Math 222: Assignment 1

Problem 1 (2 marks)
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Does the sequence b,, = sin(§ + :-) converge or diverge. If it converges what is the limit?
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Problem 3 (2 marks)

Does the sequence b,, = n?(1 — cos(L)) converge or diverge. If it converges what is the limit?
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Applying L’Hopitals Rule twice we get
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So we get the limit of b, to be %

For the following series, determine whether they converge (absolutely or conditionally) or diverge.
Justify your answer.

Problem 5 (4 marks)
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And so is divergent because the harmonic series diverges. So for conditional convergence we notice
that by41 < by, and that lim, . |b,| = 0. So we have conditional convergence.



Problem 7 (4 marks)
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We do not have absolute convergence since
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This is a telescoping sum of which the limit is
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This series, however is conditionally convergent since b, 1 < b, and that lim,,_, |by| = 0.

Problem 9 (4 marks)

This series is convergent from the p-series test.

Problem 11 (4 marks)
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We can see that this is convergent by using the comparison test using the following convergent

series
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This series can be shown to be convergent by the integral test
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Therefore the series is conditionally convergent
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