ON ADMISSIBLE SQUARE ROOTS OF NON-NEGATIVE $C^{2,2\alpha}$ FUNCTIONS

PENGFEI GUAN AND HUANGCHEN ZHOU

ABSTRACT. We establish necessary and sufficient condition for $C^{1,\alpha}$ regularity of the admissible square roots of a non-negative $C^{2,2\alpha}(\mathbb{R})$ functions.

1. Introduction

The paper concerns the following problem: the regularity of square root of $C^{2,2\alpha}$ non-negative functions. Nirenberg-Trèves' gradient estimate for non-negative $C^{1,1}(\mathbb{R}^n)$ functions [14] implies square roots of these functions are Lipschitz. This estimate plays important roles in analysis of linear and nonlinear PDEs (e.g., [9], [1]). The sum of squares theorem of Fefferman and Phong [4,5] stated that any non-negative $C^{3,1}$ function in \mathbb{R}^n can be written as a sum of squares of $C^{1,1}$ functions. A detailed proof was given in [7] which was communicated by Fefferman (see also [3,16]). This decomposition is crucial to obtain C^2 a priori estimates for degenerate real Monge-Ampère equations in [7] and complex Monge-Ampère equation in [15].

For functions of one variable, Glaeser [6] proved that if $0 \le f \in C^2(\mathbb{R})$ is 2-flat on its zeroes (i.e., f(x) = 0 implies f''(x) = 0), then $f^{1/2} \in C^1(\mathbb{R})$. Mandai [13] proved that for any $0 \le f \in C^2(\mathbb{R})$, f always has an admissible square root $g \in C^1(\mathbb{R})$. In [3], Bony, Broglia, Colombini and Pernazza obtain a necessary and sufficient condition for a non-negative function $f \in C^4(\mathbb{R})$ to have an admissible square root in $C^2(\mathbb{R})$, which is only related to the non-zero local minimum points of f. Korobenko-Sawyer [12] consider higher regularity of square root functions under appropriate sufficient conditions.

The main result of this paper is the necessary and sufficient condition for optimal $C^{1,\alpha}$ regularity of square roots of $C^{2,2\alpha}(\mathbb{R})$ non-negative functions. In the rest of this paper, $C^{2,2\alpha}(\mathbb{R})$ indicates $C^{3,2\alpha-1}(\mathbb{R})$ if $1/2 < \alpha \le 1$. Below is the statement of the main theorem.

Theorem 1.1. Let
$$0 \le f \in C^{2,2\alpha}(\mathbb{R})$$
 with $||f||_{C^{2,2\alpha}(\mathbb{R})} \le 1$. $0 < \alpha \le 1$. Define the set $\mathcal{A} = \{x_0 \in \mathbb{R} : f(x_0) > 0, f'(x_0) = 0, f''(x_0) > 0\}.$ (1.1)

Then $f = g^2$ for some $g \in C^{1,\alpha}(\mathbb{R})$ if and only if there is a constant M > 0 such that

$$f''(x_0) \le M \cdot (f(x_0))^{\frac{\alpha}{1+\alpha}}, \quad \forall x_0 \in \mathcal{A}.$$
 (1.2)

Moreover, if (1.2) is satisfied, then $||g||_{C^{1,\alpha}(\mathbb{R})} \leq C$ for some universal C > 0, depending only on α and M.

¹⁹⁹¹ Mathematics Subject Classification. 53C23, 35J60, 53C42. Research of the first author is supported in part by an NSERC Discovery grant.

Remark 1.2. The condition obtained by Bony, Broglia, Colombini and Pernazza in [3] is there is a continuous function γ vanishing at every flat points of f such that

$$f''(x_0) \le \gamma(x_0) \cdot (f(x_0))^{\frac{1}{2}}, \quad \forall x_0 \in \mathcal{A}.$$
 (1.3)

Condition (1.2) is a $C^{2,2\alpha}$ version of (1.3).

The main theorem is motivated by regularity problem associated to the isometric embedding problem. Guan and Li [8] showed that if g is a C^4 Riemannian metric on \mathbb{S}^2 with Gauss curvature $K_g \geq 0$, then there exists a $C^{1,1}$ isometric embedding $X: (\mathbb{S}^2, g) \to (\mathbb{R}^3, g_{Eucl})$. A natural question is, can the embedding X be improved to $C^{2,1}$? A positive answer was given in Jiang [11] in the graph setting, under the assumption X takes the form X(x,y) = (x,y,u(x,y)) in local coordinates. It relies on a square root regularity for square of monotone functions. It is a special case of Theorem 1.1 where $\alpha = 1$ and $A = \emptyset$, which can be stated as follows.

Corollary 1.3. Let I = [-1/2, 1/2]. Assume $0 \le f \in C^{3,1}(I)$ with $||f||_{C^{3,1}(I)} \le 1$. The zero set of f in I is a closed interval $N := [x'_0, x_0]$ (possibly $x'_0 = x_0$). f is non-increasing in $[-1/2, x'_0]$ and f is non-decreasing in $(x_0, 1/2]$. Then $\exists g \in C^{1,1}(I)$ such that $f = g^2$ in I, g is non-decreasing in I and $||g||_{C^{1,1}(I)} \le C$ for some universal constant C > 0.

2. Fefferman-Phong's Lemma for $C^{2,2\alpha}$ nonnegative functions

The following lemma is well known (e.g. [16]). We provide a proof here for completeness.

Lemma 2.1 (Even dominate odd, $C^{2,\alpha}$). Let $0 < \alpha \le 1$. Let $f : \mathbb{R} \to \mathbb{R}$ be a C^2 non-negative function such that $[f]_{C^{2,\alpha}(\mathbb{R})} \le 1$. Then

$$|f'(x)| \le \frac{3}{2}|f(x)|^{\frac{1+\alpha}{2+\alpha}} + \frac{1}{2}|f''(x)| \cdot f(x)^{\frac{1}{2+\alpha}} + f(x)^{\frac{\alpha}{2+\alpha}} \cdot |f''(x)|^{\frac{1}{\alpha}} \quad \forall x \in \mathbb{R}.$$
 (2.1)

Proof. We may assume $f(x) \neq 0$. By Taylor expansion, $\forall x, h \in \mathbb{R}, \exists \xi$ between x, x + h such that

$$0 \le f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(x)h^2 + \frac{1}{2}\frac{f''(\xi) - f''(x)}{|\xi - x|^{\alpha}}|\xi - x|^{\alpha}h^2$$

$$\le f(x) + f'(x)h + \frac{1}{2}f''(x)h^2 + \frac{1}{2}|h|^{2+\alpha}.$$

Replacing h with $\pm h$,

$$|f'(x)h| \le f(x) + \frac{1}{2}|f''(x)|h^2 + \frac{1}{2}|h|^{2+\alpha}.$$
 (2.2)

Setting
$$h = \frac{f(x)^{\frac{2}{2+\alpha}}}{f(x)^{\frac{1}{2+\alpha}} + |f''(x)|^{\frac{1}{\alpha}}}$$
 in (2.2) and using $h \le f(x)^{\frac{1}{2+\alpha}}$, we obtain (2.1).

Lemma 2.2 (Even dominate odd, $C^{3,\alpha}$). Let $0 < \alpha \le 1$. Let $f : \mathbb{R} \to \mathbb{R}$ be a C^3 non-negative function such that $[f]_{C^{3,\alpha}(\mathbb{R})} \le 1$. Then

$$|f'(x)| \le \frac{13}{6} f(x)^{\frac{2+\alpha}{3+\alpha}} + \frac{3}{2} f(x)^{\frac{1+\alpha}{3+\alpha}} \cdot |f''(x)|^{\frac{1}{1+\alpha}} + f(x)^{\frac{1}{3+\alpha}} \cdot |f''(x)|, \quad \forall x \in \mathbb{R}.$$
 (2.3)

$$|f'''(x)| \le 6f(x)^{\frac{\alpha}{3+\alpha}} + 6|f''(x)|^{\frac{\alpha}{1+\alpha}} \quad \forall x \in \mathbb{R}.$$
 (2.4)

Proof. By Taylor expansion, $\forall x \in \mathbb{R}$,

$$0 \le f(x+h) \le f(x) + f'(x)h + \frac{1}{2}f''(x)h^2 + \frac{1}{6}f'''(x)h^3 + \frac{1}{6}|h|^{3+\alpha}. \tag{2.5}$$

Replacing h with $\pm h$,

$$|f'(x)h + \frac{1}{6}f'''(x)h^3| \le f(x) + \frac{1}{2}|f''(x)|h^2 + \frac{1}{6}|h|^{3+\alpha} =: A.$$
(2.6)

Replacing h by 2h in (2.6), we have

$$|2 \cdot f'(x)h + 8 \cdot \frac{1}{6}f'''(x)h^3| \le f(x) + \frac{1}{2}|f''(x)|(2h)^2 + \frac{1}{6}|2h|^{3+\alpha} =: B.$$
 (2.7)

Combining (2.6) and (2.7),

$$|f'(x)h| \le \frac{8A+B}{6}, \quad |\frac{1}{6}f'''(x)h^3| \le \frac{2A+B}{6}.$$
 (2.8)

If f(x) = 0, then f'(x) = 0 since $f \ge 0$. Otherwise, setting $h = \frac{f(x)^{\frac{2}{3+\alpha}}}{f(x)^{\frac{1}{3+\alpha}} + |f''(x)|^{\frac{1}{1+\alpha}}}$ in (2.8) and using $h \le f(x)^{\frac{1}{3+\alpha}}$, we have

$$|f'(x)| \le \frac{1}{6} \left(9 \cdot \frac{f(x)}{h} + 6 \cdot |f''(x)|h + 4 \cdot |h|^{2+\alpha} \right)$$

$$\le \frac{1}{6} \left(9 \cdot f(x)^{\frac{1+\alpha}{3+\alpha}} (f(x)^{\frac{1}{3+\alpha}} + |f''(x)|^{\frac{1}{1+\alpha}}) + 6 \cdot |f''(x)| \cdot f(x)^{\frac{1}{3+\alpha}} + 4 \cdot f(x)^{\frac{2+\alpha}{3+\alpha}} \right).$$

Thus (2.3) holds.

If f(x) = f''(x) = 0, then f'''(x) = 0 by (2.5). Otherwise, let $h = \max\{f(x)^{\frac{1}{3+\alpha}}, |f''(x)|^{\frac{1}{1+\alpha}}\}$ and using $\max\{a,b\} \le a+b$ in (2.8), and as $(a+b)^{\alpha} \le a^{\alpha}+b^{\alpha}$ for $a,b \ge 0$ and $0 < \alpha \le 1$,

$$|f'''(x)| \le \frac{3f(x)}{h^3} + \frac{3|f''(x)|}{h} + \left(\frac{1}{3} + \frac{1}{6} \cdot 2^{3+\alpha}\right) \cdot |h|^{\alpha}$$

$$\le 3f(x)^{\frac{\alpha}{3+\alpha}} + 3|f''(x)|^{\frac{\alpha}{1+\alpha}} + 3 \cdot \left| f(x)^{\frac{1}{3+\alpha}} + |f''(x)|^{\frac{1}{1+\alpha}} \right|^{\alpha}$$

$$\le 3f(x)^{\frac{\alpha}{3+\alpha}} + 3|f''(x)|^{\frac{\alpha}{1+\alpha}} + 3 \cdot \left(f(x)^{\frac{\alpha}{3+\alpha}} + |f''(x)|^{\frac{\alpha}{1+\alpha}} \right).$$

Thus (2.4) holds.

We define some constants which will be used in the rest of the paper.

$$c_0 = 1/10, \quad C = 1000;$$

$$N(\alpha) = 2, \text{ if } 0 < \alpha \le 1/2, \quad N(\alpha) = 3, \text{ if } 1/2 < \alpha \le 1;$$

$$\epsilon_0 = (\frac{1}{10^5})^{1/(2\alpha)}, \text{ if } 0 < \alpha \le 1/2, \quad \epsilon_0 = (\frac{1}{10^5})^{1/(2\alpha-1)}, \text{ if } 1/2 < \alpha \le 1;$$

$$\tilde{c} = \frac{1}{10^3} \cdot (\frac{1}{10^5})^{3/(2\alpha)}, \text{ if } 0 < \alpha \le 1/2, \quad \tilde{c} = \frac{1}{10^4} \cdot (\frac{1}{10^5})^{4/(2\alpha-1)}, \text{ if } 1/2 < \alpha \le 1.$$

$$(2.9)$$

Denote the set of flat points of f by

$$\mathcal{F} := \{ x \in \mathbb{R} : f(x) = f'(x) = f''(x) = 0 \}. \tag{2.10}$$

We note that if $f \in C^3$ and $f \ge 0$, $x \in \mathcal{F}$ implies f'''(x) = 0.

Next lemma is a $C^{2,2\alpha}$ -version of Fefferman-Phong's lemma (see [4] and Lemma 18.6.9 of [10]).

Lemma 2.3 (Fefferman-Phong's Lemma). Let I=[-1/2,1/2]. If $0 \le \phi \in C^{2,2\alpha}(I)$ such that

$$|\phi^{(k)}(t)| \le C \quad \forall t \in I \text{ for } k = 0, 1, \dots, N(\alpha), \quad [\phi]_{C^{2,2\alpha}(I)} \le 1$$
 (2.11)

and
$$\max\{\phi(0), |\phi''(0)|\} \ge \tilde{c},$$
 (2.12)

where $N(\alpha)$, C, \tilde{c} are defined in (2.9). Then there exist universal constants $r_0 > 0$, $\tilde{A} > 0$, $c_2 > 0$ such that, for $t \in (-r_0, r_0)$, either

$$c_2 \le \phi(t) \le C, \quad \|\sqrt{\phi(t)}\|_{C^{1,\alpha}((-r_0,r_0))} \le \tilde{A};$$
 (2.13)

or

$$c_2 \le \phi''(t) \le C,\tag{2.14}$$

$$\phi(t) = \phi(T) + (t - T)^2 \int_0^1 \phi''(t + s(T - t))s \, ds, \tag{2.15}$$

where t = T is the unique strict local minimum point of the function ϕ in $(-r_0, r_0)$.

Moreover, the function

$$g(t) := (t - T)(\int_0^1 \phi''(t + s(T - t))s \, ds)^{1/2}$$
(2.16)

is in $C^{1,\alpha}((-r_0,r_0))$.

Proof. Set $\mu := \min\{\frac{\tilde{c}}{3C}, (\frac{\tilde{c}}{3})^{\frac{1}{2\alpha}}\}$, where \tilde{c} and C are defined in (2.9).

(i). If $\phi(0) \geq \tilde{c}$, $\forall |t| < \mu$,

$$\phi(t) \ge \frac{1}{3}\tilde{c}$$
, and $|(\sqrt{\phi})'(t_1)| = |\frac{\phi'(t_1)}{2\sqrt{\phi(t_1)}}| \le \frac{C}{2\sqrt{\frac{1}{3}\tilde{c}}} =: b.$ (2.17)

By (2.11), (2.17), and the mean value theorem, for $|t_1| < \mu$ and $|t_2| < \mu$, $t_1 \neq t_2$,

$$2|(\sqrt{\phi})'(t_{1}) - (\sqrt{\phi})'(t_{2})|/|t_{1} - t_{2}|^{\alpha} = |\frac{\phi'(t_{1})}{\sqrt{\phi(t_{1})}} - \frac{\phi'(t_{2})}{\sqrt{\phi(t_{2})}}|/|t_{1} - t_{2}|^{\alpha}$$

$$\leq |\frac{\phi'(t_{1})}{\sqrt{\phi(t_{1})}} - \frac{\phi'(t_{2})}{\sqrt{\phi(t_{1})}}|/|t_{1} - t_{2}|^{\alpha} + |\frac{\phi'(t_{2})}{\sqrt{\phi(t_{1})}} - \frac{\phi'(t_{2})}{\sqrt{\phi(t_{2})}}|/|t_{1} - t_{2}|^{\alpha}$$

$$\leq \frac{1}{\sqrt{\frac{1}{3}\tilde{c}}} \cdot \frac{|\phi''(\xi_{1})||t_{1} - t_{2}|}{|t_{1} - t_{2}|^{\alpha}} + C \cdot \frac{|\phi'(\xi_{2})||t_{1} - t_{2}|}{2(\frac{1}{3}\tilde{c})^{3/2}|t_{1} - t_{2}|^{\alpha}} \leq C_{1}$$

$$(2.18)$$

where $b, C_1 > 0$ are universal constants, and ξ_1, ξ_2 are some points between t_1, t_2 .

(ii). Assume $|\phi''(0)| \geq \tilde{c}$.

(a) If $\phi''(0) \leq -\tilde{c}$, then for $|t| < \mu$, $\phi''(t) \leq -\frac{1}{3}\tilde{c}$. For any $|t_0| < \frac{1}{2}\mu$, expanding ϕ near t_0 , we have

$$0 \le \phi(t_0 + h) + \phi(t_0 - h) \le 2 \cdot \left(\phi(t_0) + \frac{1}{2} \cdot (-\frac{1}{3}\tilde{c}) \cdot h^2 + \frac{1}{2}|h|^{2+2\alpha}\right).$$

Letting $h = \frac{1}{2}\mu$, $\forall |t_0| < \frac{1}{2}\mu$, $\phi(t_0) \ge \frac{1}{6}\tilde{c}h^2 - \frac{1}{2}|h|^{2+2\alpha} \ge \frac{1}{24}\mu^2\tilde{c}(1-2^{-2\alpha})$.

Similar to case (i), we have $\sqrt{\phi} \in C^{1,\alpha}((-\mu/2,\mu/2))$.

(b) If $\phi''(0) \ge \tilde{c}$ and $\phi(0) < c_1$, where $c_1 > 0$ is a small and universal constant to be determined, then $|\phi'(0)|$ is also small since $\phi \ge 0$. By expansion of $\phi' \in C^{1,2\alpha}(I)$ near 0,

$$\phi'(t) = \phi'(0) + \phi''(0)t + R(t), \text{ where } |R(t)| \le C|t|^{1+\alpha}.$$
 (2.19)

In particular, (2.19) shows that $\phi'(r) > 0$ and $\phi'(-r) < 0$ if

$$\phi''(0)r > |\phi'(0)| + 2Cr^{1+\alpha}. \tag{2.20}$$

Fix $r = \min\{\frac{\tilde{c}}{3C}, (\frac{\tilde{c}}{3})^{\frac{1}{2\alpha}}\}$. As $\phi'' \in C^{2\alpha}(I)$,

$$\phi''(t) \ge \frac{1}{3}\tilde{c}, \quad |t| \le r. \tag{2.21}$$

This implies $\phi'(t)$ is strictly increasing in [-r, r], thus $\phi'(t) = 0$ has a unique solution t = T in $B_r := (-r, r)$. By Taylor expansion of ϕ near t = T, we obtain in B_r ,

$$\phi(t) = \phi(T) + (t - T)^2 \int_0^1 \phi''(t + s(T - t))s \, ds. \tag{2.22}$$

We note t = T is the unique strict local minimum point of the function ϕ in B_r .

We will estimate Hölder seminorm of g' where g is defined in (2.16). Assume without loss of generality that $\phi(T) = 0$. Then in B_r , $g(t) = \sqrt{\phi(t)}$ if $t \geq T$ and $g(t) = -\sqrt{\phi(t)}$ if t < T. By Taylor expansion,

$$\lim_{t \to T^+} \frac{g(t) - g(T)}{t - T} = \lim_{t \to T^+} \frac{\sqrt{\frac{1}{2}}\phi''(T)(t - T)^2 + O(|t - T|^{2 + \min\{1, 2\alpha\}})} - \sqrt{0}}{t - T} = \sqrt{\frac{1}{2}}\phi''(T).$$

We obtain the same value for the left limit and hence $g'(T) = \sqrt{\frac{1}{2}}\phi''(T)$.

If $t \neq T$, then by Taylor expansion,

$$\phi(t) = \frac{1}{2}\phi''(T)(t-T)^2 + A_1, \tag{2.23}$$

$$\phi'(t) = \phi''(T)(t - T) + A_2, \tag{2.24}$$

$$\phi''(t) = \phi''(T) + A_3. \tag{2.25}$$

By (2.21), (2.11) and $|t - T| \le 2r$,

$$|A_{1}| \leq C_{1} \cdot |t - T|^{2 + \min\{1, 2\alpha\}} \leq \frac{1}{3} \phi''(T)(t - T)^{2},$$

$$|A_{2}| \leq C_{2} \cdot |t - T|^{1 + \min\{1, 2\alpha\}} \leq |\phi''(T)(t - T)|,$$

$$|A_{3}| \leq C_{3} \cdot |t - T|^{\min\{1, 2\alpha\}}.$$
(2.26)

Suppose t > T. By (2.23), (2.24), (2.26) and $\phi''(t) \sim 1$ in $B_r, \forall t \in B_r$,

$$|g'(T) - g'(t)| = \left| \sqrt{\frac{1}{2}} \phi''(T) - \frac{\phi'(t)}{2\sqrt{\phi(t)}} \right|$$

$$\leq \left| \sqrt{\frac{1}{2}} \phi''(T) - \frac{\phi'(t)}{2\sqrt{\frac{1}{2}} \phi''(T)(t-T)^{2}} \right| + \left| \frac{\phi'(t)}{2\sqrt{\frac{1}{2}} \phi''(T)(t-T)^{2}} - \frac{\phi'(t)}{2\sqrt{\phi(t)}} \right|$$

$$= \left| \frac{A_{2}}{\sqrt{2\phi''(T)(t-T)^{2}}} \right| + \frac{1}{2} |\phi'(t)| \left| \frac{A_{1}}{\sqrt{\frac{1}{2}} \phi''(T)(t-T)^{2}} \cdot \sqrt{\phi(t)} \cdot (\sqrt{\phi(t)} + \sqrt{\frac{1}{2}} \phi''(T)(t-T)^{2})} \right|$$

$$\leq b \cdot |T - t|^{\alpha}, \tag{2.27}$$

where b > 0 is a universal constant. Proof is the same for t < T.

By (2.23), (2.24), (2.25), and $\phi''(t) \sim 1$ in B_r , there exists a universal c > 0 such that, $\forall t \in B_r$ with $t \neq T$,

$$|\phi''(t) \cdot \phi(t) - \frac{1}{2}\phi'(t)^{2}| = O(|t - T|^{2 + \min\{1, 2\alpha\}}),$$

$$|g''(t)| = \frac{1}{2} \left| \frac{\phi''(t) \cdot \phi(t) - \frac{1}{2}\phi'(t)^{2}}{\phi(t)^{3/2}} \right| \le c \cdot |t - T|^{\min\{0, 2\alpha - 1\}}.$$
(2.28)

 $\forall t_1, t_2 \in B_r$, we want to estimate $|g'(t_1) - g'(t_2)|$. By (2.27), we only need to deal with

$$T < t_1 < t_2$$
 or $t_2 < t_1 < T$, with
$$|t_1 - t_2| \le |t_1 - T|. \tag{2.29}$$

We only consider the case $T < t_1 < t_2$ ($t_1 < t_2 < T$ is similar). By assumption (2.29),

$$|\xi - T| \ge |t_1 - T| \ge |t_1 - t_2|, \quad \forall \xi \in (t_1, t_2).$$

By mean value theorem, $\exists \xi \in (t_1, t_2)$ such that

$$|g'(t_1) - g'(t_2)| = |g''(\xi)||t_1 - t_2| \le c \cdot |\xi - T|^{\min\{0, 2\alpha - 1\}} \cdot |t_1 - t_2| \le c \cdot |t_1 - t_2|^{\alpha}.$$

(c) If $c_1 \leq \phi(0) < \tilde{c}$, then similar to case (i), we have $\sqrt{\phi} \in C^{1,\alpha}((-\frac{c_1}{3C}, \frac{c_1}{3C}))$. To summarize, case (i), (ii)(a) and (ii)(c) lead to (2.13). Case (ii)(b) leads to (2.14).

3. A CALDERÓN-ZYGMUND DECOMPOSITION

We use the Calderón-Zygmund decomposition, which was originally suggested by Fefferman in [7].

Lemma 3.1. Let $0 \le f \in C^{2,2\alpha}(\mathbb{R})$ with $||f||_{C^{2,2\alpha}(\mathbb{R})} \le 1$. There is a countable collection of intervals $\{Q_{\nu}\}_{\nu>1}$ taking the form of (a,b], whose interiors are disjoint, such that

- (1) $\mathbb{R} = \mathcal{F} \cup (\cup_{\nu} Q_{\nu})$ and $\mathcal{F} \cap (\cup_{\nu} Q_{\nu}) = \emptyset$, where \mathcal{F} is defined in (2.10).
- (2) Let $\delta_{\nu} = diam(Q_{\nu})$. Then for any ν , $\delta_{\nu} \leq 1$. With $N(\alpha)$ defined in (2.9),

$$\inf_{x \in Q_{\nu}} \left(\sum_{k=0}^{N(\alpha)} \delta_{\nu}^{k-(2+2\alpha)} |\nabla^{k} f(x)| \right) > N(\alpha) + 1.$$
 (3.1)

Proof. We decompose \mathbb{R} into a mesh of equal intervals $(a_n, b_n]$, whose interiors are disjoint, and whose common diameter is so large that

$$\inf_{x \in Q'} \left(\sum_{k=0}^{N(\alpha)} (diam(Q'))^{k-(2+2\alpha)} |\nabla^k f(x)| \right) \le N(\alpha) + 1$$

for every interval Q' in this mesh. As $||f||_{C^{2,2\alpha}(\mathbb{R})} \leq 1$, the common diameter can be chosen to be 1. Let Q' be a fixed interval in this mesh. By bisecting each of the sides of Q', we divide Q' into 2 congruent intervals. Let Q'' be one of these new intervals.

(i) If

$$\inf_{x \in Q''} \left(\sum_{k=0}^{N(\alpha)} (diam(Q''))^{k-(2+2\alpha)} |\nabla^k f(x)| \right) > N(\alpha) + 1,$$

then we don't sub-divide Q'' any further, and Q'' is selected as one of the intervals Q_{ν} .

(ii) If

$$\inf_{x \in Q''} \left(\sum_{k=0}^{N(\alpha)} (diam(Q''))^{k-(2+2\alpha)} |\nabla^k f(x)| \right) \le N(\alpha) + 1,$$

then we proceed with the sub-division of Q'', and repeat this process until we are forced to the case (i).

Lemma 3.2. Let $3Q_{\nu}$ be the interval of diameter $3\delta_{\nu}$, with the same center at Q_{ν} , then

$$\sum_{k=0}^{N(\alpha)} \delta_{\nu}^{k-(2+2\alpha)} |\nabla^k f(x)| \le C \quad \forall x \in 3Q_{\nu}, \tag{3.2}$$

where C is defined in (2.9).

Proof. We prove the case where $1/2 < \alpha \le 1$. $0 < \alpha \le 1/2$ is similar.

Let \tilde{Q}_{ν} be the step before we get Q_{ν} . Then $Q_{\nu} \subset \tilde{Q}_{\nu}$ and diameter of \tilde{Q}_{ν} is $2\delta_{\nu}$. Since we didn't stop at \tilde{Q}_{ν} , there is $x_0 \in \tilde{Q}_{\nu} \subset 3Q_{\nu}$ such that $\sum_{k=0}^{3} (2\delta_{\nu})^{k-(2+2\alpha)} |\nabla^k f(x_0)| \leq 4$. That is

$$|\nabla^k f(x_0)| \le 4(2\delta_\nu)^{(2+2\alpha)-k}, \quad k = 0, 1, 2, 3.$$
 (3.3)

Using $||f||_{C^{2,2\alpha}(\mathbb{R})} \leq 1$ and $dist(x,x_0) \leq 3\delta_{\nu}$, we get

$$|\nabla^3 f(x)| \le |\nabla^3 f(x_0)| + 1 \cdot |x - x_0|^{2\alpha - 1} \le 4(2\delta_{\nu})^{2 + 2\alpha - 3} + (3\delta_{\nu})^{2\alpha - 1} \le 11\delta_{\nu}^{2\alpha - 1} \quad \forall x \in 3Q_{\nu}. \quad (3.4)$$

Using (3.3) and (3.4), we get

$$|\nabla^2 f(x)| \le \sup_{3Q_{\nu}} |\nabla^3 f| \cdot |x - x_0| + |\nabla^2 f(x_0)| \le 11\delta_{\nu}^{2\alpha - 1} \cdot 3\delta_{\nu} + 4(2\delta_{\nu})^{(2+2\alpha) - 2} \le 49\delta_{\nu}^{2\alpha} \quad \forall x \in 3Q_{\nu}.$$

Going backwards, we get $|\nabla f(x)| \le 179 \delta_{\nu}^{1+2\alpha}$ and $|f(x)| \le 601 \delta_{\nu}^{2+2\alpha} \quad \forall x \in 3Q_{\nu}$.

Lemma 3.3. Let Q_{ν}^* be the interval of diameter $(1+\epsilon_0)\delta_{\nu}$, with the same center at Q_{ν} , then

$$\inf_{x \in Q_{\nu}^*} \left(\sum_{k=0}^{N(\alpha)} \delta_{\nu}^{k-(2+2\alpha)} |\nabla^k f(x)| \right) \ge c_0, \tag{3.5}$$

where c_0, ϵ_0 are defined in (2.9).

Proof. Let $B := \{x \in \mathbb{R} : dist(x, x_0) \le \epsilon_0 \delta_{\nu} \}.$

We prove the case where $1/2 < \alpha \le 1$. $0 < \alpha \le 1/2$ is similar. Assume not, then $\exists x_0 \in Q_{\nu}^*$ such that $\sum_{k=0}^3 \delta_{\nu}^{k-(2+2\alpha)} |\nabla^k f(x_0)| < c_0$.

Using $||f||_{C^{2,2\alpha}(\mathbb{R})} \leq 1$ and the mean value theorem, we get

$$|\nabla^3 f(x)| \le |\nabla^3 f(x_0)| + 1 \cdot |x - x_0|^{2\alpha - 1} \le (c_0 + 1)\delta_{\nu}^{2\alpha - 1} \quad \forall x \in B.$$

$$|\nabla^2 f(x)| \le \sup_{D} |\nabla^3 f| \cdot |x - x_0| + |\nabla^2 f(x_0)| \le (2c_0 + 1)\delta_{\nu}^{2\alpha} \quad \forall x \in B.$$

Going backwards, we get $|\nabla f(x)| \leq (3c_0+1)\delta_{\nu}^{1+2\alpha}$ and $|f(x)| \leq [(3c_0+1)\epsilon_0+c_0]\delta_{\nu}^{2+2\alpha}$. Note $\epsilon_0 < \frac{1}{10^5}$, so for any $x \in B$, $\sum_{k=0}^3 \delta_{\nu}^{k-(2+2\alpha)} |\nabla^k f(x)| < 4$, contradicting with (3.1).

Lemma 3.4. Let $\lambda = \epsilon_0/2$. Let Q_{ν}^+ be the interval of diameter of $(1 + \lambda)\delta_{\nu}$, with the same center at Q_{ν} . Then for $z \in Q_{\nu}^+$, either

$$f(z) \ge \tilde{c}\delta_{\nu}^{2+2\alpha},\tag{3.6}$$

or

$$f(z) < \tilde{c}\delta_{\nu}^{2+2\alpha} \text{ and } |\nabla^2 f(z)| \ge \tilde{c}\delta_{\nu}^{2\alpha},$$
 (3.7)

where \tilde{c} is defined in (2.9).

Proof. By translation we assume z = 0, with

$$f(0) < \tilde{c}\delta_{\nu}^{2+2\alpha} \quad \text{and} \quad |\nabla^2 f(0)| < \tilde{c}\delta_{\nu}^{2\alpha}.$$
 (3.8)

First we assume $1/2 < \alpha \le 1$. Let c > 0 small such that $2c\delta_{\nu} < (diam(Q_{\nu}^*) - diam(Q_{\nu}^+))/2$. By Taylor expansion, (3.8) and $||f||_{C^{2,2\alpha}(\mathbb{R})} \leq 1$, for any $|x| < 2c\delta_{\nu}$,

$$0 \le f(x) \le \tilde{c}\delta_{\nu}^{2+2\alpha} + f'(0)x + \frac{1}{2}\tilde{c}\delta_{\nu}^{2\alpha}x^2 + \frac{1}{6}f'''(0)x^3 + \frac{1}{6}|x|^{2+2\alpha}. \tag{3.9}$$

Taking x and -x in (3.9), for any $|x| < 2c\delta_{\nu}$,

$$|f'(0)x + \frac{1}{6}f'''(0)x^3| \le \tilde{c}\delta_{\nu}^{2+2\alpha} + \frac{1}{2}\tilde{c}\delta_{\nu}^{2\alpha}x^2 + \frac{1}{6}|x|^{2+2\alpha}.$$
(3.10)

In particular, for any $|x| < c\delta_{\nu}$,

$$|f'(0)x + \frac{1}{6}f'''(0)x^3| \le \tilde{c}\delta_{\nu}^{2+2\alpha} + \frac{1}{2}\tilde{c}\delta_{\nu}^{2\alpha}(c\delta_{\nu})^2 + \frac{1}{6}|c\delta_{\nu}|^{2+2\alpha} =: A\delta_{\nu}^{2+2\alpha}.$$
 (3.11)

On the other hand, by substituting x with 2x in (3.10), for any $|x| < c\delta_{\nu}$,

$$|f'(0)(2x) + \frac{1}{6}f'''(0)(2x)^{3}| \le \tilde{c}\delta_{\nu}^{2+2\alpha} + \frac{1}{2}\tilde{c}\delta_{\nu}^{2\alpha}(2x)^{2} + \frac{1}{6}|2x|^{2+2\alpha}$$

$$\le \tilde{c}\delta_{\nu}^{2+2\alpha} + \frac{1}{2}\tilde{c}\delta_{\nu}^{2\alpha}(2c\delta_{\nu})^{2} + \frac{1}{6}|2c\delta_{\nu}|^{2+2\alpha} =: B\delta_{\nu}^{2+2\alpha}.$$
(3.12)

Combining (3.11) and (3.12), we obtain for any $|x| < c\delta_{\nu}$,

$$|f'(0)x| \le \frac{1}{6}(8A+B)\delta_{\nu}^{2+2\alpha}, \quad |\frac{1}{6}f'''(0)x^3| \le \frac{1}{6}(2A+B)\delta_{\nu}^{2+2\alpha}.$$

Thus $|f'(0)| \leq \frac{8A+B}{6c}$ and $|f'''(0)| \leq \frac{2A+B}{c^3}$. If $c = \epsilon_0/10$, $\tilde{c} = c^4$, then

$$\sum_{k=0}^{3} \delta_{\nu}^{k-(2+2\alpha)} |\nabla^{k} f(0)| \le \tilde{c} + \frac{8A+B}{6c} + \tilde{c} + \frac{2A+B}{c^{3}} < 0.01^{4} + 0.01 + 0.01^{4} + 0.07 < c_{0},$$

contradicting with (3.5).

Next we deal with the case $0 < \alpha \le 1/2$.

Let c > 0 small such that $2c\delta_{\nu} < (diam(Q_{\nu}^*) - diam(Q_{\nu}^+))/2$. By Taylor expansion, (3.8) and $||f||_{C^{2,2\alpha}(\mathbb{R})} \le 1$, for any $|x| < 2c\delta_{\nu}$,

$$0 \le f(x) \le \tilde{c}\delta_{\nu}^{2+2\alpha} + f'(0)x + \frac{1}{2}\tilde{c}\delta_{\nu}^{2\alpha}x^2 + \frac{1}{2}|x|^{2+2\alpha}.$$
 (3.13)

If $c = \epsilon_0/10$, $\tilde{c} = c^3$, setting $x = \pm c\delta_{\nu}$ in (3.13) yields

$$|f'(0)| \le (c^2 + \frac{1}{2}c^4 + \frac{1}{2}c^{1+2\alpha})\delta_{\nu}^{1+2\alpha} < 0.01\delta_{\nu}^{1+2\alpha}.$$

Hence

$$\sum_{k=0}^{2} \delta_{\nu}^{k-(2+2\alpha)} |\nabla^{k} f(0)| \le \tilde{c} + 0.01 + \tilde{c} < 0.01^{3} + 0.01 + 0.01^{3} < c_{0},$$

contradicting with (3.5).

For any $z \in Q_{\nu}^+$, we apply Fefferman-Phong Lemma 2.3 to the function $\phi(t) := \delta_{\nu}^{-(2+2\alpha)} \cdot f(z+t\delta_{\nu})$.

Corollary 3.5. Let C=1000. For $z \in Q_{\nu}^+$, there exist universal constants $r_0 > 0$, $\tilde{A} > 0$, $c_2 > 0$ such that, for $x \in (z - r_0 \delta_{\nu}, z + r_0 \delta_{\nu})$, either

$$c_{2}\delta_{\nu}^{2+2\alpha} \leq f(x) \leq C\delta_{\nu}^{2+2\alpha}, \ \|\sqrt{f(x)}\|_{C^{1}((z-r_{0}\delta_{\nu},z+r_{0}\delta_{\nu}))} \leq \tilde{A}\delta_{\nu}^{\alpha}, \ \|\sqrt{f(x)}\|_{C^{1,\alpha}((z-r_{0}\delta_{\nu},z+r_{0}\delta_{\nu}))} \leq \tilde{A};$$

$$(3.14)$$

or

$$c_2 \delta_{\nu}^{2\alpha} \le f''(x) \le C \delta_{\nu}^{2\alpha},\tag{3.15}$$

$$f(x) = f(X) + (x - X)^{2} \int_{0}^{1} f''(x + t(X - x))t \, dt, \tag{3.16}$$

where x = X is the unique strict local minimum point of the function f in $(z - r_0 \delta_{\nu}, z + r_0 \delta_{\nu})$.

Moreover, $g(x) := (x - X)(\int_0^1 f''(x + t(X - x))t \, dt)^{1/2}$ is in $C^{1,\alpha}((z - r_0\delta_{\nu}, z + r_0\delta_{\nu}))$ with $C^{1,\alpha}$ norm under control.

4. Proof of Theorem 1.1

Let
$$0 \le f \in C^{2,2\alpha}(\mathbb{R})$$
 with $||f||_{C^{2,2\alpha}(\mathbb{R})} \le 1$.

4.1. Proof of sufficiency.

4.1.1. Construction of g. We write $\mathbb{R} \setminus \mathcal{F}$ (where \mathcal{F} is defined in (2.10)) as a countable union of disjoint open intervals, so that $\mathbb{R} \setminus \mathcal{F} = \bigcup_{k=1}^{\infty} I_k$. Note if $\exists x_0 \in I_k$ with $f(x_0) = 0$, then $f''(x_0) \neq 0$. (If $0 < \alpha \le 1/2$, by Lemma 2.1, $|f(x_0)|$ and $|f''(x_0)|$ dominate $|f'(x_0)|$. If $1/2 < \alpha \le 1$, by Lemma

2.2, $|f(x_0)|$ and $|f''(x_0)|$ dominate $|f'(x_0)|$ and $|f'''(x_0)|$.) For each $m, k \in \mathbb{N}$, define

$$I_{k,m} = \{x \in I_k : dist(x, \mathcal{F}) > \frac{1}{m}\}, \quad B = \{x \in \mathbb{R} : f(x) = 0, f''(x) \neq 0\}.$$

Lemma 4.1. $I_k \cap B$ is at most countable for each k, and

$$I_k \cap B = \{ \cdots x_{-2} < x_{-1} < x_0 < x_1 < x_2 \cdots \}.$$

Proof. $\forall N > 0$, we claim that $I_{k,m} \cap B \cap [-N, N]$ is finite for each $m, k \in \mathbb{N}$. Assume $I_{k,m} \cap B \cap [-N, N]$ is infinite, then $\exists x_0 \in \mathbb{R}$ such that x_0 is an accumulation point of $I_{k,m} \cap B$. So there is a sequence $\{x_n\}$ in B such that $\lim_{n\to\infty} x_n = x_0$, and $f(x_0) = \lim_{n\to\infty} f(x_n) = 0$. Note $f \geq 0$, so $f'(x_0) = 0$.

If $f''(x_0) \neq 0$, then $x = x_0$ is a strict local minimum point of f. However, by construction, near x_0 there is a point $x_1 \in B$, so that $f(x_1) = 0$, contradicting with strict local minimality.

If $f''(x_0) = 0$, then $x_0 \in \mathcal{F}$. However, $(x_0 - \frac{1}{2m}, x_0 + \frac{1}{2m}) \cap I_{k,m} = \emptyset$, contradiction.

Now since I_k is an interval and $I_{k,m} \subset I_{k,m+1}$. Points in $I_{k,m+1} \setminus I_{k,m}$ is either on the left or right of $I_{k,m}$. The points in $I_k \cap B \cap [-N, N]$ can be ordered. The lemma follows by letting $N \to \infty$. \square

We define the function g as follows. If $x \in \mathcal{F}$, set g(x) := 0. For each k, if $I_k \cap B = \emptyset$ in I_k , then define $g(x) := \sqrt{f(x)}$ for $x \in I_k$. Otherwise,

$$I_k \cap B = \{ \dots x_{-2} < x_{-1} < x_0 < x_1 < x_2 \dots \}.$$

Define $g(x) := (-1)^i \sqrt{f(x)}$ for $x \in [x_{i-1}, x_i]$. Note that g changes sign when crossing each x_i in I_k .

4.1.2. C^1 regularity of g. g is continuous in each $I_k = (a_k, b_k)$. It suffices to discuss the continuity at $x_0 \in \mathcal{F}$. By Taylor expansion of f near x_0 , $f(x) = O(|x - x_0|^{2+2\alpha})$, so that $|\pm \sqrt{f(x)}| = O(|x - x_0|^{1+\alpha}) \to 0$ as $x \to x_0$ and $\lim_{x \to x_0} g(x) = 0$.

Lemma 4.2. $g \in C^1(I_k)$ for each k.

Proof. If $I_k \cap B = \emptyset$, then $g' = \frac{f'}{2\sqrt{f}} \in C^0(I_k)$. If $I_k \cap B \neq \emptyset$, then for each $x_i \in I_k \cap B$, $x_i \in Q_\nu$ for some $\nu = \nu(x_i)$. By Corollary 3.5, only (3.15) holds and near x_i , f can locally be written as

$$f(x) = (x - x_i)^2 \int_0^1 f''(x + t(x_i - x))t \, dt,$$

with $\int_0^1 f''(x+t(x_i-x))t \, dt \sim \delta_{\nu}^{2\alpha}$. By definition of g, near x_i , $g(x)=\pm (x-x_i)(\int_0^1 f''(x+t(x_i-x))t \, dt)^{1/2}$ (the sign depends only on the choice of sign of g near g(x)), so that g changes sign when crossing g(x)1. By Corollary 3.5, g'1 is continuous at g(x)2.

The next is a key lemma to obtain uniform estimate for g' under (1.2).

Lemma 4.3. Assume condition (1.2) is satisfied. There exists a universal constant $C_2 > 0$ such that, for any $x_0 \in I_k$ with $x_0 \in Q_\nu$ for some $\nu = \nu(x_0)$, then

$$|g'(x_0)| \le C_2 \delta_{\nu}^{\alpha}. \tag{4.1}$$

Proof. By Corollary 3.5, either (3.14) holds which implies (4.1); or

$$f(x) = f(X) + (x - X)^2 \int_0^1 f''(x + t(X - x))t \, dt,$$
(4.2)

where x = X is the unique strict local minimum point of the function f in $(x_0 - r_0 \delta_{\nu}, x_0 + r_0 \delta_{\nu})$. If f(X) = 0, then $g(x) = \pm (x - X)(\int_0^1 f''(x + t(X - x))t \, dt)^{1/2}$. By (3.15), local Hölder continuity of g', and $g'(X) = \sqrt{\frac{1}{2}f''(X)}$, there is universal b > 0 such that,

$$|g'(x)| \le |g'(X)| + b|x - X|^{\alpha} \le \sqrt{\frac{1}{2}C\delta_{\nu}^{2\alpha}} + b\delta_{\nu}^{\alpha} \le C_2\delta_{\nu}^{\alpha}, \quad \forall x \in (x_0 - r_0\delta_{\nu}, x_0 + r_0\delta_{\nu}).$$

If $f(X) \neq 0$, then by (1.2) and (3.15),

$$M \cdot (f(X))^{\frac{\alpha}{1+\alpha}} \ge f''(X) \ge c_2 \delta_{\nu}^{2\alpha}.$$

So that (4.2) reads

$$f(x) \ge f(X) \ge \left(\frac{c_2}{M}\right)^{\frac{1+\alpha}{\alpha}} \cdot \delta_{\nu}^{2+2\alpha}.$$

By (3.2), $f(x) \sim \delta_{\nu}^{2+2\alpha}$ and the computation is reduced to case (2.13).

Corollary 4.4. Assume $I_k = (a_k, b_k)$, where $b_k < +\infty$. Then

$$\lim_{x \to b_{k}^{-}} g'(x) = 0.$$

Similarly, if $a_k > -\infty$, then $\lim_{x \to a_k^+} g'(x) = 0$.

Proof. By Corollary 3.5, for each $x \in I_k$, $(x - r_0 \delta_{\nu(x)}, x + r_0 \delta_{\nu(x)}) \subset I_k$. Hence $\lim_{x \to b_k^-} \delta_{\nu(x)} = 0$. By (4.1), $|g'(x)| \leq C_2 \delta_{\nu(x)}^{\alpha} \to 0$ as $x \to b_k^-$.

Corollary 4.5. For any $x_0 \in \mathcal{F}$, g'(x) is continuous at x_0 , with

$$\lim_{x \to x_0} g'(x) = g'(x_0) = 0.$$

Proof. By Taylor expansion of f near x_0 , $f(x) = O(|x - x_0|^{2+2\alpha})$, so that

$$\left| \frac{g(x) - g(x_0)}{x - x_0} \right| = \left| \frac{\pm \sqrt{f(x)}}{x - x_0} \right| = O(|x - x_0|^{\alpha}) \to 0 \text{ as } x \to x_0.$$

If x_0 has a neighbourhood which is contained in \mathcal{F} , then the result is trivial. Otherwise, x_0 is the boundary point of some interval $I_k = (a_k, b_k)$. Without loss of generality we assume $x_0 = b_k < +\infty$.

If x_0 is discrete, then x_0 is the boundary point of two consecutive intervals I_k and I_{k+1} , with $a_k < b_k = x_0 = a_{k+1} < b_{k+1}$. By Corollary 4.4,

$$\lim_{x \to b_k^-} g'(x) = \lim_{x \to a_{k+1}^+} g'(x) = 0.$$

Otherwise, $x_0 \in [x_0, a_{k+1}] \subset \mathcal{F}$ for some a_{k+1} . By Corollary 4.4 again,

$$\lim_{x \to b_k^-} g'(x) = \lim_{x \to x_0^+} g'(x) = 0.$$

To summarize, $g \in C^1(\mathbb{R})$, with $|g'(x)| \leq C_2$, $\forall x \in \mathbb{R}$, since $\delta_{\nu} \leq 1$.

4.1.3. Global Hölder estimate. Let $x, y \in \mathbb{R}$ with $x \neq y$.

(1) If $\exists z \in \mathbb{R} \setminus \mathcal{F}$ such that x and y are both contained in $(z - r_0 \delta_{\nu(z)}, z + r_0 \delta_{\nu(z)})$, then by Corollary 3.5, the Hölder estimate is trivial if (3.14) holds or (3.15) holds with f(X) = 0. If case (3.15) holds with $f(X) \neq 0$, then by (1.2),

$$M \cdot (f(X))^{\frac{\alpha}{1+\alpha}} \ge f''(X) \ge c_2 \delta_{\nu}^{2\alpha}.$$

So that (3.16) reads

$$f(x) \ge f(X) \ge \left(\frac{c_2}{M}\right)^{\frac{1+\alpha}{\alpha}} \cdot \delta_{\nu}^{2+2\alpha} \text{ and } f(y) \ge \left(\frac{c_2}{M}\right)^{\frac{1+\alpha}{\alpha}} \cdot \delta_{\nu}^{2+2\alpha}. \tag{4.3}$$

The computation is reduced to case (2.13), and $|g'(x) - g'(y)|/|x - y|^{\alpha}$ is bounded by a constant depending only on M and α .

- (2) Assume $\nexists z \in \mathbb{R} \setminus \mathcal{F}$ such that x and y are both contained in $(z r_0 \delta_{\nu(z)}, z + r_0 \delta_{\nu(z)})$.
 - (a) If $x \in \mathcal{F}$ and $y \in \mathcal{F}$, then by Corollary 4.5, |g'(x) g'(y)| = |0 0| = 0.
 - (b) If $x \notin \mathcal{F}$ and $y \in \mathcal{F}$, then $x \in Q_{\nu}$ for some $\nu = \nu(x)$ and $|x y| \ge r_0 \delta_{\nu}$. By (4.1) and Corollary 4.5,

$$|g'(x) - g'(y)| = |g'(x)| \le C_2 \delta_{\nu}^{\alpha} \le \frac{C_2}{r_0^{\alpha}} \cdot |x - y|^{\alpha}.$$

(c) If $x \notin \mathcal{F}$ and $y \notin \mathcal{F}$, then $x \in Q_{\nu(x)}$ and $x \in Q_{\nu(y)}$, with $|x - y| \ge r_0 \delta_{\nu(x)}$ and $|x - y| \ge r_0 \delta_{\nu(y)}$. By (4.1),

$$|g'(x) - g'(y)| \le |g'(x)| + |g'(y)| \le C_2 \delta_{\nu(x)}^{\alpha} + C_2 \delta_{\nu(y)}^{\alpha} \le \frac{2C_2}{r_0^{\alpha}} \cdot |x - y|^{\alpha}.$$

Remark 4.6. $C^{1,\alpha}$ estimate of g doesn't depend on the choice of sign of g in each interval I_k .

4.2. **Proof of necessity.** Assume (1.2) doesn't hold and $f = g^2$ for some $g \in C^{1,\alpha}(\mathbb{R})$, then there is a sequence x_n in \mathcal{A} such that

$$f''(x_n) \ge n f^{\frac{\alpha}{1+\alpha}}(x_n), \quad \forall n \in \mathbb{N}.$$
 (4.4)

 $f(x_n) > 0$, so $x_n \in Q_{\nu}$ for some $\nu = \nu(n)$.

In case (i) of Lemma 3.4, $f(x_n) \ge \tilde{c}\delta_{\nu}^{2+2\alpha}$ and $f''(x_n) < C\delta_{\nu}^{2\alpha}$. By (4.4),

$$C\delta_{\nu}^{2\alpha} \ge n(\tilde{c}\delta_{\nu}^{2+2\alpha})^{\frac{\alpha}{1+\alpha}},$$
 (4.5)

so that δ_{ν} get cancelled. Letting $n \to \infty$ in (4.5), contradiction.

In case (ii) of Lemma 3.4, $f(x_n) < \tilde{c}\delta_{\nu}^{2+2\alpha}$ and $f''(x_n) \geq \tilde{c}\delta_{\nu}^{2\alpha}$. Define $s_n = \sqrt{\frac{f(x_n)}{f''(x_n)}}$. By (4.4) and $\delta_{\nu} \leq 1$,

$$s_n = \sqrt{\frac{f(x_n)}{f''(x_n)}} \le \sqrt{\frac{f(x_n)}{nf^{\frac{\alpha}{1+\alpha}}(x_n)}} = \frac{f^{\frac{1}{2+2\alpha}}(x_n)}{\sqrt{n}} \le \tilde{c}^{\frac{1}{2+2\alpha}} \cdot \frac{\delta_{\nu(n)}}{\sqrt{n}} \to 0 \text{ as } n \to \infty.$$
 (4.6)

If $1/2 < \alpha \le 1$, by Taylor expansion and $||f||_{C^{2,2\alpha}(\mathbb{R})} \le 1$,

$$f(x_n + s_n) \ge f(x_n) + \frac{1}{2}f''(x_n)s_n^2 - \frac{1}{6}|f'''(x_n)|s_n^3 - \frac{1}{6}s_n^{2+2\alpha}.$$

$$f(x_n + s_n) \le f(x_n) + \frac{1}{2}f''(x_n)s_n^2 + \frac{1}{6}|f'''(x_n)|s_n^3 + \frac{1}{6}s_n^{2+2\alpha}.$$

By (3.2) and (4.6),

$$|f'''(x_n)|s_n^3 = |f'''(x_n)|s_n \cdot \frac{f(x_n)}{f''(x_n)} \le C\delta_{\nu}^{2+2\alpha-3} \cdot \tilde{c}^{\frac{1}{2+2\alpha}} \cdot \frac{\delta_{\nu}}{\sqrt{n}} \cdot \frac{f(x_n)}{\tilde{c}\delta_{\nu}^{2\alpha}} \le \frac{1}{2}f(x_n) \text{ for large } n,$$

$$s_n^{2+2\alpha} = s_n^{2\alpha} \cdot \frac{f(x_n)}{f''(x_n)} \le (\tilde{c}^{\frac{1}{2+2\alpha}} \cdot \frac{\delta_{\nu}}{\sqrt{n}})^{2\alpha} \cdot \frac{f(x_n)}{\tilde{c}\delta_{\nu}^{2\alpha}} \le \frac{1}{2}f(x_n) \text{ for large } n.$$

So $4f(x_n) \ge f(x_n + s_n) \ge f(x_n) > 0$ for large n. By mean value theorem,

$$2|g'(x_n + s_n) - g'(x_n)| = \left| \pm \frac{f'(x_n + s_n)}{\sqrt{f(x_n + s_n)}} - \left(\pm \frac{f'(x_n)}{\sqrt{f(x_n)}} \right) \right|$$
$$= \left| \frac{f'(x_n + s_n) - f'(x_n)}{\sqrt{f(x_n + s_n)}} \right| = \frac{|f''(\xi_n)| \cdot s_n}{\sqrt{f(x_n + s_n)}},$$

where $\xi_n \in (x_n, x_n + s_n)$. By Taylor expansion of f'', for large n,

$$f''(\xi_n) \ge f''(x_n) - |f'''(x_n)| s_n - s_n^{2\alpha} \ge \frac{1}{2} f''(x_n).$$

If $0 < \alpha \le 1/2$, by expansion to the second order, we also have $4f(x_n) \ge f(x_n + s_n) \ge f(x_n) > 0$ and $f''(\xi_n) \ge \frac{1}{2}f''(x_n)$ for large n.

Therefore, for any $0 < \alpha \le 1$, by (4.4),

$$2|g'(x_n + s_n) - g'(x_n)| = \frac{|f''(\xi_n)| \cdot s_n}{\sqrt{f(x_n + s_n)}} \ge \frac{\frac{1}{2}f''(x_n) \cdot s_n}{\sqrt{4f(x_n)}} = \frac{1}{4}\sqrt{f''(x_n)}$$

$$= \frac{1}{4}s_n^{\alpha} \cdot \frac{f''(x_n)^{1/2}}{s_n^{\alpha}} = \frac{1}{4}s_n^{\alpha} \cdot \left(\frac{f''(x_n)}{f(x_n)^{\alpha}} \cdot f''(x_n)^{\alpha}\right)^{1/2}$$

$$= \frac{1}{4}s_n^{\alpha} \cdot \left(\frac{f''(x_n)^{1+\alpha}}{f(x_n)^{\alpha}}\right)^{1/2} \ge \frac{1}{4}s_n^{\alpha} \cdot \sqrt{n}.$$

Hence

$$|g'(x_n + s_n) - g'(x_n)|/s_n^{\alpha} \ge \frac{1}{8}\sqrt{n} \to \infty \text{ as } n \to \infty.$$

Contradiction.

References

- [1] B. Bian and P. Guan, A microscopic convexity principle for nonlinear partial differential Equations, Inventiones Mathematicae, Vol. 177, No. 2, (2009), 307-335.
- [2] J.-M. Bony, Sommes de carrés de fonctions dérivables, Bulletin de la Société Mathématique de France, Vol. 133, No. 4, (2005), 619-639.
- [3] J.-M. Bony and F. Broglia and F. Colombini and L. Pernazza. *Nonnegative functions as squares or sums of squares*, Journal of Functional Analysis, Vol. 232, No. 1 (2006), 137-147.
- [4] C. Fefferman and D. H. Phong, On positivity of pseudo-differential operators, Proceedings of the National Academy of Sciences, Vol. 75, No. 10, (1978), 4673-4674.
- [5] C. Fefferman and D. H. Phong, *The uncertainty principle and sharp Garding inequalities*, Commu. Pure & Appl. Math., Vol. 34, No. 3, (1981), 285-331.
- [6] G. Glaeser, Racine carrée d'une fonction différentiable, Annales de l'Institut Fourier, Vol. 13, No. 2, (1963), 203-210.
- [7] P. Guan, C² a priori estimates for degenerate Monge-Ampère equations, Duke Mathematical Journal, Vol. 86, No. 2, (1997), 323-346.

- [8] P. Guan and Y.Y. Li, *The Weyl problem with nonnegative Gauss curvature*, Journal of Differential Geometry, Vol. 39, No. 2, (1994), 331-342.
- [9] P. Guan and E. Sawyer, Regularity Estimates for the Oblique Derivative Problem. Annals of Mathematics, Vol. 137, No. 1, (1993), 1-70.
- [10] L. Hörmander, The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators, Springer Berlin Heidelberg, (2007).
- [11] X. Jiang, Isometric embedding with nonnegative Gauss curvature under the graph setting, Discrete and Continuous Dynamical Systems, Vol. 39, No. 6, (2019), 3463-3477.
- [12] L. Korobenko and E. Sawyer, Sum of squares I: scalar functions, https://arxiv.org/pdf/2107.12840.pdf
- [13] T. Mandai, Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter, Bull. Fac. Gen. Ed. Gifu Univ, No. 21, (1985), 115-118.
- [14] L. Nirenberg and F. Trèves, On local solvability of linear partial differential equations part I: Necessary conditions, Communications on Pure and Applied Mathematics, Vol. 23, No. 1, (1970), 1-38.
- [15] S. Picard, A priori estimates of the degenerate Monge-Ampère equation on Kähler manifolds of nonnegative bisectional curvature, Math. Res. Lett. 20 (2013), 1145-1156.
- [16] D. Tataru, On the Fefferman-Phong inequality and related problems, Communications in Partial Differential Equations, Vol. 27, No. 11-12, (2002), 2101-2138.

DEPARTMENT OF MATHEMATICS, McGILL UNIVERSITY, MONTREAL, QUEBEC. H3A 2K6, CANADA. *Email address*: pengfei.guan@mcgill.ca

DEPARTMENT OF MATHEMATICS, McGILL UNIVERSITY, MONTREAL, QUEBEC. H3A 2K6, CANADA. *Email address*: huangchen.zhou@mail.mcgill.ca