ON ADMISSIBLE SQUARE ROOTS OF NON-NEGATIVE (%2 FUNCTIONS
PENGFEI GUAN AND HUANGCHEN ZHOU

ABSTRACT. We establish necessary and sufficient condition for C1'% regularity of the admissible

square roots of a non-negative C%2%(R) functions.

1. INTRODUCTION

The paper concerns the following problem: the regularity of square root of C%?® non-negative
functions. Nirenberg-Tréves’ gradient estimate for non-negative C1:'(R") functions [14] implies
square roots of these functions are Lipschitz. This estimate plays important roles in analysis of
linear and nonlinear PDEs (e.g., [9], [1]). The sum of squares theorem of Fefferman and Phong [4,5]
stated that any non-negative C*! function in R can be written as a sum of squares of C1'! functions.
A detailed proof was given in [7] which was communicated by Fefferman (see also [3,16]). This
decomposition is crucial to obtain C? a priori estimates for degenerate real Monge-Ampére equations
in [7] and complex Monge-Ampere equation in [15].

For functions of one variable, Glaeser [6] proved that if 0 < f € C?(R) is 2-flat on its zeroes (i.e.,
f(z) = 0 implies f”(z) = 0), then f/? € C*(R). Mandai [13] proved that for any 0 < f € C%(R),
f always has an admissible square root g € C*(R). In [3], Bony, Broglia, Colombini and Pernazza
obtain a necessary and sufficient condition for a non-negative function f € C*(R) to have an
admissible square root in C?(R), which is only related to the non-zero local minimum points of
f. Korobenko-Sawyer [12] consider higher regularity of square root functions under appropriate
sufficient conditions.

The main result of this paper is the necessary and sufficient condition for optimal C1® regularity
of square roots of C?2%*(R) non-negative functions. In the rest of this paper, C%?*(R) indicates
C32=(R) if 1/2 < a < 1. Below is the statement of the main theorem.

Theorem 1.1. Let 0 < f € C***(R) with || f||c220r) < 1. 0 < < 1. Define the set
A={xgeR: f(zg) >0, f(x9) =0, f"'(x) > 0}. (1.1)

Then f = g* for some g € C1*(R) if and only if there is a constant M > 0 such that
F(xo) < M - (f(m0))THa, Vg € A. (1.2)
Moreover, if (1.2) is satisfied, then ||g||cr.aw) < C for some universal C' > 0, depending only on

and M.
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Remark 1.2. The condition obtained by Bony, Broglia, Colombini and Pernazza in [3] is there is

a continuous function v vanishing at every flat points of f such that

f"(@o) < (o) - (f(20))2, Vo € A, (1.3)
Condition (1.2) is a C%* version of (1.3).

D=

The main theorem is motivated by regularity problem associated to the isometric embedding
problem. Guan and Li [8] showed that if g is a C* Riemannian metric on S* with Gauss curvature
K, > 0, then there exists a C1'! isometric embedding X : (S2,g) — (R, ggua). A natural question
is, can the embedding X be improved to C*!? A positive answer was given in Jiang [11] in the
graph setting, under the assumption X takes the form X (z,y) = (x,y,u(z,y)) in local coordinates.
It relies on a square root regularity for square of monotone functions. It is a special case of Theorem

1.1 where o = 1 and A = &, which can be stated as follows.

Corollary 1.3. Let I =[-1/2,1/2]. Assume 0 < f € C*'(I) with || f||csary < 1. The zero set of
fin I is a closed interval N = [x(, zo] (possibly x, = xo). [ is non-increasing in [—1/2,x() and
[ is non-decreasing in (xo,1/2]. Then 3g € CYY(I) such that f = g% in I, g is non-decreasing in
I and ||gllcra(ry < C for some universal constant C > 0.

2. FEFFERMAN-PHONG’S LEMMA FOR C%2% NONNEGATIVE FUNCTIONS

The following lemma is well known (e.g. [16]). We provide a proof here for completeness.

Lemma 2.1 (Even dominate odd, C*%). Let 0 < o < 1. Let f : R — R be a C? non-negative
function such that [f|c2.em) < 1. Then

@< F@IES 1 @] f@ 4 f@ T @R YeeR (@)

Proof. We may assume f(x) # 0. By Taylor expansion, Yz, h € R, 3¢ between x, x + h such that

0< fa+ 1) = 5@) + F @+ g o+ g =L e

< J(@)+ P @h+ 5@ + SR

Replacing h with +h,

1 1
7@l < F(&)+ 1" )2 + S, (2.2
2
Setting h = f(@) 7 in (2.2) and using h < f(m)%%, we obtain (2.1). O

1 1
f(@) 2T +[f"(z)|=

Lemma 2.2 (Even dominate odd, C%%). Let 0 < a < 1. Let f : R — R be a C® non-negative
function such that [f|cs.em) < 1. Then
13 [e] 3 [e%
F@)| < S H@)5 + Sf@)5 - |f @) + f@)e - |f @), VreR (23)

" (x)| < 6f(x)7 +6|f"(x)|THe V€ R. (2.4)
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Proof. By Taylor expansion, Vx € R,

0< flo+ 1) < fl) + f/@)h+ 55" + < f0hd + e (25)
Replacing h with +h,
1 1 1
[F@h+ @)% < f(2) + 51 f"@)[h* 4 G| hfF = A, (2.6)
Replacing h by 2h in (2.6), we have
2 F@)h+ 8+ o /@] < (@) + g1 @)](2R) + c[2A* = B. (27)
Combining (2.6) and (2.7),
S8A+ B 1 2A+B
P < B gy < 2408 (25)
2
If f(z) =0, then f'(x) = 0 since f > 0. Otherwise, setting h = J@ i (2.8) and

; F@) S 4| ()| e
using h < f(x)3+a, we have

f(z)

7)< 1(9h+6|f%>m+4wm”ﬂ>

(@)

(9 f(@)3a (f(@)5a + [ f"(@)| ) +6 - | f"(2)] - (@) +4- f(o >s+a).

@\H

Thus (2.3) holds.
1 1
If f(z) = f"(x) =0, then f”(x) = 0 by (2.5). Otherwise, let h = max{f(z)3+e,|f"(x)| =} and
using max{a,b} < a+bin (2.8), and as (a +b)* < a®+b* for a,b>0and 0 < < 1,

3@) | 3@l (1,1

@) s 2 B (2 g

«

< 3f(z)5%e + 3| f"(2)|T55 43+ | f(2)FFs + | (2)|TFa

ssﬂ@ﬁ%+3u%@w%+3~<ﬂ>ua+u%>ww>.

Thus (2.4) holds. O

We define some constants which will be used in the rest of the paper.

60:1/10,
N(a)=2,if0<a<1/2,

1
€0 = (1—05)1/(20‘), if0<a<1/2
1,1

i=— (=) if0<a<1/2

10°

C = 1000:
N(a)=3,if1/2<a <1,

€ = (105)1/@“ D if1/2<a<1;
~ 1 1 4/(2a—1 .

(2.9)
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Denote the set of flat points of f by

F={zeR: f(z) = f'(x) = f'(z) =0} (2.10)
We note that if f € C3 and f >0, z € F implies f”(x) = 0.

Next lemma is a C%2?%version of Fefferman-Phong’s lemma (see [4] and Lemma 18.6.9 of [10]).

Lemma 2.3 (Fefferman-Phong’s Lemma). Let I = [-1/2,1/2]. If0 < ¢ € C*2%(I) such that
68 <C Vel fork=0,1,--- ,N(a), [¢lezzaqy <1 (2.11)
and masc{$(0),16"(O)]} = . (2.12)

where N(a), C, & are defined in (2.9). Then there exist universal constants ro >0, A >0, ¢ > 0
such that, for t € (—ro,70), either

e <o) <C, VOB cra(—rom)) < A (2.13)
co < @"(t) <C, (2.14)

1
o(t) = d(T) + (t — T)2/0 " (t + s(T —t))sds, (2.15)

where t = T is the unique strict local minimum point of the function ¢ in (—rg,r9).

Moreover, the function

1
o) = (t —T)(/O &' (t + s(T — t))s ds)'/2 (2.16)

is in CY((—7rg,70)).

Proof. Set p = min{%, (%)i}, where ¢ and C' are defined in (2.9).
(). 1t 6(0) > & Vi| < .

¢>'(t1)

o2 3o and (VA @] = Iy s < - f (27)
By (2.11), (2.17), and the mean value theorem, for [t;| < g and |t2] < g, t1 # ta,
2B 1)~ (VB Gl sl =1 G~ G
<1 Vo Vet
b g o

where b, Cy > 0 are universal constants, and &1, &> are some points between t1, to.
(ii). Assume |¢"(0)] > ¢.
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(a) If ¢"(0) < —¢, then for [t| < pu, ¢"(t) < —%é For any |to| < Su, expanding ¢ near to, we
have

0 < ¢(to+h) +¢(to —h) <2- <¢(to) + % : (_%5) R2 4 ;|h|2+2a>'

Letting h = $p, V[to| < Sp, ¢(to) > §eh? — §|h|>T2 > L pu?e(1 — 2729).

Similar to case (i), we have /¢ € CY¥((—u/2, 11/2)).

(b) If ¢"(0) > ¢ and ¢(0) < ¢1, where ¢; > 0 is a small and universal constant to be determined,
then |¢'(0)| is also small since ¢ > 0. By expansion of ¢/ € C12¥(I) near 0,

¢ (t) = ¢'(0) + ¢"(0)t + R(t), where [|R(t)| < Clt]'Te. (2.19)
In particular, (2.19) shows that ¢'(r) > 0 and ¢'(—r) < 0 if
¢"(0)r > |¢'(0)| + 2071+, (2.20)
Fix 7 = min{s%, (£)3 }. As ¢ € C2(I),
¢"(t) >

This implies ¢'(t) is strictly increasing in [—r, 7|, thus ¢'(¢) = 0 has a unique solution ¢t = T in

g < (2.21)

Wl

B, = (—r,r). By Taylor expansion of ¢ near t = T', we obtain in B,,

1
o(t) = ¢(T) + (t — T)2/0 ¢"(t + s(T —t))sds. (2.22)

We note t = T is the unique strict local minimum point of the function ¢ in B;.

We will estimate Holder seminorm of ¢’ where ¢ is defined in (2.16). Assume without loss of

generality that ¢(7) = 0. Then in B,, g(t) = \/¢(t) if t > T and g(t) = —\/¢(t) if t < T. By
Taylor expansion,

1 _ 2 _ 7T|24min{l1,2a}) _
g =g _ BT+ =T )-V0 gwuw

t—T+ t—T t—T+ t—T

We obtain the same value for the left limit and hence ¢'(T') = y/2¢"(T).
If t # T, then by Taylor expansion,

b(t) = %d)”(T)(t T4 A, (2.23)
¢'(t) = ¢"(T)(t — T) + A, (2.24)
¢"(t) = ¢"(T) + As. (2.25)

By (2.21), (2.11) and |t — T| < 2r,
[A1] < Oy [t = TPEmR02) < STy (6 - T,
|Ag| < Cy - |t — T Fminth2eh < "(T) (¢ — T),
|As| < Cy - |t — T|mintl2ad (2.26)
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Suppose t > T. By (2.23), (2.24), (2.26) and ¢"(t) ~ 1 in B,, Vt € B,,

g (T)—4'(t)| = %(b”(T) _ ¢'(t)
1 ¢/< ) ¢/( ) ¢’(t)
< d"(T) — -
\/7( 2\/ ¢// 2 2\/ ¢// T)2 2\/¢(t)
_ A2 | 4
V26"(T VD)~ T2 /50 - (/D) + /30" (D)t~ T)2)
<b-|T —t|*, (2.27)

where b > 0 is a universal constant. Proof is the same for ¢t < T
By (2.23), (2.24), (2.25), and ¢"(t) ~ 1 in B,, there exists a universal ¢ > 0 such that, Vt € B,
with t £ T,

6" () - o(t) — %é’(tﬂ = O([t — T|Hminth2ed),
' 1 " t) - t) — 1 4/ t 2 ) B

Vt1,te € By, we want to estimate |¢'(t1) — ¢'(t2)|. By (2.27), we only need to deal with
T<ti<ty or ty<t;<T, with
[ty — to] < |t1 — T (2.29)
We only consider the case T' < t; < to (t1 < to < T is similar). By assumption (2.29),
§=T[=|ta =T| = [t1 —to|, VEE (t1,t2).
By mean value theorem, 3¢ € (¢1,t2) such that
19'(t1) = g (t2)| = 1g"(E)l[tr — ta| < ¢+ € = TP™O20 Mty —to] <o [tr — to] ™

() If ¢1 < ¢(0) < ¢, then similar to case (i), we have /¢ € CH*((—£5, £5)).
To summarize, case (i), (ii)(a) and (ii)(c) lead to (2.13). Case (ii)(b) leads to (2.14). O

3. A CALDERON-ZYGMUND DECOMPOSITION
We use the Calderén-Zygmund decomposition, which was originally suggested by Fefferman in [7].
Lemma 3.1. Let 0 < f € C??*(R) with [ fllc220@) < 1. There is a countable collection of
intervals {Qy }v>1 taking the form of (a,b], whose interiors are disjoint, such that

(1) R=FU(U,Q,) and F N (U,Q,) = &, where F is defined in (2.10).
(2) Let 6, = diam(Qy). Then for any v, §, < 1. With N(«) defined in (2.9),

N(a)
inf (Z 5’;<2+2a>\ka(a:)y> > N(a) +1. (3.1)
k=0

IEQV
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Proof. We decompose R into a mesh of equal intervals (a,,b,], whose interiors are disjoint, and

whose common diameter is so large that

N(a)

inf di N\k—(2+2a) k <N 1

;gQ,(Z< iam(Q)) VEF@)] ) < N(o) +
k=0

for every interval@' in this mesh. As || f||¢2.20(r) < 1, the common diameter can be chosen to be 1.

Let Q" be a fixed intervalin this mesh. By bisecting each of the sides of @', we divide @’ into 2

congruent intervals. Let Q” be one of these new intervals.
(i) If

N(o)
inf di 1M\ k—(2+2a) Vk’ >N 1
56“@'(,;0( jam(Q") [ F f(2)] | > N(a) +1,
then we don’t sub-divide Q" any further, and Q" is selected as one of the intervals Q,,.

(if) If

E 1"
2€Q"\ 150

then we proceed with the sub-division of ), and repeat this process until we are forced to
the case (i).

N(a)
inf (Z (dz’am(@"))k—@“a)|v’ff<x>|> < N(a)+1,

O
Lemma 3.2. Let 3Q, be the intervalof diameter 36,, with the same center at Q,,, then
N(a)
ST RNV i(@)| <O e e3Q, (32)
k=0

where C' is defined in (2.9).

Proof. We prove the case where 1/2 < o <1. 0 < a < 1/2 is similar.
Let @, be the step before we get Q,. Then Q, C Q, and diameter of Q,, is 28,. Since we didn’t
stop at Q,, there is 29 € Q, C 3Q, such that Zizo@éy)k_(z“‘%‘)]ka(mo)] < 4. That is

IV f(z0)] < 4(26,)2H27% |k =0,1,2,3. (3.3)
Using || f|lc2.20ry < 1 and dist(z,z0) < 30,, we get
(V3 f(x)| < [V3f(xo)| +1- |z — 20?1 <4(26,)2T2*73 +(35,)% 1 <1162 va €3Q,. (3.4)
Using (3.3) and (3.4), we get
V2 f(x)| < 0 V3 f| - |2 = mo| + [V f(wo)| < 116,°7" - 35, +4(25,) P22 < 4953% Vo € 3Q,.
Going backwards, we get |V f(x)] < 1796112 and |f(x)| < 6016212 Vz € 3Q,.
g

Lemma 3.3. Let Q}, be the intervalof diameter (1 + €p)d,, with the same center at Q,, then

N(e)
inf (Y oEERVRf(2)]) > (3.5)
k=0

zeQ}



8 PENGFEI GUAN AND HUANGCHEN ZHOU

where ¢y, €g are defined in (2.9).

Proof. Let B == {xz € R : dist(z,x0) < €y, }.
We prove the case where 1/2 < o < 1. 0 < a < 1/2 is similar.
Assume not, then Jz¢ € @}, such that Zzzo 55_(2+2a)\ka(xo)\ < ¢p.

Using || f|lc220(r) < 1 and the mean value theorem, we get
(V3 f(z)] < |V3f(z0)| + 1w —xo[** ™ < (o +1)52*7! Vz € B.
|V2f(x)| <sup |V3f|- |z — xo| + |V f(z0)| < (2¢9 + 1)62* Va € B.
B

Going backwards, we get |V f(z)] < (3co + 1)612% and |f(z)| < [(3co + 1)eg + c0]d2T2*. Note

€0 < 745, so for any x € B, Zizo 55_(2+2a)\ka(x)] < 4, contradicting with (3.1).

0

Lemma 3.4. Let A = €o/2. Let Q) be the intervalof diameter of (1 + \)d,, with the same center
at Q.. Then for z € Q7 , either

v

f(z) > e&s2t2e (3.6)

or
f(2) < @022 and |V2f(2)| > é62%, (3.7)

where ¢ is defined in (2.9).

Proof. By translation we assume z = 0, with
f(0) < &2 and |V2f(0)] < @62 (3.8)

First we assume 1/2 < o < 1. Let ¢ > 0 small such that 2¢d, < (diam(Q3) — diam(Q;))/2. By
Taylor expansion, (3.8) and || f|¢c220r) < 1, for any [z] < 2¢6,,

- 1. 1 1
0 < f(x) < &2 + f'(0)x + 5(:53%2 + gf”’(O)JU3 + glw\QHO‘. (3.9)
Taking = and —x in (3.9), for any |z| < 2¢d,,
1 1 1
|f'(0)x + 5 "(0)z3] < é622e 4 5553%2 + 6]m|2+2°‘. (3.10)
In particular, for any |z| < ¢d,,
1 1 1
| (0)z + G F7(0)23| < @62t 4 iééga(céyf + g\cayy”?a = APt (3.11)
On the other hand, by substituting = with 2z in (3.10), for any |z| < ¢d,,
1 1 1
£(0)(22) + £ £7(0)(22)°] < @572 + 6,7 (22)" + 22272
1 1
< @oitie 4 56630‘(2061,)2 + 6|2c5,,|2+2a =: B§2t2e, (3.12)
Combining (3.11) and (3.12), we obtain for any |z| < ¢d,,

F0)2] < 2sa+ Bz, 1L pr0)a?) <

5 (2A + B)sZt2e,

|~
=
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Thus |f/(0)] < 848 and |f”(0)] < QAC%B. If ¢ = €9/10, & = %, then

S8A+ B 2A+ B

c3

3
S sk Tk (o) < &+ G
k=0
contradicting with (3.5).
Next we deal with the case 0 < o < 1/2.
Let ¢ > 0 small such that 2¢d, < (diam(Q?}) — diam(Q;'))/2. By Taylor expansion, (3.8) and

[fllc220m) < 1, for any |z] < 2¢d,,

< 0.01* 4 0.01 + 0.01* + 0.07 < cq,

1 1
0 < flx) < &2 + f'(0)x + 5553%2 + §|x|2+20‘. (3.13)
If ¢ = €9/10, & = 3, setting x = +¢d, in (3.13) yields

1 1
1£/(0)] < (¢ + =t + =25l t2e < 0.0161 122,

27 "2
Hence )

> oEmCTRITRF(0)] < @+ 0.01+ & < 0.01° 4 0.01 + 0.01% < ¢,

k=0
contradicting with (3.5). O

For any 2 € Q;}, we apply Fefferman-Phong Lemma 2.3 to the function ¢(t) = 5, (212 f(z4t6,).

Corollary 3.5. Let C = 1000. For z € Q}, there exist universal constants ro > 0, A>0 ¢>0
such that, for x € (z — rody, z + 1rody), either

2052 < f(x) < COZ IV F (@)t (amrosyztrosn)) < A0, IV F(@) 01 ((amrosy ztrosn)) < Al
.14

(3.14)
02 < f"(x) < €63, (3.15)
1
f(z) = f(X) + (z — X)2/0 (x4 t(X —2))tdt, (3.16)

where x = X is the unique strict local minimum point of the function f in (z — rody, z + rody).
Moreover, g(x) = (x — X)(fo1 'z +t(X —2)tdt)? is in CH((z — 106,, 2 + 706,,)) with CH

norm under control.
4. PROOF OF THEOREM 1.1
Let 0 < f € C***(R) with || f[|c2.20r) < 1.
4.1. Proof of sufficiency.
4.1.1. Construction of g. We write R \ F (where F is defined in (2.10)) as a countable union of

disjoint open intervals, so that R\ F = U2, I;.. Note if 3zg € I with f(z¢) = 0, then f”(z) # 0.
(If 0 < @« < 1/2, by Lemma 2.1, | f(x0)| and |f”(z0)| dominate |f'(zo)|. If 1/2 < o < 1, by Lemma
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2.2, |f(zo)| and | f"(xo)| dominate |f'(zo)| and |f"(x0)|.) For each m,k € N, define
Iy = {z € Iy, : dist(z, F) > %}, B={xeR: f(z)=0,f"(z) # 0}.
Lemma 4.1. I, N B is at most countable for each k, and
LNnB={ -z o<z1<z)<w1 <X "}

Proof. YN > 0, we claim that Ij,, N BN [—N, N] is finite for each m,k € N. Assume I} ,, N BN
[—N, N] is infinite, then 3z € R such that zg is an accumulation point of I, N B. So there is a
sequence {z,} in B such that lim, . x, = xo, and f(z¢) = lim, e f(x,) = 0. Note f > 0, so
f'(o) = 0.

If f"(x¢) # 0, then z = x¢ is a strict local minimum point of f. However, by construction, near
xo there is a point x1 € B, so that f(z1) = 0, contradicting with strict local minimality.

If f"(z0) = 0, then z¢ € F. However, (29 — 5=, 20 + 5-) N Iym = @, contradiction.

Now since I}, is an interval and Iy, ,;, C Ij 1. Points in Iy 41\ I is either on the left or right
of It . The points in I, N BN [—N, N] can be ordered. The lemma follows by letting N — co. [

We define the function g as follows. If z € F, set g(z) := 0. For each k, if I, N B = & in I, then
define g(x) := +/ f(z) for x € Ij,. Otherwise,

LiNB={- 2 2<r1<z0<m <72}
Define g(z) == (—1)'\/f(z) for x € [z;_1, ;). Note that g changes sign when crossing each z; in Ij.

4.1.2. C*' regularity of g. g is continuous in each I, = (ag,by). It suffices to discuss the continuity
at g € F. By Taylor expansion of f near xg, f(z) = O(|lz — z0|?>T2%), so that | £ \/f(z)| =
O(|z — z2o|'T) — 0 as z — z0 and lim, 4, g(x) = 0.

Lemma 4.2. g € C(I},) for each k.
Proof. It I, N B = @, then ¢’ = 2f7 € C°(I;). If I, N B # @, then for each z; € I, N B, z; € Q,
for some v = v(x;). By Corollary 3.5, only (3.15) holds and near z;, f can locally be written as

1
f(@) = (& — 2:)? /0 1" + i — )t

with fol f"(x + t(x; — x))tdt ~ 62%. By definition of g, near x;, g(z) = +£(x — mi)(fol [z +t(z; —
x))t dt)'/?(the sign depends only on the choice of sign of g near zp), so that g changes sign when

crossing x;. By Corollary 3.5, ¢’ is continuous at ;. g
The next is a key lemma to obtain uniform estimate for ¢’ under (1.2).

Lemma 4.3. Assume condition (1.2) is satisfied. There ezists a universal constant Ca > 0 such

that, for any xy € I, with xg € Q, for some v = v(xg), then
|9 (20)] < Cady. (4.1)

Proof. By Corollary 3.5, either (3.14) holds which implies (4.1); or

F@) = F(X) + (x — X)2 /0 P+ H(X - 2))tdt, (4.2)
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where x = X is the unique strict local minimum point of the function f in (xg — rody, xo + 70d,).
If f(X) =0, then g(z) = :I:(x—X)(fol f"(x+t(X —z))tdt)/2. By (3.15), local Hlder continuity

of ¢/, and ¢'(X) = /3 f(X), there is universal b > 0 such that,

1
I (z)] <19/ (X)] + bz — X|* < \/506,%‘“ + boy < Cady), V€ (xg— rody, o + 700y).
If f(X) # 0, then by (1.2) and (3.15),
M- (f(X)T5 = f1(X) = a8,

So that (4.2) reads
1+a

@)= f(X) 2 (57) = - a0

By (3.2), f(x) ~ 62t2* and the computation is reduced to case (2.13). O

Corollary 4.4. Assume I, = (ag,by), where by < +00. Then
lim ¢'(z) = 0.

T—b,
Similarly, if a, > —oo, then limx_mz g (z) =0.
Proof. By Corollary 3.5, for each x € Iy, (z — 100, (2), T + 700,(2)) C 1. Hence limx%b; du(z) = 0.
By (4.1), |¢'(2)] < Cadyy = 0asz — by O
Corollary 4.5. For any zo € F, ¢'(x) is continuous at xq, with

lim ¢'(x) = ¢/(20) = 0.

T—T0

Proof. By Taylor expansion of f near xg, f(z) = O(|x — z0]|?>T2%), so that

9(x) — g(z0) = /(@) = O(|lx — z9|*) — 0 as x — xo.
T — X €r — o

If g has a neighbourhood which is contained in F, then the result is trivial. Otherwise, xg is the
boundary point of some interval I, = (ag, by). Without loss of generality we assume zg = b, < +00.

If xg is discrete, then x( is the boundary point of two consecutive intervals I and Ij,, with
ap < by = xg = ag+1 < bgy1. By Corollary 4.4,

lim ¢'(z) = lim g (x) =0.

b, T—ag
Otherwise, xg € [z, ax+1] C F for some ap4q. By Corollary 4.4 again,

lim ¢'(z) = lim+ g (x)=0.

T—b, Ty

To summarize, g € C1(R), with |¢/(z)| < C2, YV € R, since §, < 1.

4.1.3. Global Holder estimate. Let x,y € R with = # y.
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(1) If 3z € R\ F such that » and y are both contained in (2 — rod,(.), 2 + 70d,(-)), then by
Corollary 3.5, the Holder estimate is trivial if (3.14) holds or (3.15) holds with f(X) = 0.
If case (3.15) holds with f(X) # 0, then by (1.2),

M- (f(X))Tra > f/(X) > 262,

So that (3.16) reads

02 14+a

B and f(y) > (2)'F - oEe (43)

€2 | Lta
fla) = f(X) = ()=
The computation is reduced to case (2.13), and |¢'(z) — ¢'(y)|/|x — y|* is bounded by a
constant depending only on M and a.
(2) Assume Pz € R\ F such that = and y are both contained in (z — T00y(2), 2 + T00y(z))-
(a) If x € F and y € F, then by Corollary 4.5, |¢'(z) — ¢'(y)| = |0 — 0| = 0.
(b) If z ¢ F and y € F, then z € @, for some v = v(x) and |z — y| > r¢d,. By (4.1) and
Corollary 4.5,
/ ! / Co
9'(x) = g'(y)| = |g'(x)| < Cady < r z —y|®.
(c) f z ¢ F and y ¢ F, then z € Q) and x € Q,(y), with |v — y| > rod,(,) and
|z —y[ > 106,y)- By (4.1),

19'(@) =g W] < 19" @) + 19" (W)] < Codyy + Cadyyy < —= - o —yl™.
0

Remark 4.6. CL% estimate of g doesn’t depend on the choice of sign of g in each interval Iy,.

4.2. Proof of necessity. Assume (1.2) doesn’t hold and f = ¢* for some g € C1*(R), then there

is a sequence x, in A such that
f(xy) > nfl%a(xn), Vn € N. (4.4)

f(zy) >0, so x, € Q, for some v = v(n).
In case (i) of Lemma 3.4, f(x,) > &5272% and f(z,) < C52*. By (4.4),

OO > (e )T, (4.5)
so that ¢, get cancelled. Letting n — oo in (4.5), contradiction.
In case (i) of Lemma 3.4, f(z,) < ¢0272* and f”(z,) > &2 Define s,, = f]j,(it"?}) By (4.4)
and 9, <1,
1
f(zn) flxn) _ fo¥% (2) L Oun)

— < — < C2+2a

8 «
If 1/2 < a < 1, by Taylor expansion and | f||¢2.20r) < 1,

— 0 as n — oo. (4.6)

NG

f(@n + sn) > fzn) + %f”(wn)si - é’f’”(ﬂﬁn)bi _ 1242

1 1
fl@n+sn) < flan) + 5" (wn)sn + 51" (@a)lsy + 5on™
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By (3.2) and (4.6),

1" (zn)|52 = [ ()| 5n - ]‘5,((2;:3) < Cp2ras. FTiea . j% : '2% ) < %f(xn) for large n,
n ~ 51/ n
si”a = sia : ;/(Z;n)) < (¢zFea %)26‘ . J;((gxga) < %f(mn) for large n.
So 4f(xyn) > f(zn + sn) > f(x,) > 0 for large n. By mean value theorem,
/ o _ f(@n + sn) _ f'(zn)
2‘9 (xn + Sn) g (xn)‘ = ’ + \/m (i\/Tn |
_ ’f/(xn +5n) = f'(xn) 1" (€n)] - 5n

F(@n + 5n) F(@n + 5n)

where &, € (2, Ty + sn). By Taylor expansion of f”, for large n,

1

f(&n) = f(xn) = 1f" (xn)]5n — 51%,& > Qf”(xn)

If 0 < a < 1/2, by expansion to the second order, we also have 4f(zy,) > f(x, + sn) > f(x,) >0
and f(&,) > 5f"(xy) for large n.

Therefore, for any 0 < a < 1, by (4.4),

"Gl -sn o 3 f" (@) sn 1

29,$n+5n _glxn = > ”

l9'( ) — g (xn)]| o o) %n =1

o L @n)

SOZ

S

=

n

40
<f// Tn 1+a>

|9 (@n + sn) = g'(xn)l /55 =

3Q
59

s \/m.

=

Hence
Vn — 00 as n — oo.

Contradiction.

REFERENCES

[1] B. Bian and P. Guan, A microscopic convezity principle for nonlinear partial differential Equations, Inventiones
Mathematicae, Vol. 177, No. 2, (2009), 307-335.

[2] J.-M. Bony, Sommes de carrés de fonctions dérivables, Bulletin de la Société Mathématique de France, Vol. 133,
No. 4, (2005), 619-639.

[3] J-M. Bony and F. Broglia and F. Colombini and L. Pernazza. Nonnegative functions as squares or sums of
squares, Journal of Functional Analysis, Vol. 232, No. 1 (2006), 137-147.

[4] C. Fefferman and D. H. Phong, On positivity of pseudo-differential operators, Proceedings of the National Acad-
emy of Sciences, Vol. 75, No. 10, (1978), 4673-4674.

[5] C. Fefferman and D. H. Phong, The uncertainty principle and sharp Garding inequalities, Commu. Pure & Appl.
Math., Vol. 34, No. 3, (1981), 285-331.

[6] G. Glaeser, Racine carrée d’une fonction différentiable, Annales de I'Institut Fourier, Vol. 13, No. 2, (1963),
203-210.

[7] P. Guan, C? a priori estimates for degenerate Monge-Ampére equations, Duke Mathematical Journal, Vol. 86,
No. 2, (1997), 323-346.



14

PENGFEI GUAN AND HUANGCHEN ZHOU

[8] P. Guan and Y.Y. Li, The Weyl problem with nonnegative Gauss curvature, Journal of Differential Geometry,

Vol. 39, No. 2, (1994), 331-342.

[9] P. Guan and E. Sawyer, Regularity Estimates for the Oblique Derivative Problem. Annals of Mathematics, Vol.

137, No. 1, (1993), 1-70.

[10] L. Hormander, The Analysis of Linear Partial Differential Operators I11: Pseudo-Differential Operators, Springer

Berlin Heidelberg, (2007).

[11] X. Jiang, Isometric embedding with nonnegative Gauss curvature under the graph setting, Discrete and Continuous

Dynamical Systems, Vol. 39, No. 6, (2019), 3463-3477.

[12] L. Korobenko and E. Sawyer, Sum of squares I: scalar functions, https://arxiv.org/pdf/2107.12840.pdf

[13] T. Mandai, Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter, Bull. Fac.

Gen. Ed. Gifu Univ, No. 21, (1985), 115-118.

[14] L. Nirenberg and F. Treves, On local solvability of linear partial differential equations part I: Necessary conditions,

Communications on Pure and Applied Mathematics, Vol. 23, No. 1, (1970), 1-38.

[15] S. Picard, A priori estimates of the degenerate Monge-Ampére equation on Kdhler manifolds of nonnegative

bisectional curvature, Math. Res. Lett. 20 (2013), 1145-1156.

[16] D. Tataru, On the Fefferman-Phong inequality and related problems, Communications in Partial Differential

Equations, Vol. 27, No. 11-12, (2002), 2101-2138.

DEPARTMENT OF MATHEMATICS, MCGILL UNIVERSITY, MONTREAL, QUEBEC. H3A 2K6, CANADA.

Email address: pengfei.guan@mcgill.ca

DEPARTMENT OF MATHEMATICS, MCGILL UNIVERSITY, MONTREAL, QUEBEC. H3A 2K6, CANADA.

Email address: huangchen.zhou@mail.mcgill.ca



	1. Introduction
	2. Fefferman-Phong's Lemma for C2,2 nonnegative functions
	3. A Calderón-Zygmund decomposition
	4. Proof of Theorem 1.1
	4.1. Proof of sufficiency
	4.2. Proof of necessity

	References

