Problem 1 [10], Let f be continuous on closed disc $D_1 = \{x^2 + y^2 \le 1\}$. Denote $D_r = \{x^2 + y^2 \le r^2\}$. Prove that

$$\lim_{r \to 0} \frac{1}{area(D_r)} \int \int_{D_r} f(x, y) dA = f(0, 0).$$

Problem 2 [10], Given that the double integral $\int \int_D f(x,y) dx dy$ of a positive continuous function f equals the iterated integral $\int_0^1 \left[\int_{x^2}^x f(x,y) dy \right] dx$, sketch the region D and interchange the order of integration.

Problem 3 [10], Find the volume of the region common to the intersecting cylinders $x^2 + y^2 \le a^2$ and $x^2 + z^2 \le a^2$.

Problem 4 [10],

- (a.) Sketch the region for the integral $\int_0^1 \int_0^x \int_0^y f(x,y,z) dz dy dx$.
- (b.) Write the integral with the integration order dxdydz.

Problem 5 [10], For the region $W = \{(x, y, z) | |x| \le 1, |y| \le 1, z \ge 0 \text{ and } x^2 + y^2 + z^2 \le 1\}$, find the appropriate limits $\phi_1(x), \phi_2(x), \gamma_1(x, y)$ and $\gamma_2(x, y)$, and write the triple integral over W as iterated integral in the form

$$\int\int\int_W f dV = \int_a^b \{\int_{\phi_1(x)}^{\phi_2(x)} [\int_{\gamma_1(x,y)}^{\gamma_2(x,y)} f(x,y,z) dz] dy\} dx.$$

Problem 6 [10], Calculate $\int \int_R \frac{1}{x+y} dy dx$, where R is the region bounded by x=0, y=0, x+y=1, x+y=4, by using the mapping T(u,v)=(u-uv,uv).

Problem 7 [10], Let D be the unit disk. Express $\int \int_D (1+x^2+y^2)^{\frac{5}{2}} dxdy$ as an integral over $[0,1] \times [0,2\pi]$ and evaluate.

Problem 8 [10], Use spherical coordinates to evaluate

$$\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{\sqrt{9-x^2-y^2}} \frac{\sqrt{x^2+y^2+z^2}}{1+[x^2+y^2+z^2]^2} dz dy dx.$$

Problem 9 [10], Evaluate $\int \int_D e^{(x+y)^2} dx dy$, where D is the interior of the triangle with vertices (0,0),(1,3), and (2,2).

Problem 10 [10], Evaluate improper integral $\int \int \int_{\mathbb{R}^3} f(x,y,z) dx dy dz$, where

$$f(x, y, z) = \frac{1}{\left[1 + (x^2 + y^2 + z^2)^{\frac{3}{2}}\right]^{\frac{9}{2}}}.$$