9. Then the following hold:

(a) kp(y) > 0 and equality holds if and only if y = Ep.

(b) kp is of Legendre type.

(¢c) kp is coercive in the sense that lim|y o kp(y) = 400 [9, Definition 11.10]. In
particular, kp(y) is level bounded.

(d) If Mp is finite (which holds, in particular, when Qp is bounded), then kp is superco-
ercive in the sense that lim ) L kp(y)/|lyll = +0o [9, Definition 11.10].

Proof. Part (a) is evident from the definition of kp as given in (3.2) and [18, Proposition
6.2]. Part (b) follows directly from the equivalence to the Cramér rate function 1} and
Corollary 2.5. To see (c), observe that (a) implies that xp admits a unique minimizer Ep
which combined with the fact that xp is closed, proper and convex (since kp is of Legendre type
due to (b)) establishes the result by [2, Proposition 3.1.3]. Lastly, if the moment generating
function is finite, then so is ¥p, and the supercoercivity of kp = 9}, follows from [49, Theorem
11.8(d)].* If Qp is bounded then dom p is bounded due to Lemma 3.5. In this case, kp = %
is trivially supercoercive and the claim that ¢p is finite follows from [49, Theorem 11.8(d)].H

The results presented in the remainder of this work are established under Assumptions 3.1
and 3.9 which, in particular, ensure the equivalence between the MEM and Cramér rate
functions. For this reason, we take this opportunity to standardize our nomenclature: between
the two options (kp or ¢}) we will opt for the one that corresponds to the Cramér rate function
1p. This choice is motivated by our intent to emphasize the more computationally appealing
definition and the connection to the log-normalizer function ¥ p. Nevertheless, in the definition

“The definition of supercoercive convex functions we use here follows [9, Definition 11.10]. In [49] the
authors refer to such functions as coercive (see [49, Definition 3.25]).

This manuscript is for review purposes only.



460

12 Y. VAISBOURD, R. CHOKSI, A. GOODWIN, T. HOHEISEL, C.-B. SCHONLIEB

of some new concepts defined by means of Cramér’s rate function, we will adopt the MEM
terminology in order to emphasize the motivation in the context of estimation.

If the reference distribution belongs to an exponential family generated by some measure
P € M(Q), i.e., if for some 6 € ©p we consider a new exponential family generated by the
probability measure Péf’ then the corresponding moment generating function takes the form

(3.9) Mp, 6] = exp (vp (0 +0) = vp(9))

In this case, the Cramér rate functions that corresponds to P; and P share a useful relation
summarized in the following lemma. We include the simple proof in Appendix A.

Lemma 3.11. Let Fp be a minimal and steep exponential family generated by P € M()
and assume further that, for any 6 € int ©p, Assumption 3.9 holds for Py € P(@) Then, for
any 0 € int ©p and y € dom vy}, we have w}é (y) = Dy, (y,9) where § := Vip(0) € int QF.

We list in Table 1 below a number of examples of Cramér rate functions that correspond
to most of the popular distributions (i.e. choices of the reference distribution P € P(f2)).
Some of the functions admit a closed form expression while others are given implicitly. The
derivations and further details are included as a supplementary material. Observe that all
cases considered below satisfy Assumptions 3.1 and 3.9 which guarantees the equivalence
established in Theorem 3.8: indeed, with some exceptions, all the distributions in Table 1 are
minimal with a natural parameter space ©p open which implies steepness. These exceptions
are: the multinomial distribution which is minimal under an appropriate reformulation, and
the multivariate normal-inverse Gaussian which is steep (see supplementary material). Here,
we provide the Cramér rate function of the multinomial distribution in minimal form. Thus,
Assumption 3.1 holds for all the distributions given in Table 1. This comprehensive list
complements and extends some previously established formulas [39, 54].

Many computations are facilitated in the presence of separability as described in the
following remark.

Remark 3.12 (Separability of 1)%,). In most examples, the reference distribution P € P ()
admits a separable structure of the form P(y) = Pi(y1)Pa(y2) - - Py(yq) where P; € P(§;),
Q; C R, i.e., each component corresponds to an i.i.d. random variable. In this case, since
Mp[0] = H?Zl Mp, [05] [50, Section 4.4], we have

d
Yp(y) = sup {(y,9> —log (Mp[f]) : 0 € ]Rd} = Zsup {yi0; — log (Mp,[0;]) : 0; € R}.
i=1

Hence, in most of our examples below we will consider only the case d = 1. O

In Table 1 we employ the convention that 0log(0) = 0 and define

d
A(d)::{yeRi:Zyigl} and I(p):={yeR¥:y; =0 (p; =0} (peRY).
i=1

®Recall from the definition of Fp that P; is the probability measure with %(y) = exp((y,0) — ¥p(0)).
50ne can evaluate Cramér’s rate function value at a point of interest by solving a nonlinear system.
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Reference Distribution (P) Cramér Rate Function (475 (y)) dom vy}
Multivariate Normal 1 Te_1 d
(MERd,EQSdIEPO) 2(?}—/L) % (y—/l,) R
Multivar. Normal-inverse Gaussian
(1, BER?, a,6 € R, T € RIX4: -

50, T~ 0,a> BTEH) ay/02 + (y — ) TSy — p) = BT (y — ) — 67 R
vi=va® = prEp
Gamma (o, 8 € Ryy) By — a+ alog (6%) Ryt
( ) 0, Y=H,
Laplace (n € R,b e R [T+p()2—1 R
i 1+p(y)21+log<,,(§)(§“’/)2 s Y F
(p(y) := (y — ) /b)
Poisson (A € Ry 4) ylog(y/A) —y + A R4

Multinomial (n € N,p € Agy:
Yiipi<1)

Negative Multinomial (p € [0, 1)9,
Yo € Ry, poi=1-0 p; >0)

Discrete Uniform
(a, beZ:a<hb,
pi=(a+b)/2,n:=b—a+1)

Continuous Uniform
(a,beR:a<bp:=(a+b)/2)

Logistic (1 € R,s € Ry 4)

d i
i1 Yilog (ny,,i

o yilog (;ilg) 7= i)

0, Y=
e(b—n+1)0 _ (a—n)0
(y — )6 — log (<=0 ) |y

(b+1)e(b+1)9_aea9
c(bF1)0 _gab

0, Yy=u,
e(b— )976((1— 1) 6
(v - w0 —log (5=5-"") .y,

b0 _ab
where § € R : y—&-%:%

where § € R : y—|—e§i1 =

0, Y= u,
(y —p)0 —log (B(1 —s0,1+s0)), y#u,

where 0 €Ry : y—p =3+

TS
tan (—7s0)

n=3% b
)+ (n = S s (S5

)

nAgy NI (p)

RS N I(p)

Table 1: Cramér rate functions for popular distributions.

Remark 3.13 (On Table 1). We provide some additional comments on Table 1 here.

(a) (Special cases)

— As special cases of the Gamma distribution we obtain Chi-squared with pa-
rameter k (a« = k/2, 8 = 1/2), Erlang (« positive integer) and exponential

(a = 1) distributions.
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— As special cases of the multinomial distribution, we obtain binomial (d = 1,
n > 1), Bernoulli (d =1, n = 1) and categorical (d > 1, n = 1) distributions.

— As special cases of the negative multinomial distribution we obtain the negative
binomial (d = 1) and (shifted) geometric (d = 1, yo = 1) distributions.

(b) (Statistical interpretation) For many reference distributions, 1} recovers well-known
functions from information theory and related areas. Here, the MEM provides an in-
formation driven, statistical interpretation for these functions. Examples include the
squared Mahalanobis distance (multivariate normal), pseudo-Huber loss (multivariate
normal-inverse Gaussian), Itakura-Saito distance (Gamma), Burg entropy (exponen-
tial), Fermi-Dirac entropy (Bernoulli), and the generalized cross entropy (Poisson).

O

4. The MEM Estimator and Models for Inverse Problems. In this section we show how
the MEM function can be used in various modeling paradigms. We start by presenting the
MEM estimator and explore some of its properties. We then discuss its (primal and dual)
analogy to the maximum likelihood (ML) estimator. Finally we will illustrate its efficacy by
considering a class of linear models involving a regularization term.

4.1. The Maximum Entropy on the Mean Estimator. The maximum entropy on the
mean (MEM) function gives rise to an information driven criterion for measuring the compli-
ance of given data with a prior distribution. Based on this function, we can define the MEM es-
timator as given in Definition 4.1 below. First, we introduce some additional terminology and
notation that will be used in the sequel. Let Q@ C R? and let Fy = {Py: A € A C R%} C P(Q)
be a parameterized family of distributions indexed by A € A such that Ep,, = Ep,, if and
only if Ay = Ao. We call F as the reference family and say that it satisfies Assumptions 3.1
and 3.9 if they hold for each Py € F). When F} is an exponential family (in this case A is
the natural parameter space © p for some P € M(2)) the MEM estimator was studied in [18,
Chapter 6]. We stress that, in our presentation, Fy need not be an exponential family.

Definition 4.1 (MEM estimator). Let Fn C P(Q2) be a reference family satisfying Assump-

tions 3.1 and 3.9 and assume that IEpAl = I[EpA2 if and only if A1 = Xo. For an observation

g € R?, let P; € F) be such that § = Ep;, and let S* C R? be (nonempty) closed. The MEM
estimator is defined as

Yarsnr (G, Fa, S°) = argmin{p, (y) : y € 5°).
In order to simplify notation, in what follows, we will write Yy py = Ynrear (9, Fa, S*) when

the dependence on the triple (g, Fj, S*) is clear from the context.

Remark 4.2 (The observation vector and its domain). In Definition 4.1, the condition that
P5 € F) is chosen such that y = pr implies that the reference distribution is indexed by the
observation vector . This condition combined with Assumption 3.1 entails that § € int Qf%
must hold due to Lemma 3.4. O

In order to establish the well-definedness of the MEM estimator, we will use the following
extension of [18, Lemma 5.4]. The proof is included in Appendix A.

This manuscript is for review purposes only.
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Lemma 4.3. Let ¢ : R? — (—00, +00] be closed and Legendre-type, let p : R — (—o0, +00]
be proper, closed and convex such that int (dom @) Ndomy # 0. Assume that one of the
functions is coercive while the other is bounded from below. Then there exists a unique solution
y* € R? to min{o(y) + o(y) : y € R}, which also satisfies y* € int (dom ¢) N dom ¢.

Theorem 4.4 (Well-definedness of the MEM estimator). Let Fy C P(2) be a reference
family satisfying Assumptions 3.1 and 3.9. For § € R?, let P € Fj such that y = Ep,, and
let S* C R? be closed with S* N dom 1/)}‘3X # (). Then, the MEM estimator yyy exists. If, in
addition, S* is conver and int (dom @D}Sﬁ) NS* £ 0, yyen is unique and in int (dom 1/)}%) n.sS*.

Proof. Recall that, by Theorem 3.10, @b}x is coercive and of Legendre type (proper, closed,

steep and strictly convex on the interior of its domain). Observe that S* C R? is closed and
S* N dom zp}‘& # (). Thus, the function 1”73; + dg+ is proper, closed and coercive. Hence, the
existence of the MEM estimator follows from [2, Remark 3.4.1, Theorem 3.4.1]. The case
when S* is convex and int (dom qﬁgi) N S* # ) follows from Lemma 4.3 with ¢ = 1[1}'3} and
p = dg due to the coercivity of 1/)}3i and the fact that dg is bounded from below. |

4.1.1. Analogy Between MEM and ML (for Exponential Families). Mazimum likelihood
(ML) is arguably the most popular principle for statistical estimation. Here, the estimated
parameters are chosen as the most likely to produce a given sample of observed data while
satisfying model assumptions. More precisely, for some Q C R? the model is defined by
means of a nonempty, closed set S C R? of admissible parameters and a parameterized family
of distributions Fj = {Py : A € A C R™} C P(2) with densities fp,. Given a sample of
observed data ¢ € R?, the ML estimator Ays (¢, Fa, S) is defined as

A (9, Fa, S) == argmax{log fp, (y) : A € SN A}

In order to simplify notation, we will write Ay := Ay (9, Fa, S) when the dependence on the
triple (g, Fa,S) is clear from the context.

An intriguing connection between the ML and MEM estimator comes to light when A is
the natural parameter space ©p of an exponential family induced by P € M(f2). The MEM
estimator can then be retrieved by solving one of two alternative optimization problems each
of which has a closely related problem that yields the ML estimator. One problem is driven
by information theoretic arguments, while the other emphasizes a connection motivated by
convex duality. These connections were previously observed in [18, Chapter 6] (also [14]) and
are summarized in the following theorem whose proof is in Appendix A. For consistency, we
denote the ML estimator as 6,;;.

Theorem 4.5 (MEM and ML estimator analogy). Let Fp be a minimal and steep exponential
family generated by P € M(Q) and assume that, for any 6 € int ©Op, Assumption 3.9 holds
with respect to Py € P(Q). Let S,S* C R? such that S Ndomvp # ) and S* N dom ¢} # .
Finally, let § € int QF and set 6 := V5 (9). Then the following hold:

(a) (Primal analogy) If S*Nint (dom ¢5) # 0 and Vi (S*Nint (dom ¢})) = SNint (dom ¢p),|j

then Yy = VUp(Oypn) where

4.1) Opypy € argmin{ KL(Py|P;) : 0 € S} and 0, € argmin{ KL(P;
0 0

PQ)ZQES}.
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(b) (Dual analogy): We have
(4.2) yupu € argmin{Dy: (y,9) 1y € S*} and Oy € argmin{pr(G,é) :0 € St

The primal and dual analogy between the MEM and ML estimator for exponential families
clarifies that the two are symmetric principles.

4.2. Examples - Linear Models. To illustrate the versatility of the MEM estimation
framework, we will consider the broad class of linear models which are among the most
popular paradigms in statistical estimation with applications in numerous fields such as image
processing, bio-informatics, machine learning etc.

We assume that the set S* of admissible mean value parameters is the image of a convex
set X C R? under a linear mapping defined by a measurement matrix A € R™*¢. In many
practical scenarios, this matrix satisfies some application-related properties, which in combi-
nation with the set X restricts the image space to a subset of R™. We will denote by C the
set of all matrices that satisfy such a condition for the application in question. The second
component in the model is Fy = {P\ : A € A C R} C P(1), a reference family indexed by
A € A such that IEpAl = IEpA2 if and only if Ay = Ag. The reference distribution is specified
from this family by means of the observation vector §. From Remark 4.2 it follows that such
a family of distributions must satisfy ¢ € int Qﬁ% for \ such that Ep, = 9. In some cases, this
condition imposes additional assumptions that must be satisfied by the measurement vector.
We will denote the set of measurement vectors that satisfy such an assumption with respect
to the family of distributions under consideration by D := {y € R™ : Ep, =y (A € A)}. To
summarize, an MEM estimator of the linear model outlined above is obtained by solving

(4.3) min {%X(Ax) = X} AeA:Ep =),

A

under the following set of assumptions:

Assumption 4.6 (MEM estimation for linear models).

1. The reference family Fy satisfies Assumptions 3.1 and 3.9.
2. The set X C R? is nonempty and conve.

3. A€ C and for any x € X it holds that Ax € dom}p.

4. The observation vector satisfies § € D.

In the following table, we present some examples of MEM linear models that correspond to
particular choices of a reference family. In all cases, we assume that the reference family
admits a separable structure as outlined in Remark 3.12. The vectors a; (i = 1,...,m) stand
for the ith row of the matrix A. We set

Co:={A¢e ]RTXd : A has no zero rows or columns}.
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Reference family Objective function (w}‘)X o A) C X D
1 112 d d
Normal §||A.r -1l R™X R R™
Poisson Z [{a;, z)log ({ai,x)/Ui) — (ai, x) + §i] Co RY R,
i=1

Gamma (6 = 1) [{as, x) — gilog ({ai, @) — (% — Gilog (%:))]  Co  R{, RY

i=1

Table 2: Linear models under the MEM estimation framework for various reference families.

Remark 4.7. Additional models are readily available by choosing any of the reference
distributions presented in Table 1. Alternatively, one may consider a family of linear models
where the natural parameters are the ones restricted to the image of a convex set under a
linear mapping. This class of models is commonly referred to as generalized linear models
with a canonical link function [44]. O

The MEM linear model with reference family that corresponds to the normal distribution
coincides with its ML counterpart, resulting in the celebrated least-squares model [15]. This
phenomenon is unique for the normal distribution and is a direct consequence of the fact that
the squared Euclidean norm is the only self-conjugate function [48, Section 12].

Linear inverse models under the Poisson noise assumption have been successfully applied in
various disciplines including fluorescence microscopy, optical/infrared astronomy and medical
applications such as positron emission tomography (PET) (see, for example, [14, 53]). The
MEM linear model with Poisson reference distribution outlined in Table 2 was previously
suggested in [6, Subsection 5.3] as an example for the algorithmic setting considered in that
work (see further details in Section 5 where we expand on the framework considered in [6]).

If, for example, X = R? and rged = R™ with m < d, then z € R? such that y,,, =
ymem = Ax = g. This outcome is not a result of a deep statistical characteristic but a simple
consequence of the model’s ill-posedness, a situation when the desired solution is not uniquely
characterized by the model. Situations like this are among the reasons which motivate the use
of regularizers which allow to incorporate some additional (prior) knowledge of the solution.
This approach give rise to the following extended version of model (4.3)

(4.4) min {45, (Az) + (@) ;o€ X} (AeA:Ep =),

where, in our setting, ¢ : RY — (—o0, +-00] stands for a proper, closed and convex function.
In (4.4), the optimization formulation is designed to find a solution (model estimator) that
balances between two criteria represented by the fidelity term 1/)};i o A and the regularization
term ¢. While the fidelity term penalizes the violation between the model and observations,
the regularization term incorporates prior information (belief) on the solution, and in many
cases, when the problem with the fidelity term alone is ill-posed, it also serves as a regularizer.

This manuscript is for review purposes only.
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In the context of MEM, the Cramér rate function can be used to penalize violations of the
solution vector x € R? with respect to some prior reference measure R € P(Q) that satisfies
Assumptions 3.1 and 3.9. In other words, we can set ¢(z) = ¢¥j(x).

In many applications, the desired reference distribution of the regularizer will admit a
separable structure (a la Remark 3.12). While this is advantageous from an algorithmic per-
spective (cf. Remark 5.3), other alternatives are viable. Non-separable priors can be consid-
ered in order to promote desirable correlations between the entries of the solution to problem
(4.4). E.g., by considering the multinomial, negative multinomial, multivariate normal in-
verse Gaussian or multivariate normal (with non-diagonal correlation matrix in the latter)
reference distributions intrinsically give rise to non-separable modeling. But there are other
options which involve separable reference distributions with a composite structure such as

d

(4.5) p(x) =PpLa)  or @)= Yi(La),

i=1

where I € R™4 [; € R™4. For example, new variants of the well-known (discrete) total
variation (TV) regularizer [51] can be considered by replacing the norm appearing in the
original definition by a Cramér rate function while keeping the first-order finite difference ma-
trix (further details are given in the end of Section 5). Different reference distributions might
be used to promote desirable, application-specific, properties of the solution. Nevertheless, for
all choices of reference distribution the resulting function will admit some desirable properties,
including convexity, differentiability and coerciveness as established in Theorem 3.10. As we
will see in the following section, these properties allows us to consider a unified algorithmic
approach for tackling problem (4.4).

5. Algorithms. The optimization formulations of statistical estimation problems as pre-
sented in the previous section are solved by optimization algorithms. Customized methods,
such as the ones we consider here, allow to leverage the structure of a given problem, thus
resulting in a significant efficiency improvement compared to general purpose solvers. The
structure of problems which are of interest for us is given by the additive composite model

(5.1) min{f(z) + g(z) : « € R%},

where f,g: R? — (—o0, +0o0] are proper, closed and convex.

We will assume that both the fidelity and regularization term, represented by f and g,
respectively, are continuously differentiable on the interior of their domain. This assumption
holds for all the modeling paradigms discussed in the previous section. In particular, model
(4.4) is recovered with f = ¢} o A and g = 5. Our focus on this type of problem is for
convenience only as our goal is merely to illustrate how modern first-order methods can be used
for computing MEM estimators, much like their popular ML counterparts. We point out that
we are not limited to this setting. Other models can be considered as well, e.g., by blending
a fidelity term originating from an MEM modeling paradigm with a traditional regularizer or
vice versa. In this case, similar algorithms are applicable under suitable adjustments.

The method we consider is the Bregman proximal gradient (BPG) method. This first-
order iterative algorithm admits a comparably mild per-iteration complexity and as such it is
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particularly suitable for contemporary large-scale applications. It is important to notice that
many other methods, including second-order and primal-dual decomposition methods, can be
also considered in some scenarios and can benefit from the operators derived in this work.
Before we present the BPG method, we need to define its fundamental components [6, 16].

Smooth adaptable kernel: Let f : R? — (—oo, +00] be proper, closed and continuously
differentiable on int (dom f). Then h : R? — (—o0, +00] of Legendre type is a smooth adaptable
kernel with respect to f if dom h C dom f and there exists L > 0 such that Lh — f is convex.

Bregman proximal operator: Let g : R? — (—oc0, +00] be closed and proper and h : R —
(=00, +0o0] of Legendre type. Then the Bregman proximal operator is defined as

(5.2) pron (z) := argmin{g(x) + Dp(z,z) : ¢ € R"} (z € int (dom h)).

The BPG method is applicable under the following assumption.

Assumption 5.1. Consider problem (5.1) and assume that there ezists a function of Le-
gendre type h : RY — (=00, +00] such that:

1. h is a smooth adaptable kernel with respect to f.

2. h induces a computationally efficient Bregman prozimal operator with respect to g.

The BPG method reads:
(BPG Method) Pick t € (0,1/L] and z° € int (domh). For k =0,1,2,... compute

a*t = prox}, (Vh* (Vh(z?) — tV f(2F))) .

For h = (1/2)]| - |3 and f convex, Lh — f is convex if and only if Vf is L-Lipschitz. In this
case, the Bregman proximal operator reduces to the classical proximal operator and the BPG
method is the well-knows proximal gradient algorithm [11].

The BPG method for solving (5.1) exhibits a sublinear convergence rate [6]. Under suitable
assumptions, the convergence improves to linear [5]. Accelerated variants, which improve
practical performance and have superior theoretical guarantees under additional assumptions,
are also available [3, 12]. For simplicity’s sake, we confine ourselves with the basic BPG
scheme, but the operators to be presented can be readily applied to the enhanced algorithms.

In order to customize the method to a particular instance of problem (5.1), a smooth
adaptable kernel and corresponding Bregman proximal operator must be specified. To illus-
trate this idea for MEM estimation, we focus on the linear models discussed in the previous
section. In particular, we consider the model (4.4) where ¢ = 1%. We assume that Assump-
tion 4.6 holds and that the prior reference measure R € P({2) satisfies Assumptions 3.1 and 3.9.
Furthermore, we assume that dom ¥z C X which allows us to disregard the constraint x € X.
The latter assumption holds in many practical situations and we assume it here for simplicity.
Otherwise, one can simply apply the BPG method with g = ¢}, + 0x (under the appropriate
adjustments to the proximal operator). In Table 3 below, we summarize the smooth adaptable
kernels suitable for the models described in the previous section, see Table 2. In all cases,
the smooth adaptable function admits a separable structure of the form h(z) = Z;-lzl hj(xj)
where hj : R — (—o00,4+00] (j =1,...,d) is a (univariate) function of Legendre type. As we
will see in what follows, this property is very desirable as it give rise to a computationally
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efficient implementation of the Bregman proximal operator. For completeness, we include the
explicit formulas for the operators involved in the BPG method.

Reference family Kernel (h;) Constant (L) [Vh(z)]; [Vh*(2)];

Normal (1/2)37? All2 := 1/ Amax (AT A) xj 2

Poisson zjlog(z;) Al == j_rlr}%%.,di |A; ;| log(z;)+1 exp(z; —1)

Gamma (= 1) —log(z;) ol == Em: |9 —1/x; —1/z;
i=1

Table 3: Smooth adaptable kernels and related operators that correspond to the objective
function (f = q/)};é o A) of the linear models listed in Table 2.

The kernel and related constant that correspond to the normal reference family is a well-known
consequence due to the Lipschitz gradient continuity, a special case of the smooth adaptability
property considered here.” The kernel and related constant that correspond to the Poisson
reference family is due to [6, Lemma 8]. The kernel and related constant that correspond to
the Gamma distribution follows from [6, Lemma 7].

We now discuss the special form of the Bregman proximal operator in the setting of the
linear model (4.4) with ¢ = 9}. According to (5.2), for any ¢ > 0, the Bregman proximal
operator is defined by the smooth adaptable kernel h and the regularizer g = 1}, as follows:

(5.3) proxfwg (Z) = argmin {tw}“g(u) + Dp(u,z) :u € Rd} .

The following theorem records that, in our setting, the above operator is well defined.

Theorem 5.2 (Well-definedness of the Bregman proximal operator). Let h : R — (—o0, +00]
be of Legendre type and let R € P(QQ) be a reference distribution satisfying the conditions in
Assumptions 3.1 and 3.9. Assume further that int (dom h) Ndom ¢}, # 0. Then, for anyt > 0
and T € int (dom h), the Bregman proximal operator defined in (5.3) produces a unique point
in int (dom h) N dom 95,.

Proof. Since T € int (dom h), the function Dy (-, %) is proper. In addition, since h is of
Legendre type, so is Dy(+,Z). Finally, Dy(-,Z) is bounded below (by zero) by convexity of
h. The result follows from Lemma 4.3 with ¢ = D), and ¢ = t%; due to the aforementioned
properties of Dj, and the coercivity of t¢}; (Theorem 3.10 and ¢ > 0). [ |

We now show that this operator is also computationally tractable. For many reference distri-
butions, this fact stems from the following separability property.

"More precisely, the equivalence holds for convex functions such as the ones considered here. For the
nonconvex case see an extension of the smooth adaptability condition presented in [16].
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Remark 5.3 (Separability of the Bregman proximal operator). In all cases under con-
sideration, the smooth adaptable kernel h : R? — (—o0,+0o0] admits a separable struc-
ture h(z) = Z}i:l hj(xzj). Therefore, by (2.4), the induced Bregman distance satisfies:

Dp(z,y) = Zgzl Dy, (zi,y;). If, in addition, the Cramér rate function admits a separable

structure ¢ = 2?21 YR, (cf. Remark 3.12), then the optimization problem defining the
Bregman proximal operator is separable and can be evaluated for each component of z. ¢

Given a particular instance of problem (5.1), with fidelity term f = w}';i o A and regularizer
g = Y%, one can derive a formula for the corresponding Bregman proximal operator. These
formulas are summarized in Tables 4, 5, and 6 for each of the combinations of linear models
(by using a compatible kernel generating distance from Table 3) and regularizers from Table 1.
Some formulas are given in a closed form, others must be evaluated numerically through a
solution of a nonlinear system.® Due to Remark 5.3, for most of the regularizer reference
distributions (excluding only the multivariate normal, multinomial and negative multinomial)
the resulting subproblem is separable. Thus, for the sake of simplicity and without loss of gen-
erality, we assume that d = 1, i.e., the resulting formulas correspond to one entry of the vector
produced by the operator. The general case follows by applying the operator components-
wise on all the elements of a vector Z € R?. An implementation of the operators along with
selected algorithms, applications, and detailed derivations of the operators can be found under:

https://github.com/yakov-vaisbourd/MEMshared.

The following table lists the formulas of Bregman proximal operators for the normal linear
family. In this case, the operator reduces to the classical proximal operator [41].

Reference Distribution (R) Proximal Operator (z+ = Proxy,. (2))

Multivariate Normal

+ — —1/y'q7%
(neR, T es!: ¥ >0) et = (L + %) (Zz + tn)

Multivariate Normal-inverse

Gaussian (p, 3 € R?, o, € R, -1 B B
EeRdxd€%>0 S0 et =(T+pS™t) (tB+Z+pS'u), where p € Ry :

0? > 756, 7 = \/a - FTSH) (087 + | (T + 5 (15 47— ) I3 = (at)?
Gamma (o, € Ry4) xt = (f—tﬁ—i-\/(:_r—tﬁ)z—l-élta) /2

continued ...

8The solution of the nonlinear system can be efficiently approximated by various methods. In our imple-
mentation, building upon the fact that the systems involve monotonic functions (since they stem from the
optimality conditions of a convex problem), we used a variant of safeguarded Newton-Raphson method.
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... continued
Reference Distribution (R) Proximal Operator (z+ = proxy,. (Z))
Laplace (u € R, be Ryy) at =" g_s —
p+bp, TFp,
where p € R: 10+ anp?® + agp+ay =0,
with a1 = (b/)20?, as = 2(b/t)*b(1 — Z),
az = (b/t)%(u—7)% = 2(b/t)b— 1, ag = —2(b/t)(n — T)
Poisson” (A € Ry 1) zt =tW (%ﬂc/t)

Multinomial (n € N,p € A(g):
Sipi<1)

Negative Multinomial (1; €[0,1)4,
o €ERiyy poi=1-3_1pi >0)

zF(1-3¢ )
wr ERLNIp): (af —7)/t+log (52;) o
i(n—2_5-1%;

zteRINI(p): (xj'—xi)/t—klog( =0,

2y
pi(zo+>d_, =)

?alsl(;rétﬂ(; [_J;niog;l xt =7 —t0" where 0T =0if T = (a + ) /2,
otherwise: 7 € R\ {0}:

+ +
)er+1)0 af 0T

o+ —z/t) + —ae

e(b+1)0t _ a0t T oett

Continuous Uniform

+ — 5 _ +p+ 0 if e —
(a,beR:a <b) xT =z —t0" where 6 0if z = (a+b)/2,

otherwise: 7 € R\ {0}:

_ bot a6t
t(9+ — x/t) + % 9%

Logistic (u € R, s € R44): xt =2 — 0T where 0T =0 if = = p,
otherwise: 7 € R\ {0}:

o+ + 9% + tan (Ifrs0+) =T —p

Table 4: Bregman Proximal Operators - Normal Linear Model (h = £ || - [|?).

Recall that the Cramér rate function induced by a uniform (discrete/continuous) or logistic
reference distribution does not admit a closed form. To compute their proximal operator
we appeal to the corresponding dual of the subproblem in (5.3). This is done via Moreau
decomposition (see, e.g., [11, Theorem 6.45]) which applies when the Bregman proximal op-
erator (5.3) reduces to the classical proximal operator (i.e., when h = (1/2)|| - ||3). For the

“We denote by W : R — R the Lambert W function (see, for example, [23]).
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general case, we will employ a result summarized in Lemma 5.4 and Corollary 5.5 below. The
proofs of both results can be found in Appendix A. Some notation is needed: for a function
g: R — (=00, 400] proper, closed and convex and of h : R? — (—00, +00] of Legendre type
we set

(5.4) iconvg(:i) := argmin {g(:v) +h(z—z):x€ Rd} .

This is the (possibly empty) solution of the optimization problem defining the infimal convo-
lution (gOh)(z) := inf {g(z) + h(Z — 2) : z € R?}.

Lemma 5.4. Let g : R* — (—o0,+00] be proper, closed and convex and let h : R? —
(=00, +00] be of Legendre type. Let T € int (domh) and assume that there exists a unique
point xT 1= pron(a’:) satisfying x* € int (domh) Ndomg. Then, y* := iconVZ: (VRh(Z)) exists
and it holds that Vh(xt) +y* = Vh(z).

The following corollary adapts the above lemma to the setting considered in our study. Fur-
thermore, we complement this result with a simple observation which is particularly useful
for Bregman proximal operator computations.

Corollary 5.5. Let h : R? — (—o0,+00] be of Legendre type and let R € P(Q) satisfy
Assumptions 3.1 and 3.9. Assume further that int (dom h) Ndom ¢}, # 0. Fort >0 and T €
int (dom h), let 2T := proxi‘w}} () and 67 := iconqu;R(./t) (z). Then, Vh(zt) + 61t = Vh(z).
In particular, % =0 (and x* = z) if and only if T = Eg.

The formulas of Bregman proximal operators for the Poisson and Gamma (f = 1) linear fam-
ilies are included in Appendix A. We close our study with particular models and algorithms.

Barcode Image Deblurring. Restoration of a blurred and noisy image represented by a
vector 7 € R? can be cast as the following optimization problem:

1
(5.5) min{2]\Ax—y]]%+Tg0*R(x) L ERd}.

A € R¥ is the blurring operator and 7 > 0 is a regularization parameter. The noise is
assumed to be Gaussian which explains the least-squares fidelity term which can be justified
from the viewpoint of both the ML and, as we know from our study, the MEM framework.
If the original image is a 2D barcode, a natural choice for the reference measure R € P(2)
inducing ¢}, is a separable Bernoulli distribution with p = 1/2 due to the binary nature of
each pixel and no preference at each pixel to take either value.!” Additional information
(symbology) can be easily incorporated by an appropriate adjustment of the parameter for
each known pixel (see [47]). Using the appropriate proximal operator from Table 4, the BPG
method for solving the model takes the form

E+1 E+1 o

+ . + i

;7 €R: a7 +trlog R
7

) =af —1[AT(AzF — )]s, (i=1,2,...,d).

0As mentioned in Remark 3.13, Bernoulli is a special case of the multinomial distribution. This, one
dimensional, distribution is used to form a d-dimensional i.i.d as described in Remark 3.12.
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As mentioned above, our focus on the Bregman proximal gradient method is only for illustra-
tion purposes. Favorable accelerated algorithms that employ the proximal operators derived
in this work are readily available and should be used in practice. The acceleration scheme
applicable here is known as the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [12].

Natural Image Deblurring. For natural image deblurring there is no obvious structure such
as the binary one for barcodes. However, it is customary to assume that the image is piecewise
smooth. A popular model that promotes piecewise constant restoration is the Rudin, Osher
and Fatemi (ROF) model [51] based on the total variation (TV) regularizer Zle g(L;x).
Here, L; € R?>*? extracts the difference between the pixel i and two adjacent pixels while g
stands for either the [; (isotropic TV) or la (anisotropic TV) norm. Variants which admit the
same structure with other choices of g are also considered in the literature: in [21, Subsection
6.2.3], a model with the Huber norm for g was shown to promote restoration prone to artificial
flat areas. Alternatively, one may consider the pseudo-Huber norm that corresponds to an
MEM regularizer induced by the multivariate normal inverse-Gaussian reference distribution
with parameters 4 = f = 0, « = 1 and ¥ = I. The resulting model is similar to (5.5)
where the regularization term is substituted by Zle Y5 (L;ix). This model can be tackled by
a primal-dual decomposition method that employs the appropriate proximal operator from
Table 4. For example, using the separability of the proximal operator [11, Theorem 6.6] and
the extended Moreau decomposition [11, Theorem 6.45], the update formula of the Chambolle-
Pock algorithm [21, Algorithm 1] reads

P = 2y o+ sLi2h) (i=1,2,....d).

) 2
with p; € Ry« p2(s6)2 + (145 ) llyk + sLizb3 = 1,
ol = (I 4+ 7ATA)~! (a:k — 7(LTyk+! — ATQ)) ,

LRl — opk+l _ azk,

where LT = [LT ... LT] € R ok e R2: (M) = [(yP)T, ..., (y})T] with y¥ € R? for all
i=1,2,...,d) and s, T are some positive step-sizes satisfying s7||L||3 < 1.

We point out that an efficient implementation of the above algorithm that takes into ac-
count the sparse and structured nature of the matrices L and A, respectively, will result in a
per-iteration complexity of the order O(dlogd). The same statement is true with regard to
the BPG method in the previous and following examples.

Poisson Linear Inverse Problem. Poisson linear inverse problems play a prominent role
in various physical and medical imaging applications. The linear model proposed in [6, Sub-
section 5.3] is simply the MEM linear model with Poisson reference distribution. The authors
of [6] suggest [;-regularization to deploy their BPG method. Alternatively, one may consider
the MEM function induced by the Laplace distribution with parameters p = 0 and b = 1.
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This setting leads to the following update formula of the BPG method. For ¢ =1,2,...,d:

(10]

(11]
(12]

(13]

(14]

(15]
(16]

(17]

(18]

(19]

o » »

m
= exp 1og(;c§)—tZaﬁlog(@j,ka@?j) ,
j=1

. . k1 . L1\ ]?
+1 .42 k41 i — kt1 i
z e Rty 4 2tlog | 0 | = log | =7
X €T
K3 2
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Appendix A. Deferred Proofs and Tables.
A.1. Deferred Proofs.
Proof (for Lemma 3.11). For y € dom}, we have

¥p, () © sup {<y, ) — log (Mpé [9]) 10 c ]Rd}

2 sup {(5,0) = [Wr(0+0) — vp(0) : 0 € BRI}

A~

= Pp(y) +¢¥p(0) — (y,0).

The result follows from the definition of the Bregman distance, (2.2) and 0 € int (domp). W

Proof (for Lemma 4.3). Existence and uniqueness of the solution follows from [9, Corol-
lary 11.15]. It remains to show that y* € int (dom ¢) Ndom ¢. Evidently, y* € dom ¢ N dom ¢
thus it is sufficient to show that y* € int (dom ¢). Using [9, Theorem 16.2] and [9, Corollary
16.38] we have 0 € 9¢(y*) + 9p(y*), in particular d¢(y*) # 0. Since ¢ is of Legendre type we
conclude that y* € int (dom ¢) [48, Theorem 26.1]. [ |

Proof (for Theorem 4.5). Since Fp is assumed to be minimal and steep, it is easy to
verify (recall (3.9)) that Py satisfies Assumption 3.1 for any 6 € int®p. As we assume
SNdomyp # 0 and S* Ndom ¢}, # 0, the MEM and ML estimator exist due to Theorem 4.4
and [18, Theorem 5.7], respectively. We now prove (b). Since Fp is an exponential family, we
have log fp,(9) = (9,0) — ¢ p(#) and the ML estimator is a solution to

max{log fp,(y) : 0 € S} =max{(y,0) —¢p(d):0 € S}
= —min{Dy, (8, Vi5(9)) : 6 € S} — p(VUp(9)) + (5, Vp(9)).

Omitting terms independent of the minimization and using that § = Vi5(5), the formulation
for the ML estimator follows. To obtain the formulation for the MEM estimator, observe that,
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due to Lemma 3.11, we have
min{v}, (y) : y € $*} = min{ Dy (y, Veop (D)) : y € S*}.

Thus, the result follows by recalling that § = pr(é).

We now turn to prove (a). Since S* Nint (dom}) # 0 we obtain by Theorem 4.4 that
Yuenr € S*Nint (dom)p). This fact combined with the assumption Vibp(S*Nint (dom ¥})) =
S Nint (domp) implies that Vi (Yarea) € SNint (domepp). Thus, (a) follows from (b) due
to the Bregman distance dual representation property (2.3) and Remark 2.6. |

Proof (for Lemma 5.4). By the optimality condition of the optimization problem in the
definition of the Bregman proximal operator (5.2) we obtain that

Vh(z) — Vh(z") € dg(x™).
Since g is assumed to be proper, closed and convex, (2.2) yields
(A.1) zt € dg* (Vh(z) — Vh(z™)).

Setting § := Vh(Z) — Vh(z") and observing that T = Vh*(Vh(Z) — §) we can rewrite (A.1)
as

VR (Vh(Z) —5) € 99" (9)-

It is now easy to verify that the above is nothing else but the optimality condition for g, thus,
g =y and we can conclude that Vh(z") + y* = Vh(Z), establishing the desired result. M

Proof (for Corollary 5.5). By Theorem 3.10 we have that 17, is proper, closed and convex
and thus ¢} = ¢pr due to [11, Theorem 4.8]. By Theorem 5.2 we know that = is well
defined. The proof of the first part then follows directly from Lemma 5.4 (with g = t¢}; and
yT = 6%) and [11, Theorem 4.14(a)]. To see that 67 = 0 if and only if z = Ep, observe
that the objective function in the subproblem defining the Bregman proximal operator (5.3)
is greater equal than zero, and equality holds if and only if # = Eg with ™ = Z. Thus, the
statement holds true in view of the first part of the current corollary. |

A.2. Bregman Proximal Operators for Poisson and Gamma (/5 = 1) Linear Families.
The following table lists the formulas of Bregman proximal operators for the Poisson and
Gamma (8 = 1) linear families, respectively. Observe that by Theorem 5.2 the Bregman
proximal operator is well defined if int (dom h) N dom ¢} # 0. Since int (domh) = R? , this
implies that for the multinomial and negative multinomial distributions we must assume that
p; > 0foralli=1,2,...,d. Furthermore, for the sake of simplicity we include the normal and
normal inverse-Gaussian distributions. The multivariate variants can be found in the software
documentation along with further explanations.
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Reference Distribution (R) Bregman Proximal Operator (z+ = proxz% (Z))
Normal o +_ tu
(o €eR: 0>0) * _tW( TPU)
Normal-inverse Gaussian
(0, 8,0 €R: 6>0, xt eRy,
a> ], v= /a2 - 3?) (ta/o)(zt — p) = (t8 —log(at/2)) \/8% + (aF — p)?/o
Gamma (o, 8 € Ry ) = Wﬁwm)
Hy T = W,
Laplace (u e R, be Ry 4) T = B
p+bp, TFp,

where peR: p+ 2 log( +b”) = l’;—flog2 (%_bp)
Poisson (A € Ry4) xt = Fl-7)\7 (r:=-1)

.
_ 1/t
=7 (n—p) (T = t%, Vi = [lpgl lpJ:| )

where p e R: p=(n— ,0)”%1 (Z?:l 'Vi)

<3

Multinomial (n € N, p € int Ag)) x

Negative Multinomial (p € (0,1)¢ N 4 ot
. RYNI(p): log (4 ) +tlog ( ——5—) =0,
ZTo € ]R-i--‘m Dbo = 1- Z?:l pi > O) TS * (p) o8 +tlog pi(e +Z] 1% )

Discrete Uniform T
T

Fo—t0T + —
(a.bER:a<b) = Te where 07 =0if Z = (a + b)/2,

otherwise: 7 € R\ {0}:

b+1)exp((b+1)0T)—aex a0+) X
{ ei;(?b(frl)el)f)exp?agg) - e)fp(p(9(+) ) + exp(x - t6+ )
Continuous Uniform ot — 2e—10" where 0+ — 0 if 7 — (a+1b)/2,

(a,beR:a <)
otherwise: 7 € R\ {0}:

bexp(b01)—aexp(adt)
exp(b0t)—exp(abt)

= Z +exp(z —t0F — 1)

Logistic (n € R, s € Ry ): ot =ze 0" where 6t = 0if = p,
otherwise: 7 € R\ {0}:

o t ey TR =exp (@ — 0T — 1)

Table 5: Bregman Proximal Operators - Poisson Linear Model (h;(z) = x;logz;)
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Reference Distribution (R)

Bregman Proximal Operator (z+ = proxfw;_i (2))

Normal
(o €eR: 0>0)

Normal-inverse Gaussian
(,u,a,ﬂ,5 eR: §>0,

o> |Bl, 1= a? P
Multivariate Normal-inverse
Gaussian (,u,ﬁ eR? «, €R,
Y=0l,0>0:6>0, ¥>0,

o > TS, v := /a2 — BTSP)

Gamma (o, 5 € Ryq)

Laplace (u € R, b e Ry )

Poisson (A € Ry4)

Multinomial (n € N,p € ri A(y))

Negative Multinomial (p € (0,1),
xo € R++, po = 1-— Z?lei > 0)

Discrete Uniform
(a,beR:a<b)

Continuous Uniform
(a,beR:a<b)

Logistic (u € R, s € Ry4):

ot = ((t/o)n = 1/z + (to)n = 1/3)2 + At[) ) /(24/0)

ZB+ €R++Z

ta(zt —pat = (B —1/2)at +1) /62 + (z+ — p)?

+

x; = (wi + ppi + /(Wi + ppi)? +4p)/(2p)

with w; = tﬁi — 1/£Ei and pE Ry :
2
(p0)? + & S (wi+ (wi + wap)? T 4p) = (at/o)?
T =F(ta+1)/(FtB + 1)
ot = s T =,
p+bp, TFp,
a1p® + azp® + asp+as =0,

with a1 = b%((b/Z)? — %), as = 2b(u((b/Z)? — t?) — b (t +1)/%)
az = b*((1 — p/2)? + 2t(1 - 2p/7)) — 4%, aa = 2tbp(1 — /)

where p € R :

81—

zt € Ry tlog(%):ﬁf

zt erinAg : tlog (71 - ZFlp])) F -5

pi(n—x3_, =f)

i
TeRr:, : tl - %) =21 1
o7 € Ry tlog (Pi(zo-‘rzd I+)) of @

i=5 %

xt =2/(zt0" + 1) where 6t =0if z = (a +b)/2,
otherwise: 67 € R\ {0}:

(b+1) exp((b+1)0)—aexp(al) __
(exp((b+1)0)—exp(ad)

exp(0) + z
exp(0)—1 tzO+ +1

xt =z/(F0" + 1) where 0T = 0if Z = (a + b)/2,
otherwise: 87 € R\ {0}:

bexp(60+)—aexp(a6+) _ 1 4 T
exp(bt)—exp(adt) — 6F tz0+ +1

xt =Z/(F0"T + 1) where 0T = 0if T = p,
otherwise: 87 € R\ {0}:

1 TS _ T
ot + tan (—msOT) tp= Tttt +1

Table 6: Bregman Proximal Operators - Gamma (8 = 1) Linear Model (hj(z) =

—log(z;))
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