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Abstract. We consider a general class of non-homogeneous contracting flows of convex hyper-
surfaces in Rn+1, and prove the existence and regularity of the flow before extincting to a point
in finite time.

1. Introduction

We consider the contraction of convex hypersurfaces in Rn+1 by general fully nonlinear flows.
Suppose M ⊂ Rn+1 is a compact convex hypersurface, we are interested in the following shrink-
ing type hypersurface flow

(1.1) Xt = −ψ̃(−→ν ,X)f(κ)−→ν , X(0) = M,

where −→ν is the outer normal, κ = (κ1, . . . , κn) is the principal curvature vector of M(t), ψ̃ is a
smooth positive function defined on Sn × Rn+1, and f is a positive smooth function defined in
the positive cone

Γ+ = {(κ1, · · · , κn) ⊂ Rn| κi > 0, ∀i = 1, · · · , n.}.

When ψ̃ ≡ 1, flow (1.1) is an isotropic flow of the form

(1.2) Xt = −f(κ)−→ν , X(0) = M.

The Gauss curvature flow [11] is an example of flow (1.2). Chou [16] established existence and
regularity of the Gauss flow before it contracting to a point [16]. In the case of homogeneity one
speed function, flow (1.2) contracts to a point in finite time and becomes spherical in shape in
various structural settings [14, 10, 1, 3].

One basic question is that under what conditions flow (1.1) will contract to a point. Sufficient
conditions were discussed by Han [13] for contraction to a point of flow (1.2) when the speed
functions are homogeneous. Further study was carried out by Andrews-McCoy-Zheng in [4].
Our focus here is on speed functions without homogeneity assumption. We extend result in
[13] for flow (1.2) to non-homogeneous case. The results of this paper has been used in recent
works on convergence of Gauss curvature type flows in space forms [7] and inhomogeneous Gauss
curvature type flows [8].
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We specify the conditions on function f . The following conditions (1.3)-(1.5) were introduced
in [13].

(1.3) f is a positive symmetric function defined on Γ+,

and

∂f(λ)

∂λi
> 0, ∀λ ∈ Γ+, ∀i = 1, · · · , n.(1.4)

Set F (λ1, . . . , λn) := −f( 1
λ1
, . . . , 1

λn
), we further assume that

1
F (λ) is continuous on Γ̄+, and

1

F (λ)
= 0, ∀λ ∈ ∂Γ+.(1.5)

We replace the inverse concavity condition in [13] by the following

F is a concave function of λ ∈ Γ+.(1.6)

In rest of this paper, we mainly work on the evolution equation of support function of flow
(1.1). For a strictly convex hypersurface M , λi = 1

κi
, i = 1, · · · , n are the principal radii of M .

They are the eigenvalues of

W = (∇2
gu+ ug),

where u is the support function of M and g the standard metric on Sn. We also use lower index
i, j, k, · · · to denote covariant differentiation with respect to the connection on Sn. From the
work of Caffarelli-Nirenberg-Spruck [6], F can be extended as function in W . The corresponding
flow for u is in the form

ut = −ψ(x, u,∇u)F (W ).

The first result is for flow (1.2). The following theorem is an extension of the result in [13] to
the non-homogeneity case.

Theorem 1.1. Suppose f satisfies conditions (1.3), (1.4), (1.5) and(1.6), and suppose X(0) =
M is strictly convex, then there is a finite time T ∗ > 0 such that flow (1.2) exists for 0 < t < T ∗,
and solution X(t) remains strictly convex and X(t) converges to a point as t→ T ∗.

We switch to anisotropic flow of the form

(1.7) Xt = −ψ̃(ν)f(κ)−→ν , X(0) = M,

where ψ̃ is a positive smooth function on Sn. This type of flow was treated in [2] when f is
homogeneous, in particular for power of Gauss curvature f(κ) = Kα.

Denote

(1.8) F ij =
∂F (W )

∂Wij
, F ij,kl =

∂2F (W )

∂Wkl∂Wij
, L := ∂t − ψF ij(W )∇i∇j .
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Theorem 1.2. Suppose f satisfies conditions (1.3), (1.4), (1.5) and f(0) = 0,. Suppose ∃δ0 > 0
such that

(1.9) Fαβ,γη(W )ξαβξγη ≤ δ0
(Fαβ(W )ξαβ)2

F (W )
, ∀ξαβ.

If X(0) = M is strictly convex, then there is a finite time T ∗ > 0 such that flow (1.7) exists for
0 < t < T ∗, and solution X(t) remains strictly convex and X(t) converges to a point as t→ T ∗.

Condition (1.9) is a stronger concavity condition than (1.6), but it is weaker than the inverse
concavity condition for f .

For general form of flow (1.1), we need some additional conditions: assume ∃δ0 > 0 such that

(1.10) Fαβ,γη(W )ξαβξγη +W βγFαη(W )ξαβξγη ≤ δ0
(Fαβξαβ)2

F (W )
, ∀W ∈ Γ+, ∀ξαβ.

and

(1.11) F ij(W )WikWkj ≥ −δ0σ1(W )F (W ), ∀W ∈ Γ+.

Theorem 1.3. Suppose f satisfies conditions (1.3), (1.4), (1.5), (1.10) and (1.11). Then for
any initial strictly convex X(0) = M , there is a finite time T ∗ > 0 such that flow (1.1) exists for
0 < t < T ∗, and solution X(t) remains strictly convex and X(t) converges to a point as t→ T ∗.

The paper is organized as follows. Section 2 is devoted to evolution equations of corresponding
geometric quantities. The lower bound of the speed function and principal curvatures along the
flow will be proved in section 3. In section 4, we show the flow (1.1) converges to a point at a
finite time T ∗ > 0 under various conditions specified in Theorem 1.1, Theorem 1.2 and Theorem
1.3. In the last section we discuss examples of the non-homogeneous flow (1.1) .

2. Preliminaries

Let u be the support function of solution M(t) := X(t) to flow (1.1) with M(0) = M a strictly
convex, closed smooth hypersurface in Rn+1, then it satisfies the following evolution equation

(2.1) ut = −ψ̃(ν,X)f(
1

λ1
, . . . ,

1

λn
) =: ψ(x, u,∇u)F (W )

with u(0) = u0. Here (λ1, . . . , λn) are the eigenvalues of matrix (W (x, t)ij) := (u(x, t)ij +
u(x, t)δij) in a local orthonormal frame of Sn and ψ(x, z, p) is a smooth positive function defined

on (x, (z, p)) ∈ Sn × TSn such that ψ(x, z, p) = ψ̃(x, xz + p).

Since M(0) = M is strictly convex, the standard theory for parabolic equation implies that
(2.1) has a smooth solution t ∈ (0, T ) for some T > 0 if f satisfies (1.3), (1.4).

X(x, t) := u(x, t)x+∇Snu(x, t)

corresponds to smooth solution for (1.1) with X(0) = M for 0 < t < T . The goal is to show
there is maximal time T ∗ > 0 such that flow converges to a point when t→ T ∗.
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Lemma 2.1. For solution u of flow (2.1), the following equations hold
(2.2)

Lu =ψ(F − F ijWij + u
∑
i

F ii).

L(ψF ) =ψF (ψ
∑
i

F ii + ψuF ) + Fψui(ψF )i.

LWij =ψ[F pq,rsWpqiWrsj + (F pqWpq + F )δij −Wij

∑
p

F pp]

+ (ψxi + ψuui + ψukuki)F
pqWpqj + +(ψxj + ψuuj + ψukukj)F

pqWpqi + F (ψxixj

+ ψxiuuj + ψxjuui + ψuuuiuj + ψxiukukj + ψxjukuki + ψuuk(uiukj + ujuki)

+ ψukulukiulj + ψukukij + ψuuij).

Lr2 =2F [(
F pqWpq

F
+ 1)uψ + ψxiui + ψu|∇u|2 + ψukukiui − ψ

F pqWpiWqi

F
],

where r2 := u2 + |∇u|2.

Proof. Choose a local orthonormal frame on Sn, a direct computation yields

(1) ut =ψF (W ) = ψF (W ) + ψF ijuij − ψF ij(Wij − uδij),
(2) (ψF )t =ψF ijWijt + (ψuut + ψuiuit)F

=ψF ij(uijt + utδij) + (ψu(ψF ) + ψui(ψF )i)F

=ψF ij(ψF )ij + ψ2F
∑
i

F ii + ψuF (ψF ) + Fψui(ψF )i,

(3) Wijt =uijt + utδij = (ψF )ij + ψFδij

=ψ(F pq,rsWpqiWrsj + F pqWpqij + Fδij) + (ψxi + ψuui + ψukuki)F
pqWpqj

+ (ψxj + ψuuj + ψukukj)F
pqWpqi + F (ψxixj + ψxiuuj + ψxjuui + ψuuuiuj

+ ψxiukukj + ψxjukuki + ψuuk(uiukj + ujuki) + ψukulukiulj + ψukukij + ψuuij)

=ψ[F pq,rsWpqiWrsj + F pq(Wijpq +Wpqδij −Wijδpq +Wiqδjp −Wjpδiq) + Fδij ]

+ (ψxi + ψuui + ψukuki)F
pqWpqj + +(ψxj + ψuuj + ψukukj)F

pqWpqi + F (ψxixj

+ ψxiuuj + ψxjuui + ψuuuiuj + ψxiukukj + ψxjukuki + ψuuk(uiukj + ujuki)

+ ψukulukiulj + ψukukij + ψuuij).

For the last equation, we have

r2
t = 2uut + 2uiuit = 2F [uψ + ψxiui + ψu|∇u|2 + ψukukiui + ψ

F pq

F
Wpqiui],

(r2)pq = 2(Wpiui)q = 2Wpqiui + 2WpiWqi − 2uWpq.

�

The following simple inequality (2.3) will be used extensively in the rest of the paper.
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Lemma 2.2. Suppose F is a concave function in Γ+, then

(2.3) s
∑
i

F ii(W ) ≥ −F (W ) + F ij(W )Wij + F (sI), ∀s ∈ R+, ∀W ∈ Γ+.

Proof. By concavity, ∀s > 0, W ∈ Γ+,

F (sI) ≤ F (W ) +
∑
i

F ij(W )(sδij −Wij).

�

3. Lower bound of principal curvatures

We first estimate the lower bound of speed function in flow (2.1).

Lemma 3.1. Suppose f satisfies (1.3) , (1.4), ψ is a smooth positive function defined on Sn ×
TSn, and X(t) is a smooth convex solution of (2.1) for 0 ≤ t ≤ T . Then there is C > 0
depending only on initial data such that

(3.1) min
(x,t)∈Sn×[0,T ]

−ψ(x, u,∇u)F (W (x, t)) ≥ 1

C(T + 1)
.

Moreover, if ψ doesn’t depend on u, then

(3.2) min
(x,t)∈Sn×[0,T ]

−ψ(x,∇u)F (W (x, t)) ≥ min
x∈Sn
−ψ(x,∇u(x, 0))F (W (x, 0)).

Proof. Note that (2.1) is a contracting flow, u is bounded from above. As W > 0, max |∇u|2 ≤
maxu2 is also bounded from above. Thus ψ is bounded from below and above, and ψu is
bounded from above. By the second equation in (2.2),

(3.3) L(−ut) = −utψ
∑

F ii − ψuu
2
t

ψ
+ Fψui(−ut)i ≥ −C(−ut)2.

From comparison,

−ut ≥ η,
where η is the solution to

ηt = −Cη2, η(0) = min
t=0
−ψF = c0 > 0.

Then η = 1
Ct+c0

≥ 1
C(T+1) if we pick C ≥ c0. It follows (3.1).

Note that, if ψ is independent of u (e.g., (1.7)), by (3.3)

L(−ut) ≥ −utψ
∑

F ii + Fψui(−ut)i,

which implies that

min
(x,t)∈Sn×[0,T ]

−ψ(x,∇u)F (W (x, t)) ≥ min
x∈Sn
−ψ(x,∇u(x, 0))F (W (x, 0)).

�
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Corollary 3.1. With the same assumptions in Lemma 3.1, we have

(3.4) − F ≥
min(x,t)∈Sn×[0,T ]−ψ(x, u,∇u)F (W (x, t))

max(x,t)∈Sn×[0,T ] ψ(x, u,∇u)
=: ε0 > 0.

Proof. Note that as above, (x, u,∇u) stays in a compact subset of Sn × TSn as long as (2.1)
exists. Thus max(x,t)∈Sn×[0,T ] ψ(x, u,∇u) ≤ C(M0, ψ) <∞. The corollary follows from Lemma
3.1. �

The next lemma is the lower bound of the principal curvatures of X(t) along the flow (2.1).

Lemma 3.2. Assume that one of the following holds,

(1) conditions in Theorem 1.1 are satisfied, and X(t) is a solution to (1.2),
(2) conditions in Theorem 1.2 are satisfied, X(t) is a solution to (1.7),
(3) conditions in Theorem 1.3 are satisfied, X(t) is a solution to (1.1),

then there exists some constant ε > 0 depending only on the initial data and the constants in
the conditions specified above such that

(3.5) min
i=1,··· ,n,(x,t)∈Sn×[0,T ]

κi(x, t) ≥ ε.

Proof. It suffices to prove an upper bound for maxi=1,··· ,n,(x,t)∈Sn×[0,T ] λi(W (x, t)).

(1) If ψ̃ ≡ 1. Suppose maxi=1,··· ,n,(x,t)∈Sn×[0,T ] λi(W (x, t)) is achieved at (x0, t0). If t0 = 0,
we are done. Otherwise, take a local orthonormal frame on Sn, such that W is diagonal
at (x0, t0) and W11(x0, t0) = maxi=1,··· ,n,(x,t)∈Sn×[0,T ] λi(W (x, t)). It follows from the
evolution equation of W11 in Lemma 2.1 that, at (x0, t0),

(3.6) LW11 = F ii(Wii −W11) + F ij,klWij1Wkl1 + F ≤0

since F is concave and W11 is the largest eigenvalue at (x0, t0). By maximum principle,

(3.7) max
i,=1,··· ,n,(x,t)∈Sn×[0,T ]

λi(W (x, t)) = W11(x0, t0) ≤ max
(x,t)∈Sn×[0,T ]

W11(x, t) = max
x∈Sn

W11(x, 0).

Thus

(3.8) W (x, t) ≤ CI, (x, t) ∈ Sn × [0, T ],

where C = maxi=1,··· ,n,x∈Sn λi(W (x, 0)). The lemma follows since the eigenvalues of W
are the inverse of the principle curvatures.

(2) If ψ̃ = ψ̃(ν) defined on Sn. We write (1.1) as (2.1) equivalently for ψ(x) = ψ̃(x), x ∈ Sn.
As in the first case, suppose maxi=1,··· ,n,(x,t)∈Sn×[0,T ] λi(W (x, t)) is achieved at (x0, t0).
If t0 = 0, we are done. Otherwise, take a local orthonormal frame on Sn, such that W
is diagonal at (x0, t0) and W11(x0, t0) = maxi=1,··· ,n,(x,t)∈Sn×[0,T ] λi(W (x, t)). Again, by
the evolution equation of W11 in Lemma 2.1 (note ψu = ψui ≡ 0 for this case) and (1.9),
at (x0, t0),

(3.9)

(W11)t =ψF + Fψx1x1 + 2ψx1F
iiWii1 + ψ(F ij,klWij1Wkl1 + F iiW11,ii + F ii(Wii −W11))

≤(ψ + ψx1,x1)F + 2ψx1F
iiWii1 + δ0ψ

(F iiWii1)2

F
+ ψF ii(Wii −W11).
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By Cauchy-Schwartz inequality and the concavity (1.6) (which was implied by (1.9))

(3.10)

ψx1x1F + 2ψx1F
iiWii1 + δ0ψ

(F iiWii1)2

F
+ ψF ii(Wii −W11)

≤ψx1x1F −
ψ2
x1F

δ0ψ
+ ψF ii(Wii −W11)

≤C(‖ψ‖C2 ,
1

δ0
)(F iiWii − F )− (inf ψ)W11F

ii

≤− C(‖ψ‖C2 ,
1

δ0
)F (

inf ψW11

2C(‖ψ‖C2 , 1
δ0

)
I)− inf ψ

2
W11F

ii.

By (2.3) and corollary 3.1,

AF ii ≥ −(F − F iiWii) + F (AI) ≥ −F + F (AI) ≥ ε0 + F (AI),

where ε0 = inf(x,t)∈Sn×[0,T ](−F ) > 0 is the constant in (3.4). Since f(0) = 0, we have
F (AI)→ 0 as A→∞. Thus there exists A0(f) > 0 large, such that

(3.11) F (AI) ≥ −ε0

2
for A ≥ A0.

This implies that

(3.12)
∑
i

F ii ≥ ε0

2A0
.

Combining (3.9), (3.10), (3.11) with (3.12), if W11(x0, t0) ≥
2C(‖ψ‖C2 ,

1
δ0

)A0(F )

inf ψ ,

(3.13) W11t ≤ C(‖ψ‖C2 ,
1

δ0
)
ε0

2
− inf ψ

2
W11

ε0

2A0
≤ 0.

(3) For the general case ψ̃ = ψ̃(ν,X) defined on Sn × Rn+1. We write (1.1) as (2.1) with
ψ(x, z, p) being a smooth positive function defined on (x, (z, p)) ∈ Sn × TSn such that

ψ(x, z, p) = ψ̃(x, xz + p). Consider the function

(3.14) G = logW11 +
L

2
r2,

where r2 = u2 + |∇u|2, L is a large constant to be determined. Suppose G attains its
maximum on Sn × [0, T ] at (x0, t0). Take a local orthonormal frame of Sn such that
Wij is diagonal at (x0, t0) and W11(x0, t0) = maxi=2,··· ,n,(x,t)∈Sn×[0,T ] λi(Wij). Suppose

W11(x0, t0) ≥ 1, otherwise G(x0, t0) ≤ 1 + r2 ≤ 1 + C(M0) since the flow is contracting.
If t0 = 0, we are done. Suppose now t0 > 0. First note that, at any point (x1, t1) ((x1, t1)
need not to be the maximum point of G) where Wij is diagonal, from Lemma 2.1, W11
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and r2 satisfies

(3.15)

W11,t − ψF ppW11,pp

=F [ψ + ψuW11 − ψuu+ ψuiW11i − ψu1u1 + ψx1x1 + ψuuu
2
1 + ψu1u1W

2
11

− 2ψu1u1W11u+ ψu1u1u
2 + 2ψx1uu1 + 2ψx1u1W11 − 2ψx1u1u

+ 2ψuu1W11u1 − 2ψuu1uu1 + 2
F ii

F
Wii1(ψx1 + ψuu1 + ψu1W11

− ψu1u) + ψ
F ij,klWij1Wkl1 + F ii(Wii −W11)

F
],

and

(3.16)

r2
t − ψF pp(r2)pp

=2F [(
F ppWpp

F
+ 1)uψ + ψxiui + ψu|∇u|2 + ψuiuiiui − ψ

F ppW 2
pp

F
].

Let (x1, t1) = (x0, t0) be the maximum point of G, at (x0, t0),

(3.17) W11i = −L
2
W11(r2)i = −LW11Wiiui,

and

0 ≤ Gt − ψF ppGpp

=
W11t − ψF ppW11,pp

W11
+ ψF pp

W 2
11p

W 2
11

+
L

2
(r2
t − ψF pp(r2)pp)

= F [ψu1u1W11 + ψui
W11i

W11
+ ψu − 2ψu1u1u+ 2ψx1u1 + 2ψuu1u1

+
1

W11
(ψ − ψuu− ψu1u1 + ψx1x1 + ψuuu

2
1 + ψu1u1u

2 + 2ψx1uu1 − 2ψx1u1u− 2ψuu1uu1)

+2
F ii

F
Wii1(ψu1 +

ψx1 + ψuu1 − ψu1u
W11

) + ψ
F ij,kl

Wij1Wkl1

W11
+ F ii( Wii

W11
− 1)

F

+ψ
F pp

F

W 2
11p

W 2
11

+ (1 +
F ppWpp

F
)Luψ + Lψxiui + Lψu|∇u|2

+LψuiWiiui − Lψuiuui − Lψ
F ppW 2

pp

F
]

≤ F [−C(n,L,M0, f, ψ) + ψu1u1W11 − LψuiWiiui + 2
F ii

F
Wii1(ψu1 +

ψx1 + ψuu1 − ψu1u
W11

)

+ψ
F ij,kl

Wij1Wkl1

W11
+ F ii( Wii

W11
− 1)

F
+ ψ

F pp

F

W 2
11p

W 2
11

+
F ppWpp

F
Luψ

+LψuiWiiui − Lψ
F ppW 2

pp

F
]
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= F [−C(n,L,M0, f, ψ) + ψu1u1W11 − Lψ
F ppW 2

pp

F
] + 2F iiWii1(ψu1 +

ψx1 + ψuu1 − ψu1u
W11

)

+ψF ij,kl
Wij1Wkl1

W11
+ F ii(

Wii

W11
− 1) + ψF pp

W 2
11p

W 2
11

+ LF ppWppuψ

where we use (3.17) and u2 ≤ u2 + |∇u|2 ≤ C(M0) in the last inequality since the flow
is contracting. By (1.10)

(3.18) F ij,klWij1Wkl1 + F iiW jjW 2
ij1 ≤ δ0

(F iiWii1)2

F

for any W ∈ Γ+. This implies

(3.19)

2F iiWii1(ψu1 +
ψx1 + ψuu1 − ψu1u

W11
) + ψF ij,kl

Wij1Wkl1

W11
+ ψF pp

W 2
11p

W 2
11

≤2F iiWii1(ψu1 +
ψx1 + ψuu1 − ψu1u

W11
) + δ0

ψ(F iiWii1)2

FW11

≤− FW11

δ0ψ
(ψu1 +

ψx1 + ψuu1 − ψu1u
W11

)2

≤− C(M0, δ0, ψ)FW11.

Plugging this into the differential inequality for G and using (1.11), we get
(3.20)

Gt − ψF ppGpp

≤F [−C(n,L,M0, f, ψ)− C(M0, δ0, ψ)W11 − Lψ
F ppW 2

pp

F
] + F ii(

Wii

W11
− 1) + LF ppWppuψ

≤F [−C(n,L,M0, f, ψ)− C(M0, δ0, ψ)W11 + Lδ0ψσ1(W )] + +F ii(
Wii

W11
− 1) + LF ppWppuψ.

SinceM(t) is convex and the flow is contracting, σ1(W ) ≥W11 ≥ 1 and inf(x,t)∈Sn×[0,T ] ψ =
ε(M0, ψ) > 0, and (x, u,∇u) stays in a compact subset of Sn × TSn. Now we choose

L =
C(M0, δ0, ψ) + 1

δ0 inf(x,t)∈Sn×[0,T ]) ψ
=: L(M0, δ0, ψ)

satisfying

(3.21) Gt − ψF ppGpp ≤ F [−C(n,M0, δ0, ψ, f) +W11] + F iiWii(
1

W11
+ Luψ)−

∑
i

F ii.
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Let C1 = C1(M0, δ0, ψ) > 1 such that 1 + L sup(x,t)∈Sn×[0,T ] ψu ≤ C1. By (2.3),

(3.22)

Gt − ψF ppGpp ≤F [−C(n,M0, δ0, ψ, f) +W11] + C1(M0, δ0, ψ)F iiWii −
∑
i

F ii

≤F [−C(n,M0, δ0, ψ, f) +W11] + C1(M0, δ0, ψ)(F − F (
1

C1(M0, δ0, ψ)
I))

≤F − ε0W11 − C1(M0, δ0, ψ)F (
1

C1(M0, δ0, ψ)
I)

<0

ifW11 ≥ C(n,M0, δ0, ψ, f)+
C1(M0,δ0,ψ)F ( 1

C1(M0,δ0,ψ)
I)

ε0
+1 ,where ε0 = inf(x,t)∈Sn×[0,T ](−F ) >

0 is the constant in (3.4). This implies an upper bound for W11(x0, t0), and hence a lower
bound for κi, i = 1, · · · , n.

�

Lemma 3.3. (Lemma 2.2 [9]) Suppose Ω ⊂ Rn+1 is a convex body with support function
u : Sn → R. Let W = (uij + uδij) be the spherical Hessian of u, ρ− := ρ−(Ω), ρ+ := ρ+(Ω) be
the inner and outer radius of Ω. Suppose W ≤ C0In for some positive constant A. Then

(3.23)
ρ2

+(Ω)

ρ−(Ω)
≤ C(n)C0,

where C(n) is a positive constant depending only on the dimension n.

4. Contraction to a point

In this section, we derive the contraction to a point of the flow (1.1) under various assumptions
on f depending on different ψ (Theorem 1.1, Theorem 1.2, Theorem 1.3).

Lemma 4.1. Suppose f satisfies (1.3), (1.4), (1.6), ψ̃(ν,X) is a positive smooth function, and
X(t) is a smooth convex solution of (1.1) for 0 ≤ t ≤ T . Then

(4.1) − ψF (W (x, T )) ≤ 3
ρ+(Ω(T ))

ρ−(Ω(T ))
C1(M0, ψ) max{−2F (

ρ−(Ω(T ))

3C2(M0, ψ)
I),max

x∈Sn
(−F (W (x, 0)))}.

where C2(M0, ψ) ≥ 1, C1(M0, ψ) > 0 are positive constants depends only on M0, ψ, ψ(x, z, p) is

the smooth positive function in (2.1) such that ψ(x, z, p) = ψ̃(x, xz + p). Moreover, in the case
when ψ doesn’t depend on z, p, we can take C2(M0, ψ) = 1, and C1(M0, ψ) = maxx∈Sn ψ(x).

Proof. Pick a point in Ω(T ) as the origin such that minx∈Sn u(x, T ) = ρ−(Ω(T )) = 3ε. Since
(1.2) is a shrinking flow,

u(x, t) ≥ u(x, T ), ∀x ∈ Sn, ∀t ∈ [0, T ].

Consider the function

(4.2) Φ := log
−ψF (W )

u− 2ε
.
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It follows from (2.2)

(4.3) (−ψF (W ))t = ψF ij(−ψF )ij + (−ψ2F )
∑

F ii + Fψu(−ψF )− Fψuiuit

(u− 2ε)t = ψ[F + F ij(u− 2ε)ij + (u− 2ε)
∑

F ii − F ijWij + 2ε
∑

F ii].

Suppose Φ attains max(x,t)∈M×[0,T ] Φ at (x0, t0), choose an orthonormal frame on Sn such that

uij is diagonal at x0, then at (x0, t0), Wij = uij+uδij and F ij will also be diagonal. By maximum
principle, at (x0, t0)

(4.4)
−uti
−ut

=
ui

u− 2ε

and

0 ≤Φt − ψF ijΦij

=ψF iiΦi(log(−ψF )(u− 2ε))i + Fψu + Fψui
ui

u− 2ε
+ ψ
−2ε

∑
F ii − F + F ijWij

u− 2ε
.

=
ψ

u− 2ε
[(
ψu
ψ

(u− 2ε) +
ψuiui
ψ
− 1)F − 2ε

∑
F ii + F iiWii]

≤ ψ

u− 2ε
[−C(M0, ψ)F − 2ε

∑
F ii + F iiWii],

(4.5)

for some ∞ > C(M0, ψ) ≥ 1 as the flow is contracting and convex.
By (2.3),

(4.6) − ε
∑

F ii ≤ C(M0, ψ)(F − F ijWij − F (
ε

C(M0, ψ)
I)).

Plugging this into (4.5),

Φt − ψF ijΦij − ψF iiΦi(log(−F )(u− ε))i

≤ψ
C(M0, ψ)F − F ijWij − 2C(M0, ψ)F ( ε

C(M0,ψ)I)

u− 2ε

≤C(M0, ψ)ψ
F − 2F ( ε

C(M0,ψ)I)

u− 2ε
.

At the maximum point p = (x0, t0) of Φ, we obtain

−ψ(x0, u(p),∇u(p))F (W (p)) ≤ max{−2ψ(x0, u(p),∇u(p))F (
ε

C(M0, ψ)
I), max

(x,t)∈Sn×{0}
(−ψF )}.

By the assumption, u− 2ε ≥ ε. That is,

max
t≤T,x∈Sn

−ψF (W )

u− 2ε
≤

max{−2ψ(x0, u(p),∇u(p))F ( ε
C(M0,ψ)I),max(x,t)∈Sn×{0}(−ψF )}
ε

.

Hence

−ψ(x)F (W (x, T )) = (u(x, T )− 2ε)
−ψF (W (x, T ))

u(x, T )− 2ε
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≤ 3
ρ+(Ω(T ))

ρ−(Ω(T ))
C1(ψ,M0) max{−2F (

ρ−(Ω(T ))

3C(M0, ψ)
I),max

x∈Sn
(−F (W (x, 0)))},

where C1(M0, ψ) = max{ψ(x0, u(p),∇u(p)),max(x,t)∈Sn×{0} ψ} < ∞ only depends on M0, ψ
since the flow is contracting and convex, and (x, u,∇u) stays in a compact subset of Sn × TSn.
It follows (4.1) with C2 = C. �

Corollary 4.1. With the same assumptions in Lemma (4.1), we have

(4.7) − F (x, t) ≤ 3
ρ+(Ω(T ))

ρ−(Ω(T ))

C1(M0, ψ)

ε1(M0, ψ)
max{−2F (

ρ−(Ω(T ))

3C2(M0, ψ)
I),max

x∈Sn
(−F (W (x, 0)))}.

where ε1(M0, ψ) = inf ψ > 0 is the minimum of ψ along the flow.

Proof. Since (x, u,∇u) stays in a compact subset of Sn × TSn, ε1 > 0 depends only on M0, ψ.
Then the corollary follows from Lemma 4.1. �

Corollary 4.2. Suppose assumptions in Lemma 4.1 are satisfied, then there is C > 0 such that
for ρ−(Ω(T )) sufficiently small,

(4.8) − F (W (x, T )) ≤ C
−F ( ρ−(Ω(T ))

3C2(M0,ψ)I)

ρ
1
2
−(Ω(T ))

, ∀x ∈ Sn.

Proof. By Lemma 3.2 and Lemma 3.3,

ρ+(Ω(T )) ≤ Cρ
1
2
−(Ω(T )).

We note that when ρ−(Ω(T )) is sufficiently small,

−F (
ρ−(Ω(T ))

3C(M0, ψ)
I) ≥ −F (W (x, 0)), ∀x ∈ Sn.

�

4.1. Proof of Theorem 1.1. In this subsection, we take ψ = ψ̃ ≡ 1 and prove Theorem 1.1.

Lemma 4.2. Assume f satisfies conditions (1.3), (1.4), (1.5), and (1.6), and suppose X(t) is a
smooth solution of (1.2) for 0 < t ≤ T with initial strictly convex X(0) = M , and ρ+(Ω(T )) ≥ ε2,
then there is δ(n,M0, f, ε2) > 0 depending on n,M0, f, ε2 such that

min{λ1(W (x, t)), · · · , λn(W (x, t))} ≥ δ, ∀0 < t ≤ T.

Proof. By (1) of Lemma 3.2, W (x, t) is bounded from above. Thus, W (x, t) is inside a com-
pact subset of Γ̄+. By Lemma 3.3, ρ−(Ω(t)) ≥ C(n,M0)ρ2

+(Ω(t)) ≥ C(n,M0)ρ2
+(Ω(T )) ≥

C(n,M0)ε2
2, ∀ 0 ≤ t ≤ T . By Corollary 4.1, the speed function −F (W (x, t)) is bounded from

above as long as outer radius of Ω(t) is positive and W (x, t) is positive definite. By (1.5), W (x, t)
is bounded from below. �
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Proof of Theorem 1.1. We write (1.2) as (2.1) with ψ(x) ≡ 1 in this case. By Lemma 3.2, the
solution Mt is strictly convex if it exists. Since the flow (2.1) is contracting, the C0 estimate of
u follows. The C1 bound follows by convexity. Moreover, W is bounded from below and above
as long as outer radius is positive by Lemma 3.2 and Lemma 4.2. By Krylov’s theorem, flow
(1.2) exists before it converges to a point. Finally, the extinction time T ∗ must be finite since
the speed function ψF ≤ −C1 for an absolute constant C1 > 0 by Lemma 3.1. �

4.2. Proof of Theorem 1.2, 1.3.

Proof of Theorem 1.2. We write (1.7) as (2.1) with ψ(x) = ψ̃(x). The C1 and C0 bound of u
follows from the contracting nature of (2.1) and convexity of Mt. Note ψ > 0 is bounded from
below and above with uniform C2 norm since Sn is compact. Moreover, (1.9) implies (1.6).
Then we can use Lemma 3.2, Corollary 4.1, and the same argument as in the proof of Theorem
1.1. �

Proof of Theorem 1.3. We write (1.1) as (2.1) with ψ(x, z, p) = ψ̃(x, zx + p). The C1 and C0

bound of u follows from the contracting nature of (2.1) and convexity of Mt. The uniform C0

and C1 bound implies that ψ(x, u,∇u) > 0 is bounded from below and above with uniform C2

norm. We also note that (1.10) implies (1.6). Then we can use Lemma 3.2, Corollary 4.1, and
the same arguments as in the proof of Theorem 1.1. In this case, the extinction time T ∗ is also
finite since min(x,t)∈Sn×[0,T ]−ψF ≥ 1

C(T+1) for an absolute constant C independent of T > 0

by Lemma 3.1. This implies u(x, 0)− u(x, T ∗) =
∫ T ∗

0 −ψ(x, u(x, t),∇u(x, t))F (W (x, t))dt =∞
(x ∈ Sn) if T ∗ =∞, which contradicts to the fact the flow is contracting and M0 is compact. �

5. Remarks

We discuss conditions specified in Theorem 1.1, Theorem 1.2 and 1.3. There are large classes
of non-homogeneous curvature flows which evolve a strictly convex hypersurface to a point in
finite time satisfying these conditions.

Remark 5.1. (1) Concavity condition (1.6) of F is slightly weaker than concavity of f . We
refer Theorem 1 and Remark 2 of [4] for discussion regarding condition (1.5).

(2) There is a wide class of non-homogeneous functions satisfying conditions in Theorem
1.1 and Theorem 1.2. f(κ) = σαk (κ)(1 ≤ k ≤ n, α > 0) satisfies conditions (1.3)-
(1.6) and (1.9). One may build fully non-linear flows satisfying conditions in Theorem
1.1 and Theorem 1.2 by using them as building blocks. If f1, · · · , fm satisfy conditions

(1.3)-(1.6) and (1.9), so does f =
∑m

i=1 aif
βi
i provided ai > 0, βi ≥ 1, ∀i = 1, · · · ,m.

More generally, suppose f1, · · · , fm satisfy conditions (1.4), (1.5) and (1.6), suppose
G : Rm → R+ is a convex function, and

∂G

∂ri
> 0, ∀ri > 0, ∀i = 1, · · · ,m,

then f = G(f1, · · · , fm) satisfies conditions (1.3)-(1.6). If in addition ∃C0 > 0 such that∑
i

∂G(r)

∂ri
ri ≤ C0G(r), ∀ri > 0, ∀i = 1, · · · ,m,

and f1, · · · , fm satisfy condition (1.9), then f = G(f1, · · · , fm) satisfies condition (1.9).
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Remark 5.2. (1) If Gl satisfies (1.4) and

(5.1) Gαβ,γηl ξαβξγη ≤ −W βγGαηl ξαβξγη, ∀W ∈ Γ+, ∀ξαβ, ∀l = 1, · · · , N,

then

F (W ) = −
N∑
l=1

e−Gl(W )

satisfies (1.10). G = s log
(σn(W )
σk(W )

)
satisfies (5.1) for ∀s ∈ R+. To see that, first it’s easy

to check that log σn(W ) satisfies (5.1) with ” = ” holding. By the proof of Lemma 2 in
[12],[

σk(W )αβ,γη +W βγσk(W )αη
]
ξαβξγη ≥

(σk(W )αβξαβ)2

σk(W )
, ∀W ∈ Γ+, ∀ξαβ.

This implies that log
(σn(W )
σk(W )

)
satisfies (5.1).

(2) Condition (1.11) and conditions (1.3)-(1.6) are satisfied by σsn(κ), ∀s > 0. If p(κ)
satisfies these conditions, so is f(κ) = G(p(κ)) with G : R+ → R+ a smooth convex
function, G′(r) > 0, ∀r > 0, G(0) = 0. Thus, Theorem 1.3 holds for this type of
inhomogeneous Gauss curvature flow. Condition (1.11) is restrictive, there should be
some better conditions.

We note that the initial strictly convex condition on M in Theorems in Section 1 can be
relaxed.

Proposition 5.1. Suppose M = ∂Ω0 is closed, smooth and convex, denote

Γ = {κ(x), ∀x ∈M}.

Assume f is a positive, symmetric function on Γ+ and extends smoothly to (Γ̄+ ∩ Γ) ∪ Γ+ and
satisfies conditions (1.4)-(1.6) on (Γ̄+∩Γ)∪Γ+, Then there is finite T ∗ > 0 such that flow (1.2)
exists for 0 < t < T ∗, and solution X(t) remains strictly convex and X(t) converges to a point
as t→ T ∗.

The same conclusion holds for flow (1.7) if f satisfies (1.9) in addition.

Proof. By the initial assumption, flow exists for a short time T > 0 with conditions (1.4)-(1.6).
The strict convexity of X(t) follows from Theorem 1.4 in [5]. Then applying Theorem 1.1 to the
flow starting from t = T . �
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