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Higher level approach to linear inverse problems

The canonical linear inverse problem Cx ≈ b is usually solved via an optimization
problem

min
x∈Rd

{
1
2
‖Cx− b‖2 + R(x)

} • C: linear (forward) operator

• b: measurement vector

• R: (convex) regularizer

Higher level approach: Interpret the ground truth as a random vector with unknown
distribution. Solve for a distribution Q that is close to a prior (guess) P and such that
its expectation1 EQ satisfies C · EQ ≈ b.

What is the information theoretic foundation for this?

Principle of Maximum Entropy: ”The probability distribution which is maximally non-
committal with regard to missing information among all the distributions that agree
with the present knowledge is the one with the maximum entropy.” (E.T. Jaynes, 1957)

1 i.e. EQ =
∫
Ω ydQ(y)
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Measuring compliance: the KL divergence

Let P be a (prior) distribution, i.e. a probability measure on Ω ⊂ Rn.

The measure of compliance of another distribution Q with P is measured by the
Kullback-Leibler divergence KL(· | ·) : P(Ω)× P(Ω)2 → R ∪ {+∞},

KL(Q | P) =


∫

Ω
log

(
dQ
dP

)
dQ, Q� P, 3

+∞, otherwise,

where dQ
dP is the Radon-Nikodym derivative.

• KL(· | ·) is convex, KL(· | P) strictly convex for all P ∈ P(Ω).

• KL(Q | P) ≥ 0; equality if and only if Q = P a.e.

2P(Ω): (convex) set of probability measures on Ω.
3Q� P :⇐⇒ P(A) = 0⇒ Q(A) = 0.
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KL divergence concretely

Let P ∈ P(Ω) be our prior/reference distribution. We are mainly interested in two cases.

1. Ω = Rn and P is absolutely continuous w.r.t. the Lebesgue measure µ, i.e. has a
density p = dP

dµ . In this case, if Q� P, Q has a density q, and

KL(Q | P) =

∫
Rn

log

(
q(x)

p(x)

)
q(x)dx.

2. P is a discrete probability distribution, i.e. Ω is countable, and the probability mass
function p(x) = P({x}) has

∑
x∈Ω p(x) = 1. Then Q� P implies that Q has a

probability mass function q and it holds that

KL(Q | P) =
∑
x∈Ω

q(x) log

(
q(x)

p(x)

)
.

Example: Let P be the uniform distribution on Ω := {1, . . . ,N}, i.e. p(i) = 1/N for all
i = 1, . . . ,N. Then for Q� P with PMF q, we have

KL(Q | P) = log(N) +
N∑

i=1

log(q(i))q(i).
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The MEMM formulation and its dual

Given a prior P ∈ P(Ω), the maximum entropy on the mean method (MEMM) for the
linear inverse problem Cx ≈ b reads:

Determine Q̄ as the solution of

min
Q∈P(Ω)

{
α

2
‖C · EQ − b‖2 + KL(Q | P)

}
, (1)

and set x̄ := EQ̄ to be the estimate for the ground truth.

A dual approach for finding x̄: Let ψP : Rd → R be given by the cumulant generating
function of P, i.e.

ψP(y) = log

∫
Ω

exp 〈y, ·〉 dP = log(MP(y)).

Under suitable assumptions4, the (Fenchel) dual of (1) reads (Rioux et al. ’21):

max
λ∈Rd

{
〈b, λ〉 −

1
2α
‖λ‖2 − ψP(CTλ)

}
. (2)

Given the maximizer λ̄ of (2) one can recover x̄ via x̄ = ∇ψP(CTλ̄).

4E.g. Ω compact.
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Applications

To solve the dual problem, one can use
standard solvers like e.g. L-BFGS which
was successfully done for (blind and
non-blind) deblurring of

• Barcodes/QR-codes.
Prior P: Bernoulli.
Reference: G. Rioux et al.: Blind
Deblurring of Barcodes via
Kullback-Leibler Divergence. IEEE
TPAMI 43(1), 2021, pp.77-88.

• General images.
Prior P: Uniform on box.
Reference: G. Rioux et al.: The
Maximum Entropy on the Mean
Method for Image Deblurring. Inverse
Problems 37, 2021 [Rioux et al. (2021)]

6



The reformulated problem and the MEM functional

We observe that the (primal) MEMM problem can be reformulated as follows:

inf
Q∈P(Ω)

{
α

2
‖C · EQ − b‖2 + KL(Q | P)

}
= inf

y∈Rd

{α
2
‖C · y− b‖2 + inf

Q∈P(Ω):
EQ=y

KL(Q | P)

︸ ︷︷ ︸
:=κP(y)

}

We define the MEM functional κP : Rd → R ∪ {+∞},

κP(y) = inf
Q∈P(Ω)

{KL(Q | P) + δ{0}(EQ − y)}.

Then we obtain the reformulated problem

min
y∈Rd

α

2
‖C · y− b‖2 + κP(y).

Since κP ≥ 0, and κP(y) = 0 iff y = EP, κP can be interpreted as a regularizer
promoting proximity to the prior distribution.

Q: Is this reformulation useful at all?
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Interlude: convex analysis6 basics - the epigraphical perspective

Let f : Rd → R ∪ {+∞}.

• dom f :=
{

x ∈ Rd | f (x) < +∞
}

(domain);

• epi f :=
{

(x, α) ∈ Rd × R | f (x) ≤ α
}

(epigraph).

We call f

• convex if epi f is convex;

• closed (or lower semicontinuous) if epi f is closed;

• proper if dom f 6= ∅.

• Γ0 :=
{

f : Rd → R ∪ {+∞} | f closed, proper, convex
}
.

gph f

epi f

x

f (x)

Figure 1: Epigraph of f : R→ R

Affine minorization principle: Let f : Rn → R∪{+∞} convex and proper, and x̄ ∈ ri (dom f )5.
Then there exists v ∈ Rn such that

f (x) ≥ f (x̄) + 〈v, x− x̄〉 ∀x ∈ Rn
.

5The relative interior of a convex set is its interior in the relative topology w.r.t. its affine hull.
6 ‘What’s dead may never die!’
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Interlude: convex analysis basics - the Fenchel conjugate

Let f∗ : Rn → R ∪ {+∞} be the function whose epigraph encodes the affine minorants
of epi f in that

epi f∗ !
= {(v, β) | 〈v, x〉 − β ≤ f (x) ∀x ∈ Rn } .

Thus
f∗(v) ≤ β ⇐⇒ sup

x∈Rn
{〈v, x〉 − f (x)} ≤ β ∀(v, β) ∈ Rn × R.

Therefore
f∗(v) = sup

x∈Rn
{〈v, x〉 − f (x)} ∀v ∈ Rn,

which is called the (Fenchel) conjugate of f . We set f∗∗ := (f∗)∗.

• f∗ closed and convex - proper if f has an affine minorant

• If f is convex and proper, then f∗ is proper (closed, convex), and

f∗∗(x) = (cl f )(x)7.

• f = f∗∗ ⇐⇒ f ∈ Γ0 (Fenchel-Moreau)

7(cl f) : x ∈ Rn 7→ lim infz→x f(z), the closure of f , is the largest lsc minorant of f .
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Cramér’s function

Recall the cumulant generating function ψP : Rd → R ∪ {+∞} of P ∈ P(Ω), given by

ψP(θ) := log

∫
Ω

exp(〈θ, ·〉)dP = log(MP(θ)).

The conjugate ψ∗P : Rd → R ∪ {+∞},

ψ∗P(y) := sup
θ∈Rd
{〈y, θ〉 − ψP(θ)}

is called Cramér’s function8 (fundamental in large deviations theory).

The key to computational tractability of the reformulated MEMM problem is to establish
conditions (on P) under which Cramér’s function equals the MEM functional, i.e.

κP = ψ∗P .

Key ingredient: Exponential families and Legendre-type functions.

8Named after Swedish mathematician and statistician Harald Cramér who is considered as ‘one of the giants of
statistical theory’.
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Legendre-type functions

A function ψ ∈ Γ0
9 is essentially smooth if it satisfies the following conditions:

1. int (domψ) 6= ∅
2. ψ is differentiable on int (domψ)

3. ‖∇ψ(xk)‖ → ∞ for any
{

xk ∈ int (domψ)
}
→ x̄ ∈ bd (domψ)

If, in addition, ψ is strictly convex on int (domψ) then ψ is called of Legendre type.

Rockafellar (1970): For ψ ∈ Γ0 of Legendre type, we have:

• ψ∗ is of Legendre type.

• ∇ψ : int (domψ)→ int (domψ∗) is a bijection (with (∇ψ)−1 = ∇ψ∗).

θ

int(domψ)

µ

int(domψ∗)

∇ψ

∇ψ∗

9Γ0 : set of all closed, proper, convex functions (on Rd) 11



Exponential families

Let (Ω,A,P) be a probability space10 with P� ν11. The natural parameter space for P
is defined by

ΘP :=

{
θ ∈ Rd |

∫
Ω

exp(〈θ, ·〉)dP < +∞
}

(= domψP) .

The standard exponential family generated by P is given by

FP :=
{

fPθ

∣∣ fPθ
(y) := exp(〈y, θ〉 − ψP(θ)), θ ∈ ΘP

}
.

Properties and connections
•
∫
Ω fPθ

dP = 1, thus Pθ := P ◦ f−1
Pθ

is a probability measure with dPθ
dP = fθ (θ ∈ ΘP).

• Under suitable assumptions: argmin
Q:EQ=y

{KL(Q | P)} ∈ FP

• θ1 ∈ ΘP, θ2 ∈ int (ΘP) : KL(Pθ2 | Pθ1 ) = DψP (θ1, θ2) (Bregman distance).

10(Ω,A) measurable and P σ-finite works, too.
11ν : Lebesgue measure (Ω = Rd) or counting measure (Ω countable).
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Regularity of standard exponential family

The (standard) exponential family FP is called

• minimal 12 if int ΘP 6= ∅ and int (conv SP) 6= ∅ 13;

• steep if ψP is essentially smooth (automatically satisfied if ΘP open).

Theorem (Regularity of ψP, Brown 1986)

Let FP be a minimal exponential family. Then:

(a) The log-cumulant generating function ψP is strictly convex on (the convex set) ΘP.

(b) ψP ∈ C∞(int ΘP), and then ∇ψP(θ) = EPθ
.

Corollary
Let the exponential family FP be minimal and steep. Then:

(a) ψP (and hence ψ∗P ) is of Legendre type.

(b) θ = ∇ψ∗P(EPθ
).

12This can essentially be assumed w.l.o.g.
13SP: support of P, i.e. the smallest closed set A ⊂ Ω s.t. P(Ω \ A) = 0.
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Domain correspondences and the key inequality

Given ψ of Legendre type, its Bregman distance is:

Dψ(y, x) := ψ(y)− ψ(x)− 〈∇ψ(x), y− x〉 ∀(x, y) ∈ int (domψ)× domψ.

• Dψ ≥ 0 and Dψ(x, y) = 0 ⇐⇒ x = y;

• Dψ not symmetric in general, but D 1
2 ‖·‖

2 = 1
2‖x− y‖2;

•

Lemma (Vaisbourd et al.)
Suppose P ∈ P(Ω) generates a minimal and steep exponential family. Then:

(a) (Domain relations)
(i) If SP is countable, then domκP = conv SP ⊂ domψ∗P ;
(ii) If SP is uncountable, then domκP = int (conv SP) = domψ∗P .

(b) For all y ∈ domκP,Q� P s.t. EQ = y and for all θ ∈ int ΘP we have

ψ∗P(y) ≤ κP(y) ≤ ψ∗P(y) + KL(Q | Pθ)− Dψ∗P (y,∇ψP(θ)). (3)
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Equivalence of MEM functional and Cramér’s function

ψ∗
P = κP?

• y ∈ int (conv SP):

int (conv SP) ⊂ int (domψ∗), ψ∗ Legendre-type

=⇒ ∃θ ∈ int (domψ) = int ΘP : y = ∇ψP(θ) = EPθ

(3)
=⇒ ψ∗P(y) ≤ κP(y) ≤ ψ∗(y) + KL(Pθ | Pθ)︸ ︷︷ ︸

=0

−Dψ∗P (∇ψP(θ),∇ψP(θ))︸ ︷︷ ︸
=0

• y ∈ bd (conv SP): Can only occur when SP is countable.

Theorem (ψ∗
P = κP, Vaisbourd et al.)

Suppose P ∈ P(Ω) generates a minimal and steep exponential family. Moreover,
suppose one of the following holds:

• SP is uncountable

• SP is countable and conv SP is closed (which is always the case if SP is finite).

Then κP = ψ∗P . In this case 0 ≤ κP ∈ Γ0 is of Legendre type and coercive.
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How is κP = ψ∗P useful?

If P ∈ P(Ω) is separable (i.e. P = P1 × P2 × · · · × Pd), then MP(θ) =
∏d

i=1 MPi (θi).
Hence

ψ∗P(y) = sup
θ∈Rd

{〈y, θ〉 − log MP(θ)}

=
d∑

i=1

sup
θi∈R

{
yiθi − log MPi (θi)

}
.

In many cases this yields analytic formulas for ψ∗P , i.e. κP (even without separability!).

Example: If P is the multivariate normal distribution N(µ,Σ) for Σ � 0, i.e. MP(θ) =

exp
(
〈µ, θ〉+ 1

2 θ
TΣθ

)
, then

ψ∗P(y) = sup
θ∈Rn
{〈y, θ〉 − log MP(θ)}

= sup
θ∈Rn

{
〈y− µ, θ〉 −

1
2
θTΣθ

}
=

1
2

(y− µ)TΣ−1(y− µ).
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Examples of Cramér’s function

Reference Distribution (P) Cramér Rate Function (ψ∗P(y)) domψ∗P
Multivariate Normal
µ ∈ Rd,Σ ∈ Sd,Σ � 0

1
2 (y− µ)TΣ−1(y− µ) Rd

Poisson (λ ∈ R++) y log(y/λ)− y + λ R+

Gamma (α, β ∈ R++) βy− α+ α log
(
α
βy

)
R++

Normal-inverse Gaussian
α, β, δ ∈ R : α ≥ |β|,
δ > 0, γ :=

√
α2 − β2

α
√
δ2 + (y− µ)2 − β(y− µ)− δγ R

Multinomial (p ∈ ∆d, n ∈ N)
∑d

i=1 yi log
(

yi
npi

)
n∆d ∩ I(p)14

In addition: Laplace, (Negative) Multinomial, Continuous/Discrete Uniform, Logistic,
Exponential/Chi-Squared/Erlang (via Gamma), Binomial/Bernoulli/Categorical (via Multinomial),
Negative Binomial & Shifted Geometric (via Negative Multinomial).

14I(p) :=
{

x ∈ Rd | xi = 0 if pi = 0
}
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The MEM estimator

Let the following be given:

• ŷ ∈ Rd: observed data;

• S∗ ⊂ Rd: admissible parameters;

• FΛ :=
{

Pλ
∣∣ λ ∈ Λ ⊂ Rd }: parameterized family of distributions15;

• Pλ̂ ∈ FΛ: reference distribution such that ŷ = EP
λ̂

.

We define the MEM estimator yMEM ∈ Rd by

yMEM(ŷ, FΛ, S∗) := argmin
y∈S∗

ψ∗P
λ̂

(y).

Under suitable assumptions on Pλ̂, the function ψ∗P
λ̂

is coercive and strictly convex,
which guarantees well-definedness of the MEM estimator.

15not necessarily exponential
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MEM vs. ML estimation

Let the following be given:

• ŷ ∈ Rd: observation;
• S ⊂ Rm: set of admissible parameters;
• FΛ := {Pλ | λ ∈ Λ ⊂ Rm }: parameterized family of distributions with densities fλ;

The ubiquitous maximum likelihood estimator is given by

λML(ŷ, FΛ, S) := argmaxλ∈S∩Λ log fλ(ŷ).

It induces a distribution that is most likely to produce the given observation.

When FΛ is an exponential family induced by P, and λ̂ := ∇ψ∗P(ŷ) then (under some
technical assumptions) we have

yMEM = ψ∗P(λMEM)

for
λMEM = argmin

λ∈S
KL(Pλ | Pλ̂),

whereas
λML = argmin

λ∈S
KL(Pλ̂ | Pλ).
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Linear model based on MEM

Consider the linear inverse problem Cx ≈ ŷ for some

• ŷ ∈ D ⊂ Rm: measurement vector;
• C ∈ C ⊂ Rm×d: measurement matrix (dictated by the problem).

Now consider:

• FΛ = {Pλ | λ ∈ Λ ⊂ Rm } ⊂ P(Ω) : reference family;
• P̂ := Pλ̂: reference distribution with EP̂ = ŷ;
• S∗ := {Cx | x ∈ X }: set of admissible parameters.

The linear model based on the MEM functional reads

min
x∈X

ψ∗
P̂
(Cx).

Reference Family Objective Function (ψ∗
P̂
◦ C)

Normal 1
2‖Cx− ŷ‖2

Poisson
∑m

i=1[〈ci, x〉 log(〈ci, x〉 /ŷi)− 〈ci, x〉+ ŷi]

Gamma (β = 1)
∑m

i=1[〈ci, x〉 − ŷi log(〈ci, x〉)− (ŷi − ŷi log ŷi)]
20



Regularized linear model

In case of ill-posedness or to incorporate prior information we consider the

MEM regularized linear model:

min
{
κP

θ̂
(Ax) + ϕ(x) : x ∈ X

}
,

where

ϕ(x) =



κR(x)

κR(Lx) (L ∈ Rr×d)

d∑
i=1

κR(Lix) (Li ∈ Rr×d, i = 1, 2, . . . , d),

with R ∈ P(Ω) reference distribution.

Q: How can we efficiently solve this problem?
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Bregman proximal gradient method for MEM linear model

The regularized model falls into the additive composite framework

min
x∈Rd
{f (x) + g(x)} (g ∈ Γ0, f ∈ C1(∩Γ0)).

The Bregman proximal gradient algorithm

Initialization. Pick t ∈ (0, 1/L] and x0 ∈ int (dom h).

Procedure. For k = 0, 1, 2, . . . :

xk+1 = proxh
tg
(
∇h∗

(
∇h(xk)− t∇f (xk)

))
is specified by a kernel h ∈ Γ0 ∩ C1 that [Bauschke et al., 2017]:

• is smooth adaptable w.r.t. f i.e. Lh− f is convex for some L > 0.

• has computationally tractable Bregman proximal operator with respect to g:

proxh
g(x̄) := argmin

x∈Rd
{g(x) + Dh(x, x̄)} .
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Bregman Proximal Operators

The h-Bregman proximal operator of ψ∗R is always well defined under mild assumptions
(on R and h), and can be efficiently evaluated, often has closed form:

Reference Distribution Proximal Operator Kernel (h(x))

Multivariate Normal

µ ∈ Rd,Σ ∈ Sd,Σ � 0
x+ = (tI + Σ)−1(Σx̄ + tµ) (1/2)‖x‖2

2

Gamma (α, β ∈ R++) x+ =
(

x̄− tβ +
√

(x̄− tβ)2 + 4tα
)
/2 (1/2)‖x‖2

2

Laplace (µ ∈ R, b ∈ R++)
x+ =

{
µ, µ = x̄,

µ+ bρ, µ 6= x̄,

where ρ is the unique real root of a cubic16

−
∑

log xi

Poisson (λ ∈ R++) x+ = (x̄λt)
1

t+1
∑

xi log xi

Multinomial (p ∈ ∆d, n ∈ N) x+ =

 n(npi)
t

t+1 x̄
1

t+1
i∑d

i=1(npi)
t

t+1 x̄
1

t+1
i

d

i=1

∑
xi log xi

In addition: Normal-inverse Gaussian, Negative Multinomial, Continuous/Discrete Uniform, Logistic, Exponential/Chi-Squared/Erlang (via
Gamma), Binomial/Bernoulli/Categorical (via Multinomial), Negative Binomial & Shifted Geometric (via Negative Multinomial).

16With closed-form coefficients dependent on b, µ, x̄, t

23



Summary

All models are wrong, but some
are useful.

George E. P. Box

• MEM is a useful tool for incorporating prior information into models for inverse
problems.

• The application of MEM to inverse problems is scarce in the literature.

• We unify and extend much of the theory that appears in the literature, while
providing an algorithmic framework.

• arXiv preprint and computational toolbox of Cramér functions, prox operators, and
algorithms, to appear online shortly.

• Ongoing work: Obtain the Cramér function (or log-MGF) via (deep) learning.
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