Problem 1, Show that the subset $D = \{(x, y) | x \neq 0 \text{ and } y < -1\}$ is an open set in \mathbb{R}^2 .

Problem 2, Compute the following limits of functions defined in \mathbb{R}^2 (if they exist):

a
$$\lim_{(x,y)\to(0,0)} \frac{(x-y)^2}{\sqrt{x^2+y^2}},$$

b $\lim_{(x,y)\to(0,0)} \frac{1-\cos xy}{y^2},$
c $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}.$

Problem 3,

- a. Prove that if U and V are neighborhoods of $\mathbf{x} \in \mathbb{R}^n$, then so are $U \bigcap V$ and $U \bigcup V$.
- b Prove that the boundary points of an open interval $(a, b) \subset \mathbb{R}$ are the points a and b.
- c $\forall \mathbf{x} \in \mathbb{R}^n$, define $B_r(\mathbf{x}) = {\mathbf{y} \in \mathbb{R}^n | |\mathbf{y} \mathbf{x}| < r}$. Prove that for $\mathbf{x} \in \mathbb{R}^n$ and $0 < s < t, B_s(\mathbf{x}) \subset B_t(\mathbf{x})$.

Problem 4, Suppose f(x, y) is a function defined in \mathbb{R}^2 . Set g(x) = f(x, 0), h(y) = f(0, y). If g and h are continuous at 0 as functions in one variable, does it follows that f is continuous at the origin in \mathbb{R}^2 ? If your answer is "yes", provide a proof; if your answer is "no", construct an example.

Problem 5, Let $f : A \subset \mathbb{R}^n \to \mathbb{R}^m$ satisfy $||f(\mathbf{x}) - f(\mathbf{y})|| \le K ||\mathbf{x} - \mathbf{y}||^{\alpha}$ for all \mathbf{x} and \mathbf{y} in A for positive constant K and α . Show that f is continuous. (Such functions are called **Hölder-continuous** or, if $\alpha = 1$, **Lipschitz-continuous**.)

Problem 6, Find the partial derivatives $\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}$ for function $w(x, y) = \sin(y^2 e^{xy}) \cos(x^2)$.

Problem 7, Show that the function $f(r, \theta) = r^2 \sin 2\theta$, r > 0 (in polar coordinates) is differentiable at each point in its domain. Decide if it is C^1 .

Problem 8, Compute the matrix of partial derivatives of $f(x, y) = (e^{y^2}, \sin xy)$.

Problem 9, Evaluate the gradient of $f(x, y, z) = \log(x^2 + y^2 + z^2)$ at (1, -1, 0).

Problem 10, Describe all Hölder-continuous functions with $\alpha > 1$ (see problem 5). (Hint: What is the derivative of such function?)