Problem 1 [10], Let \mathbf{c} be a smooth path.

(a) Suppose **F** is perpendicular to $\mathbf{c}'(t)$ at the point $\mathbf{c}(t)$. Show that

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = 0$$

(b) If **F** is parallel to $\mathbf{c}'(t)$ at the point $\mathbf{c}(t)$, show that

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{c}} \|\mathbf{F}\| ds$$

(By parallel to $\mathbf{c}'(t)$ we mean that $\mathbf{F}(\mathbf{c}(t)) = \lambda(t)\mathbf{c}'(t)$, where $\lambda(t) > 0$.)

Problem 2 [10], Let D be a region for which Green's Theorem holds. Suppose u is harmonic; that is,

$$\frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = 0, \quad \forall (x,y) \in D.$$
(1)

Prove that

$$\int_{\partial D} \frac{\partial u}{\partial y} dx - \frac{\partial u}{\partial x} dy = 0.$$

Problem 3 [10], Suppose $(0,0) \in D$ such that $\overline{B}_R(0) \subset D$, and suppose u is C^2 in D and u satisfies

$$\frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) \ge 0, \quad \forall (x,y) \in D.$$
(2)

- 1. Set $I(\rho) = \frac{1}{\rho} \int_{\partial B_{\rho}(p)} u ds$, for $0 < \rho \leq R$, compute $\frac{d}{d\rho} I(\rho)$, using Green's Theorem to deduce that $\frac{d}{d\rho} I(\rho) \geq 0$,
- 2. Prove

$$u(0) \le \frac{1}{2\pi R} \int_{\partial B_R(p)} u ds.$$
(3)

[Hint: what is $\lim_{\rho \to 0} I(\rho)$? Problem 1 in assignment 4.]

Problem 4 [10] Use (3) to prove the following strong maximum principle: suppose u as in Problem 3, if u(0,0) is a local maximum, then u is a constant function near (0,0).

Problem 5 [10], Let $B = \{x^2 + y^2 \le 1\}$, and $\forall \delta > 0$, denote $B_{\delta} = \{x^2 + y^2 \le \delta\}$. Suppose f is a continuous function and $\|\nabla f\| \le 1$ on B, suppose

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = e^{x^2 + y^2}, \quad in \quad B \setminus \{0\}.$$

Use the boundedness of ∇f to show

$$\lim_{\delta \to 0} \int_{\partial B_{\delta}} f_y dx - f_x dy = 0.$$

Use this fact and the Green Theorem to evaluate

$$\int_{\partial B} f_y dx - f_x dy$$

Problem 6 [10], Let Φ be a regular surface at (u_0, v_0) (i.e., Φ is C^1 and $T_u \times T_v \neq 0$ at (u_0, v_0)).

- (a) Use the implicit function theorem to show that the image of Φ near (u_0, v_0) is the graph of a C^1 function of two variables. If the z component of $T_u \times T_v$ is nonzero, we can write it as z = f(x, y).
- (b) Show that the tangent plane at $\Phi(u_0, v_0)$ defined by the plane spanned by T_u and T_v coincides with the tangent plane of the graph of z = f(x, y) at this point.

Problem 7 [10], Find the area of the surface defined by z = xy and $x^2 + y^2 \le 2$.

Problem 8 [10], Find a parametrization of the surface $x^2 + 3xy + z^2 = 2, z > 0$, and use it to find the tangent plane at the point x = 1, y = 1/3, z = 0. Compare your answer with that using level sets.

Problem 9 [10], Evaluate the integral

$$\int \int_{S} (1-z) dS,$$

where S is the graph of $z = 1 - x^2 - y^2$, with $x^2 + y^2 \le 1$.

Problem 10 [10], Let S be a sphere of radius r and \mathbf{p} be a point inside or outside the sphere (but not on it). Show that

$$\int \int_{S} \frac{1}{\|\mathbf{x} - \mathbf{p}\|} dS = \begin{cases} 4\pi r, & \text{if } \mathbf{p} \text{ is inside S} \\ 4\pi r^2/d, & \text{if } \mathbf{p} \text{ is outside S} \end{cases}$$

where d is the distance from \mathbf{p} to the center of the sphere nd integration is over the sphere. (Hint: assume \mathbf{p} is on the z-axis. Then change variables and evaluate. Why this assumption on \mathbf{p} justified?)