SOLUTIONS OF ASSIGNMENT #6

1. (a) For
$$F(x, y, z) = x^2 + y^2 + 4z^2 + z^4 - 64$$
, we have
 $z_x = -\frac{F_x}{F_z} = \frac{x}{4z + 2z^3}, \quad z_y = -\frac{F_y}{F_z} = \frac{y}{4z + 2z^3}$

At $P = (4, 4, 2), z_x = z_y = 1/4$. Now,

$$z_{xx} = \frac{\partial}{\partial x}(z_x) = \frac{\partial}{\partial x}(-\frac{x}{4z+2z^3}) = -\frac{4z+z^3-x(4+3z^2)z_x}{(4z+z^3)^2} = -1/8.$$

(b) The normal is proportional to < -1/4, -1/4, -1 >, the equation of the tangent plane is

$$(x-4) + (y-4) + 4(z-2) = 0.$$

(c) $\nabla z = < -1/4, -1/4 >,$ the direction of the maximum increase is < 1, 1 >.

2. $z_x = ye^{-\frac{x^2+4y^2}{2}}(1-x^2), z_y = xe^{-\frac{x^2+4y^2}{2}}(1-4y^2)$. Solution for $z_x = 0$ is either y = 0 or x = 1, -1. y = 0 and $z_y = 0$ will force x = 0. If x = 1 or $-1, z_y = 0$ will give y = 1/2 or -1/2. We have five critical points (0,0), (1,1/2), (1,-1/2), (-1,1/2), (-1,-1/2). We now calculate $\nabla^2 z$: $z_{xx} = xye^{-\frac{x^2+4y^2}{2}}(-2-(1-x^2)),$ $z_{yy} = xye^{-\frac{x^2+4y^2}{2}}(-8-4(1-4y^2)),$

$$z_{xy} = e^{-\frac{x^2 + 4y^2}{2}} (1 - x^2)(1 - 4y^2).$$

At (0,0), $z_{xx}z_{yy} - z_{xy}^2 = -1$, it's a saddle point.

At (1, 1/2) and (-1, -1/2), $z_{xx} = -1$, $z_{xy} = 0$, $z_{yy} = -4$, $z_{xx}z_{yy} - z_{xy}^2 = 4$, local maximum points.

At (1, -1/2) and (-1, 1/2), $z_{xx} = 1$, $z_{xy} = 0$, $z_{yy} = 4$, $z_{xx}z_{yy} - z_{xy}^2 = 4$, local minimum points.

3. Set
$$F = z^3 + 4z - 2x^2y - 12$$
. At point (1, 2) with $z = 2$,
 $z_x = -\frac{F_x}{F_z} = \frac{4xy}{3z^2+4} = 1/2$,
 $z_y = -\frac{F_y}{F_z} = \frac{2x^2}{3z^2+4} = 1/8$,
 $z_{xx} = (\frac{4xy}{3z^2+4})_x = \frac{4y}{3z^2+4} - \frac{24xyzz_x}{(3z^2+4)^2} = \frac{5}{16}$,
 $z_{yy} = (\frac{2x^2}{3z^2+4})_y = -\frac{2x^2zz_x}{(3z^2+4)^2} = -\frac{2}{16^2}$,
 $z_{xy} = (\frac{4xy}{3z^2+4})_y = \frac{4x}{3z^2+4} - \frac{24xyzz_y}{(3z^2+4)^2} = \frac{13}{64}$.

4(a). $f_x = x - 3y^2$, $f_y = 6y^2 - 6xy - 24$. $f_x = 0$ implies $x = 3y^2$, put this to $f_y = 0$, we obtain $6y^2 - 18y^3 - 24 = 0$, it is easy to see y = -1 is the only real solution of this equations. Therefore, (3, -1) is the only critical

point of f. Now at (3, -1), $f_{xx} = 1$, $f_{xy} = -6y = 6$, $f_{yy} = 12y - 6x = -30$, $f_{xx}f_{yy} - f_{xy}^2 = -66$. It a saddle point.

4(b). Since f has no critical point in the region, we only need to calculate extremal values of f on the boundary. On the edge $x = 0, 0 \le y \le 1$, $f = 2y^3 - 24y + 40$, f' < 0 for $0 \le y \le 1$, the extremal values are 40 and 18. On the edge $x = 2, 0 \le y \le 1$, $f = 2y^3 - 6y^2 - 24y + 56$, f' = 0 has roots $1 + \sqrt{5}, 1 - \sqrt{5}$, none of them in the interval $0 \le y \le 1$, so the extremal values are 56 and 28. On the edge $y = 0, 0 \le x \le 2$, $f = 4x^2 + 40$, it is an increasing function in $0 \le x \le 2$, the extremal values are 40, 56. On the edge $y = 1, 0 \le x \le 2$, $f = 4x^2 - 3x + 18$, f' = 0 has solution x = 3/8. $f = 18 - \frac{9}{16}$. The value at (0, 1) and (2, 1) have been computed. In summary, the absolute minimum is $18 - \frac{9}{16}$ and the absolute maximum is 56.

5, Let x, y and z be dimensions of the open rectangle, so the surface area is f(x, y, z) = xy + 2xz + 2yz and volume is g = xyz = 128. We use Lagrange multipliers.

$$\nabla f = \lambda \nabla g.$$

The equations are (1). $y + 2z = \lambda yz$, (2). $x + 2z = \lambda xz$ and (3). $2(x + y) = \lambda xy$. Try x(1) + y(2) - z(3), we get (since xyz = 128, so $x \neq 0, y \neq 0, z \neq 0$)

$$2xy = \lambda xyz <=> 2 = \lambda z.$$

Now, (1)-(2) yields

$$x - y = \lambda z(x - y) < => 0 = (x - y)(\lambda z - 1) = x - y = 0.$$

So, we must have x = y. Put this to (3), we have $\lambda y = 4 = \lambda x$. From $\lambda z = 2$, we obtain y = x = 2z. Again, by xyz = 128, we get $x = y = 4(4)^{\frac{1}{3}}$, $z = 2(4)^{\frac{1}{3}}$. The minimum surface area is $xy + 2xz + 2yz = 3x^2 = 48(16)^{1/3}$

One may also replace z by $\frac{128}{xy}$ in f(x, y, z) and reduce the problem in (x, y) directly.

6. Set
$$f(x, y, z) = 12x^2 + 8xy + 12y^2 + z^2$$
 and $g(x, y, z) = x^2 + y^2 + z^2 - 8$.
 $\nabla f = \lambda \nabla g$

gives (1). $12x + 4y = \lambda x$, (2). $12y + 4x = \lambda y$, (3). $z = \lambda z$. From (3), either z = 0 or $\lambda = 1$. Try (1)-(2), we get $(8 - \lambda)(x - y) = 0$.

Now, if $\lambda = 1$, we must have x = y. By (1) again, must have x = 0, so x = y = 0. since g = 0, $z^2 = 8$, we have f = 8.

If z = 0, from $(8 - \lambda)(x - y) = 0$, either x = y or $8 = \lambda$. x = y, z = 0and g = 0 gives $x^2 = y^2 = xy = 4$, so f = 128. If $\lambda = 8$, (1)+(2) yields 16(x + y) = 8(x + y). So x = -y. As g = 0, we have $x^2 = y^2 = 4$ and xy = -4. With z = 0, we get f = 64.

In conclusion, the maximum and minimum values of f are 128 and 8 respectively.