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Motivation

Consider the optimization problem

min
x∈Rn

h(p, x) + ϕ(x) (1)

where

• h : Rp × Rn → R (locally) smooth and convex in x;

• ϕ : Rn → R ∪ {+∞} closed, proper, convex.

S(p) := argmin
x∈Rn

{h(p, x) + ϕ(x)} (solution map).

References: Bonnans/Shapiro (general NLP), Bolte et al. (monotone operators),
Vaiter et al. (regularized LLS).

Examples

• (prox operator) p := (x̄, λ), h(p, x) := 1
2λ‖x− x̄‖2: S(x̄, λ) = Pλϕ(x̄).

• (unconstrained LASSO) p := (A, b, λ), h(p, x) = 1
2λ‖Ax− b‖2, ϕ = ‖ · ‖1.

By convexity
S(p) = {x ∈ Rn | 0 ∈ ∇xh(x, p) + ∂ϕ(x)} .

Tailor-made for the implicit function theorems of variational analysis based on graphical
differentiation. 2



Variational analysis: normal cones and graphical differentiation

Name Definition Properties Example

tangent cone TA(x̄) := Lim supt↓0
A−x̄

t closed
x̄

regular normal cone N̂A(x̄) := TA(x̄)◦ closed, convex x̄

limiting normal cone NA(x̄) := Lim supx→x̄ N̂A(x) closed x̄

S : Rn ⇒ Rm, (x̄, ȳ) ∈ gph S := {(x, y) | y ∈ S(x)}.

• Graphical derivative (Aubin ’81, Benko ’21): DS(x̄|ȳ) : Rn ⇒ Rm via

v ∈ DS(x̄|ȳ)(u) :⇐⇒ (u, v) ∈ Tgph S(x̄, ȳ).

• Coderivative (Mordukhovich ’80, Ioffe ’84): D∗S(x̄|ȳ) : Rm ⇒ Rn via

v ∈ D∗S(x̄|ȳ)(u) :⇐⇒ (v,−u) ∈ Ngph S(x̄, ȳ).
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Variational analysis: proto-differentiability

Observe that graphical derivative of S : Rn ⇒ Rm at (x̄, ū) ∈ gph S is (by definition)

DS(x̄ | ū)(w̄) = Lim sup
t↓0,w→w̄

S(x̄ + tw)− ū
t

∀ w̄ ∈ Rn. (2)

Definition (Proto-differentiability (Rockafellar ’89))

We call S is proto-differentiable at (x̄, ū) ∈ gph S if the following hold:

∀z̄ ∈ DS(x̄ | ū)(w̄), {tk} ↓ 0 ∃{wk} → w̄, {zk} → z̄ : zk ∈
S(x̄ + tkwk)− ū

tk
∀k ∈ N.

• Relates to semidifferentiability (Penot) which will yield directional differentiability
for our purposes.

• Graphically regularity implies proto-differentiability.

• ∂f is proto-differentiable at (x̄, ū), e.g., if f = g ◦ F is fully amenable, i.e., g PLQ
and F ∈ C2 such that

ker F′(x̄)∗ ∩ Ndom g(F(x̄)) = {0} (basic constraint qualification).
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Variational analysis: directional normal cone and semismoothness*

Directional normal cone of A at x̄
in direction ū:

NA(x̄; ū) := Lim sup
u→ū, t↓0

N̂A(x̄ + tu).

• N(x̄; ū) = ∅ if ū /∈ TA(x̄);

• N(x̄; ū) ⊂ NA(x̄) for all u ∈ Rn.

Semismoothness* (Gfrerer et al.):
i) A ⊂ Rn semismooth* at x̄ ∈ A :⇐⇒ 〈x∗, u〉 = 0 ∀u ∈ Rn, x∗ ∈ NA(x̄; u).

ii) S : Rn ⇒ Rm semismooth* at (x̄, ȳ) ∈ gph S :⇐⇒ gph S semismooth* at
(x̄, ȳ).

(Gfrerer and Outrata ’19): For F : D ⊂ Rn → Rm locally Lipschitz at x̄ ∈ int D, the
following are equivalent:

• F semismooth (in the sense of Qi and Sun) at x̄.

• F semismooth* and directionally differentiable at x̄.
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The workhorse (Dontchev/Rockafellar, Berk/Brugiapaglia/H.)

Let f : Rd × Rn → Rn be continuously differentiable at (p̄, x̄) such that f (p̄, ·) is
monotone, let F : Rn ⇒ Rn be monotone at (x̄,−f (p̄, x̄)). Define S : Rd ⇒ Rn by

S(p) = {x ∈ Rn | 0 ∈ f (p, x) + F(x)} , ∀p ∈ Rd.

The following hold if (p̄, x̄) ∈ gph S is such that

ker (Dxf (p̄, x̄)∗ + D∗F(x̄| − f (p̄, x̄)) = {0} (Mordukhovich criterion).

(a) S is locally Lipschitz at p̄ with modulus

L ≤ lim sup
p→p̄

max
‖q‖≤1

inf
w∈DS(p)(q)

‖w‖.

(b) If F is proto-differentiable at (x̄,−f (p̄, x̄)), S is directionally differentiable at p̄ with
locally Lipschitz directional derivative (for G(p, x) := f (p, x) + F(x)) given by

S′(p̄; q) = {w ∈ Rn | 0 ∈ DG(p̄, x̄|0)(q,w)} ∀q ∈ Rd.

(b) If F is semismooth* and the following implication is satisfied:

−(v,w) ∈ Ngph F(x̄,−f (p̄, x̄)),

0 = Dpf (p̄, x̄)∗w,
v = Dxf (p̄, x̄)∗w

 =⇒ (v,w) = (0, 0),

then S is semismooth at p̄.
(c) If S′(p̄; ·) is linear, then S is differentiable at p̄.
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Application: unconstrained LASSO (constraint qualifications)

The unconstrained LASSO1 for A ∈ Rm×n, b ∈ Rm, λ > 0 reads

min
x∈Rn

1
2
‖Ax− b‖2 + λ‖x‖1. (3)

For a solution x̄ of (??) define:

• I := {i ∈ {1, . . . , n} | x̄i 6= 0} (support);

• J :=
{

i ∈ {1, . . . , n}
∣∣ |AT

i (b− Ax̄)| = λ
}

(equicorrelation set).

Note: I ⊂ J.

Qualification conditions

• (Intermediate) ker AJ = {0};

• (Strong) I = J and ker AI = {0}.

(Strong) =⇒ (Intermediate) =⇒ x̄ is unique solution of (??)

1Santosa and Symes (1986), Tibshirani (1996)
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Application: unconstrained LASSO (stability)

Apply the main theorem with f (b, λ, x) := 1
λ

AT(Ax− b), F := ∂‖ · ‖1 such that

S(b, λ) = {x | 0 ∈ f (b, λ, x) + F(x)} = argmin
x∈Rn

{
1
2
‖Ax− b‖2 + λ‖x‖1

}
(λ > 0).

For (b̄, λ̄) ∈ Rn × R++ let x̄ ∈ S(b̄, λ̄). Then:

(a) If the intermediate condition holds, S is semismooth at (b̄, λ̄) with Lipschitz
modulus

L ≤
1

σmin(AJ)2

(
σmax

(
AJ
)

+

∥∥∥∥∥AT
J (Ax̄− b̄)

λ̄

∥∥∥∥∥
)
.

Moreover, the directional derivative S′((b̄, λ̄); (·, ·)) : Rm × R→ Rn is locally
Lipschitz and given as follows: for (q, α) ∈ Rm × R there exists an index set
K = K(q, α) with I ⊆ K ⊆ J such that

S′((b̄, λ̄); (q, α)) = LK

(
(AT

KAK)−1AT
K

(
q +

α

λ̄
(Ax̄− b̄)

)
, 0
)
.

(b) If the strong assumptions holds, S is continuously differentiable at (b̄, λ̄) with

DS(b̄, λ̄)(q, α) = LI

(
(AT

I AI)
−1AT

I

(
q +

α

λ̄
(Ax̄− b̄)

)
, 0
)
, ∀(q, α) ∈ Rm × R.

In particular, S is locally Lipschitz with modulus given above with I = J.
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Application: unconstrained LASSO (Mordukhovich criterion verified)

Let x̄ solve the unconstrained LASSO, i.e.

0 ∈
1
λ

AT
(Ax̄− b)︸ ︷︷ ︸

=f(b,λ,̄x)

+ ∂‖ · ‖1(x̄)︸ ︷︷ ︸
F(̄x)

.

Assume that the intermediate assumption holds, i.e. (with ū := 1
λAT(b− Ax̄) ∈ ∂‖ · ‖1(x̄))

ker AJ = {0} for J := {i ∈ [1 : n] | |ūi| = 1} . (4)

Let 0 ∈ Dxf (b, λ, x̄)∗w + D∗F(x̄|ū)(w) = 1
λATAw + D∗(∂‖ · ‖1)(x̄|ū)(w), i.e.

−
1
λ

ATAw ∈ D∗(∂‖ · ‖1)(x̄|ū)(w). (5)

By ‘positive semidefiniteness’ of D∗(∂‖ · ‖1)(x̄|ū) it follows that

w ∈ ker A. (6)

Therefore (??) implies

0 ∈ D∗(

=N−1
B∞︷ ︸︸ ︷

∂‖ · ‖1)(x̄|ū)(w) ⇐⇒ w ∈ D∗NB∞ (ū|x̄)(0) = span {ei | i ∈ J }

=⇒ wJC = 0

(??)
=⇒ w ∈ ker AJ

(??)
=⇒ w = 0.
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Application: unconstrained LASSO (tuning parameter sensitivity)

Suppose
b = Ax0 + e :

• n = 200,

• Aij
iid∼ N (0, 1/m),

• ei
iid∼ N (0, 0.01) and

• x0 s-sparse: (x0)j
iid∼ N (m,m) (j ∈ I).

• x(λ) := argmin
x

{
‖Ax− b‖2

2
+ λ‖x‖1

}
,

• λ∗ := inf argmin
λ>0

‖x(λ)− x0‖,

• x̄ := x(λ∗).

Under the strong assumption at x̄, x(·) is locally

Lipschitz with L :=

√
|I|

σmin(AI)
2 .

m = 50 m = 100 m = 150 m = 200

Figure 1: ‖x(λ)− x̄‖, L|λ− λ∗|, L|λ−λ∗|
‖x(λ)−x̄‖ .
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Application: the proximal operator

For f ∈ Γ0 := {f : Rn → R ∪ {+∞} | f lsc, proper, convex}, the proximal operator is

Pλf (x) = argmin
u∈Rn

{
ϕ(x) +

1
2λ
‖x− u‖2

}
∀x ∈ Rn, λ > 0.

Theorem

The following hold for Pf : (x, λ) ∈ Rn × R++ 7→ Pλf (x):

(a) Pf is locally Lipschitz at (x̄, λ̄) ∈ Rn × R++.

(b) If ∂f is proto-differentiable at
(

Pf (x̄, λ̄),
x̄−Pf (x̄,λ̄)

λ̄

)
, then Pf is directionally

differentiable at (x̄, λ̄) with

P′f ((x̄, λ̄); (d,∆)) =

[
λ̄D(∂f)

(
Pf (x̄, λ̄)

∣∣∣ x̄− Pf (x̄, λ̄)

λ̄

)
+ I

]−1 (
d−

∆

λ̄
(x̄− Pf (x̄, λ̄))

)
.

(c) If ∂f is proto-differentiable and semismooth* at
(

Pf (x̄, λ̄),
x̄−Pf (x̄,λ̄)

λ̄

)
then Pf is

semismooth at (x̄, λ̄).

Note: f ∈ C2 or f PLQ =⇒ ∂f proto-differentiable and semismooth*.
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Future directions

• Explore new techniques by Gfrerer and Outrata (subspace containing derivatives)
for establishing strong metric regularity of hypomonotone operators (e.g.,
subdifferentials of weakly convex functions).
• Clarify the relation between proto-differentiability and semismoothness*.
• Apply the graphical derivative-based implicit function framework to, e.g.,:

• regularized (linear) least-squares with PLQ regularizers;
• nuclear norm regularized minimization.

• Explore implications in bilevel optimization.

Thanks for coming!
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