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Consider the optimization problem

min h(p, x) + ¢(x) (1)
XERM
where
e /i : RP x R" — R (locally) smooth and convex in x;

e p:R" — RU{+oo} closed, proper, convex.

S(p) := argmin {h(p,x) + ¢(x)} (solution map).
xeR"

References: Bonnans/Shapiro (general NLP), Bolte et al. (monotone operators),
Vaiter et al. (regularized LLS).

Examples
o (prox operator) p := (%, 1), h(p,x) := g5 [lx — &[*: S(%,A) = Pxp(%).
e (unconstrained LASSO) p := (A, b, \), h(p,x) = ﬁ”/&x =% o=|"lh-

By convexity
S(p) = {x €R" | 0 € Vh(x,p) + dp(x) }.

Tailor-made for the implicit function theorems of variational analysis based on graphical
differentiation.



Variational analysis: normal cones and graphical differentiation

Name Definition Properties Example
tangent cone Ta(x) := Limsup, |, Aff closed

—
regular normal cone N4 (%) := Ta(¥)° closed, convex 1—>
limiting normal cone N4 (%) := Limsup,_,. Na(x) closed L

S:R"=R™, (x,y) € gphS:={(x,y) |y € S(x) }.
e Graphical derivative (Aubin ‘81, Benko '21): DS(x|y) : R" = R™ via

v € DS(x[y) (1) = (u,0) € Tgpns(X,)-

e Coderivative (Mordukhovich ‘80, loffe '84): D*S(x[y) : R™ = R" via

v € D*S(x|y)(u) <= (v, —u) € Ngpns(¥, ).




Variational analysis: proto-differentiability

Observe that graphical derivative of S : R" = R™ at (x,#) € gph S is (by definition)

DS(x | )(@) = Limsup S0+ =1 5 c gy @

£10, w— t

Definition (Proto-differentiability (Rockafellar *89))

We call S is proto-differentiable at (%,1) € gph S if the following hold:

Vz € DS(x | 0)(®@), {h} L0 Hwg} — @, {zx} —2: 2 € w Vk € N.
k

e Relates to semidifferentiability (Penot) which will yield directional differentiability
for our purposes.

e Graphically regularity implies proto-differentiability.

e Of is proto-differentiable at (X, ), e.g., if f = g o F is fully amenable, i.e., g PLQ
and F € C? such that

ker F'(¥)* N Ngomg(F(X)) = {0}  (basic constraint qualification).



Variational analysis: directional normal cone and semismoothness*

o N(x;u) =0ifui ¢ Ty(X);
e N(x;u) C Ny(x) forall u € R".

Directional normal cone of A at x
in direction :

Na(; it) := Lim sup Na (% + tu).

u—ii, £[0

Semismoothness* (Gfrerer et al.):
i) A CR"semismooth*atx € A <= (x",u) =0 Vu € R", x* € Na(x;u).

ii) S:R" = R" semismooth*at (¥,7) € gphS :<= gphS semismooth* at
(x9)-

\. J

(Gfrerer and Outrata '19): For F : D C R" — R™ locally Lipschitz at x € intD, the
following are equivalent:

e F semismooth (in the sense of Qi and Sun) at x.
e F semismooth* and directionally differentiable at x.




The workhorse (Dontchev/Rockafellar, Berk/Brugiapaglia/H.)

Letf : R x R" — R" be continuously differentiable at (7, X) such that f(p, -) is
monotone, let F : R" = R” be monotone at (¥, —f(p, x)). Define S : RY = R” by
S(p)={xeR" |0ef(p,x)+F(x)}, VpeR
The following hold if (p, x) € gph S is such that
ker (Dxf (p,X)* + D*F(¥| — f(p, X)) = {0} (Mordukhovich criterion).
(a) Sis locally Lipschitz at p with modulus

L < limsup max inf [jw]|.
p—p |W|<1WED5(P)(Q)

(b) If Fis proto-differentiable at (X, —f (p, X)), S is directionally differentiable at p with
locally Lipschitz directional derivative (for G(p, x) := f(p, x) + F(x)) given by

S'(p3q) = {w € R" | 0 € DG(p, x[0)(q,w) } Vg€ R".

(b) If F is semismooth* and the following implication is satisfied:
_(va) E nghF(JE _f(f)75())7
0 Dpf(?yf)*w: = (U,ZU) = (070)7
v Dxf (p, X)*w

then S is semismooth at p.
(c) If S’(p;-) is linear, then S is differentiable at p.



Application: unconstrained LASSO (constraint qualifications)

The unconstrained LASSO! for A € R"™*" ph € R™ X > 0 reads

1 2
min 2 JAx = bl + Al (3)

For a solution x of (??) define:

o l:={ief{l,...,n} [X;#0} (support);
o J:={ie{l,...,n} | |AT(b— AX)| =X} (equicorrelation set).

Note:

Qualification conditions

o (Intermediate) ker A; = {0};
e (Strong) I =] and ker A; = {0}.

(Strong) — (Intermediate) — X is unique solution of (??)

Santosa and Symes (1986), Tibshirani (1996)



Application: unconstrained LASSO (stability)

Apply the main theorem with f(b, A, x) := %AT(Ax —b), F:=9| -] suchthat

S(b,A) = {x | 0 € f(b, A\, x) 4+ F(x) } = argmin {1\\Ax — b))%+ Allel} (A >0).
vert |2

For (b, \) € R" x R4 letx € S(b, \). Then:

(a) If the intermediate condition holds, S is semismooth at (b, A) with Lipschitz
modulus '>

Moreover, the directional derivative S’((b, \); (-, -)) : R” x R — R" is locally
Lipschitz and given as follows: for (g, @) € R™ x R there exists an index set
K = K(q,«) with I C K C J such that

1

_ ) Al (A% —b)
= Umin(A])z O'max( ]) = ||=———=—

A

1 XY _ T —14T @ T
§'((5,%); (9.0)) = L ((AkA AL (9 + S (42 = D)) ,0).
(b) If the strong assumptions holds, S is continuously differentiable at (b, X) with
Y T A \—14T e T m
DS(b, N)(q,0) = Li ((AfA) 4] (44 $(4%-B)) ,0), ¥(g,0) €R" xE.

In particular, S is locally Lipschitz with modulus given above with I = J.




Application: unconstrained LASSO (Mordukhovich criterion verified)

Let x solve the unconstrained LASSO, i.e.

1
0 —AT(AX— D)+ 9|l - 1(%) .
A N e’
N—— o
— (A ) 8
Assume that the intermediate assumption holds, i.e. (with it := L AT (b — Ax) € 9| - [|1(%))
kerA; = {0} for J:={ie[l1:n]||m|=1}. (4)
Let0 € Dyf (b, A, ¥)*w + D*F(%|i1) (w) = LATAw + D* (8| - |I1)(%]7) (w), i.e.

— AT € D (Il ) () ). (5)

By ‘positive semidefiniteness’ of D* (9| - ||1)(x|#) it follows that

w € ker A. (6)
Therefore (??) implies
=Np
0€ D" (BH Hl)(\’\ )J(w) <= we€ D"Ng (#|x)(0) =span {e; |i €]}

= wc= 0

(22

& we ker Ay

i—?l w =0



Application: unconstrained LASSO (tuning parameter sensitivity)

Ax —b|)?
Suppose e x()\) := argmin u + Allxllq ¢
b=Axy +e: 2 2
L ; _
° 1 = 200, o N\ = mfa?;n(l)n [lx(X) = xoll,
iid
o A; X N(0,1/m), . i x(0"),

o ¢ % A(0,0.01) and

Under the strong assumption at ¥, x(-) is locally
Al

o xg s-sparse: (xg); d N(@m,m) (j €1).
”min(AI)z.

Lipschitz with L :=

m = 50 m = 100
10

o TIN  \*]|



Application: the proximal operator

Forf e Ty :={f : R" = RU {+o0} | f Isc, proper, convex }, the proximal operator is

. 1
Pxf(x) = argmin {L,D(X) + —lx— u||2} vx € R", X > 0.
HER” 2A

Theorem
The following hold for P : (x,\) € R" X R4 = Pxf(x):
(a) Pf is locally Lipschitz at (x, X) € R" x Ry .
(b) If &f is proto-differentiable at (Pf V), #) , then P; is directionally
differentiable at (x, \) with
o _ =P A =i A _
P/ 2); (d, A)) = [AD(Bf) <1>f(z, A)‘%) +1] (df TE-HE A))) .

(c) If Of is proto-differentiable and semismooth™ at (Pf(y‘c, ), W) then Py is

semismooth at (X, \).

Note: f € C? or f PLQ == 9f proto-differentiable and semismooth*.
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Future directions

e Explore new techniques by Gfrerer and Outrata (subspace containing derivatives)
for establishing strong metric regularity of hypomonotone operators (e.g.,
subdifferentials of weakly convex functions).

e Clarify the relation between proto-differentiability and semismoothness*.

e Apply the graphical derivative-based implicit function framework to, e.g.,:

e regularized (linear) least-squares with PLQ regularizers;
e nuclear norm regularized minimization.

e Explore implications in bilevel optimization.

Thanks for coming!



