MATH222 Assignment 7 Due Friday Nov. 23, 2007

- 1. Compute double integral $\int \int_D x dA$ where D is the finite region bounded by $y = 2x^2$ and $y = 1 + x^2$.
- 2. Compute double integral $\int \int_D (x^2 + y^2) dA$ where D is the finite region between y = x and $y = x^2$. Integrate with respect to x first.
- 3. By reversing the order of integration evaluate

$$\int_0^9 \int_{\sqrt{y}}^3 \sin \pi x^3 dx dy.$$

- 4. Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{(x^2+y^2)^2}^{1} x^2 dz dy dx$.
- 5. Evaluate using polar coordinates: $\int_D y dA$, if D is the region in the first quadrant bounded by the circle $x^2 + y^2 = 9$ and the lines y = 0 and y = x.
- 6. Let Ω be the solid region bounded above by the plane y + z = 4, below by the xy plane and on the sides by the cylinder $x^2 + y^2 = 16$. Evaluate

$$\int_{\Omega} \sqrt{x^2 + y^2} dV$$

- 7. Let $f(x, y) = 4x^2 3y^2 + 2xy$, show that f(x, y) does not have a local max or local min anywhere in the plane. Does it have a saddle point? (Justify your answer.) Find the max and min of f(x, y) on the square $\{(x, y)|0 \le x \le 1, 0 \le y \le 1\}$, naming the points at which these extrema occur.
- 8. Use the method of Lagrange multipliers (or otherwise) to find maxima and minima of $f(x, y, z) = x^2 + y^2 + z^2$ on the ellipse formed by intersection of the cone $z^2 = x^2 + y^2$ by the plane x 2z = 3.