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Abstract. We establish C2 a priori estimate for convex hypersurfaces whose princi-
pal curvatures κ = (κ1, · · · , κn) satisfying Weingarten curvature equation σk(κ(X)) =
f(X, ν(X)). We also obtain such estimate for admissible 2-convex hypersurfaces in the
case k = 2. Our estimates resolve a longstanding problem in geometric fully nonlinear
elliptic equations considered in [3, 19, 20, 14]

1. introduction

This paper concerns a longstanding problem of the global C2 estimates for curvature
equation in general form

σk(κ(X)) = f(X, ν(X)), ∀X ∈M,(1.1)

where σk is the kth elementary symmetric function, ν(X), κ(X) are the outer-normal and
principal curvatures of hypersurface M ⊂ Rn+1 at X respectively. σk(κ), k = 1, · · · , n,
are the Weingarten curvatures of the hypersurface M . In the cases k = 1, 2 and n, they
are the mean curvature, scalar curvature and Gauss curvature respectively.

Equation (1.1) is associated with many important geometric problems. The Minkowski
problem ([21, 22, 23, 9]), the problem of prescribing general Weingarten curvature on outer
normals by Alexandrov [3, 13], the problem of prescribing curvature measures in convex
geometry [2, 22, 15, 14]), the prescribing curvature problem considered [4, 24, 8], all these
geometric problems fall into equation (1.1) with special form of f respectively. Equation
(1.1) has been studied extensively, it is a special type of general equations systemically
studied by Alexandrov in [3]. C2 estimates are known in many special cases. When k = 1,
equation (1.1) is quasilinear, C2 estimate follows from the classical theory of quasilinear
PDE. The equation is of Monge-Ampère type if k = n, C2 estimate in this case for general
f(X, ν) is due to Caffarelli-Nirenberg-Spruck [6]. When f is independent of normal vector
ν, C2 estimate has been proved by Caffralli-Nirenberg-Spruck [8] for a general class of
fully nonlinear operators F , including F = σk, F = σk

σl
. If f in (1.1) depends only on ν, C2

estimate was proved in [13]. Ivochkina [19, 20] considered the Dirichlet problem of equation
(1.1) on domains in Rn, C2 estimate was proved there under some extra conditions on the
dependence of f on ν. C2 estimate was also proved for equation of prescribing curvature
measures problem in [15, 14], where f(X, ν) = 〈X, ν〉f̃(X). It is of great interest, both in
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geometry and in PDE, to establish C2 estimate for equation (1.1) for 1 < k < n and for
general f(X, ν).

C2 estimates for equation (1.1) is equivalent to the curvature estimates from above for
κ1, · · · , κn. We state the main results of this paper.

Theorem 1. Suppose M ⊂ Rn+1 is a closed convex hypersurface satisfying curvature
equation (1.1) for some positive function f(X, ν) ∈ C2(Γ), where Γ is an open neighborhood
of unit normal bundle of M in Rn+1 × Sn, then there is a constant C depending only on
n, k, ‖M‖C1, inf f and ‖f‖C2, such that

(1.2) max
X∈M,i=1,··· ,n

κi(X) ≤ C.

Estimate (1.2) is special to equation (1.1). One may ask if estimate (1.2) can be gen-
eralized to this type of curvature equations when f depends on (X, ν) as in (1.1). The
answer is no in general.

Theorem 2. For each 1 ≤ l < k ≤ n, there exist C > 0 and a sequence of smooth positive
functions ft(X, ν) with

‖ft‖C3(Rn+1×Sn) + ‖ 1

ft
‖C3(Rn+1×Sn) ≤ C,

and a sequence of strictly convex hypersurface Mt ⊂ Rn+1 with ‖Mt‖C1 ≤ C satisfying
quotient of curvatures equation

(1.3)
σk
σl

(κ) = ft(X, ν),

such that estimate (1.2) fails.

It is desirable to drop the convexity assumption in Theorem 1. In the case of scalar
curvature equation (k = 2), we establish estimate (1.2) for starshaped admissible solutions
of equation (1.1). The general case 2 < k < n is still open.

Following [7], we define

Definition 3. For a domain Ω ⊂ Rn, a function v ∈ C2(Ω) is called k-convex if the
eigenvalues λ(x) = (λ1(x), · · · , λn(x)) of the hessian ∇2v(x) is in Γk for all x ∈ Ω, where
Γk is the Garding’s cone

Γk = {λ ∈ Rn | σm(λ) > 0, m = 1, · · · , k}.

A C2 regular hypersurface M ⊂ Rn+1 is k-convex if κ(X) ∈ Γk for all X ∈M .

Theorem 4. Suppose k = 2 and suppose M ⊂ Rn+1 is a closed strictly starshaped 2-convex
hypersurface satisfying curvature equation (1.1) for some positive function f(X, ν) ∈
C2(Γ), where Γ is an open neighborhood of unit normal bundle of M in Rn+1 × Sn, then
there is a constant C depending only on n, k, ‖M‖C1, inf f and ‖f‖C2, such that

(1.4) max
X∈M,i=1,··· ,n

κi(X) ≤ C.
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Theorem 1 and Theorem 4 are stated for compact hypersurfaces, the corresponding
estimates hold for solutions of equation (1.1) with boundary conditions, with C in the
right hand side of (1.2) and (1.4) depending C2 norm on the boundary in addition.

The proof of above two theorems relies on maximum principles for appropriate cur-
vature functions. The novelty of this paper is the discovery of some new test curvature
functions. They are nonlinear in terms of the principal curvatures with some good con-
vexity properties.

With appropriate barrier conditions on function f , one may establish existence results
of the prescribing curvature problem (1.1) in general.

Theorem 5. Suppose f ∈ C2(Rn+1 × Sn) is a positive function and suppose there is a
constant r > 1 such that,

f(X,
X

|X|
) 6

σk(1, · · · , 1)

rk
for |X| = r,(1.5)

and f−1/k(X, ν) is a locally convex in X ∈ Br(0) for any fixed ν ∈ Sn, then equation (1.1)
has a strictly convex C3,α solution inside B̄r.

To state a corresponding existence result for 2-convex solutions of the prescribed scalar
curvature equation (1.1), we need further barrier conditions on the prescribed function f
as considered in [4, 24, 8]. We denote ρ(X) = |X|.

We assume that
Condition (1). There are two positive constant r1 < 1 < r2 such that

(1.6)

f(X, X|X|) >
σk(1,··· ,1)

rk1
, for |X| = r1,

f(X, X|X|) 6
σk(1,··· ,1)

rk2
, for |X| = r2.

Condition (2). For any fixed unit vector ν,

∂

∂ρ
(ρkf(X, ν)) 6 0, where |X| = ρ.(1.7)

Theorem 6. Suppose k = 2 and suppose positive function f ∈ C2(B̄r2 \Br1×Sn) satisfies
conditions (1.6) and (1.7), then equation (1.1) has a unique C3,α starshaped solution M
in {r1 ≤ |X| ≤ r2}.

The organization of the paper is as follow. As an illustration, we give a short proof of
C2 estimate for σ2-Hessian equation on R2 in Section 2. Theorem 4 and Theorem 1 are
proved in Section 3 and Section 4 respectively. Section 5 is devoted to various existence
theorems. Construction of examples of convex hypersurfaces stated in Theorem 2 appears
in Section 6.
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2. The Hessian equation for k = 2

To begin this section, we list one lemma which is well known (e.g., Theorem 5.5 in [5],
it was also originally stated in a preliminary version of [7] and was lately removed from
the published version).

Lemma 7. Denote Sym(n) the set of all n × n symmetric matrices. Let F be a C2

symmetric function defined in some open subset Ψ ⊂ Sym(n). At any diagonal matrix

A ∈ Ψ with distinct eigenvalues, let F̈ (B,B) be the second derivative of C2 symmetric
function F in direction B ∈ Sym(n), then

F̈ (B,B) =

n∑
j,k=1

f̈ jkBjjBkk + 2
∑
j<k

ḟ j − ḟk

λj − λk
B2
jk.(2.1)

We use standard notation. We let κ(A) be eigenvalues of the matrix A = (aij). For
equation

F (A) = F (κ(A)),

we define

F pq =
∂F

∂apq
, and F pq,rs =

∂2F

∂apq∂ars
.

For a local orthonormal frame, if A is diagonal at a point, then at this point,

F pp =
∂f

∂κp
= fp, and F pp,qq =

∂2f

∂κp∂κq
= fpq.

The following facts regarding σk will be used throughout this paper, their proof can be
found in [17].
(i) σpp,ppk = 0, and σpp,qqk (κ) = σk−2(κ|pq);
(ii) σpq,rsk hpqlhrsl = σpp,qqk h2

pql − σ
pp,qq
k hpplhqql.

In what follows, we consider σ2-Hessian equations in a domain Ω ⊂ Rn+1:

(2.2)

{
σ2[D2u] = f(x, u,Du),
u|∂Ω = φ.

We believe C2 estimates for equation (2.2) is known. Since we are not able to find any
reference in the literature, a proof is produced here to serve as an illustration.

For a symmetric 2-tensor W on a Riemannian manifold (M, g) is call a Codazzi tensor
if W is closed (viewed as a TM -valued 1-form). W is Codazzi if and only if

∇XW (Y,Z) = ∇YW (X,Z),

for all tangent vectors X,Y, Z, where∇ is the Levi-Civita connection. In local orthonormal
frame, the condition is equivalent to wijk is symmetric with respect to indices i, j, k.
Hessian ∇2u of a function u ∈ C2(Ω), Ω ⊂ Rn, is Codazzi. It is well known that the
second fundamental form of a hypersurface in Rn+1 is a Codazzi tensor by the Codazzi
equation.

We need following lemma which is a slightly improvement of Lemma 1 in [14].

4



Lemma 8. Assume that k > l, W = (wij) is a Codazzi tensor which is in Γk. Denote

α =
1

k − l
. Then, for h = 1, · · · , n, we have the following inequality,

−
σpp,qqk

σk
(W )wpphwqqh +

σpp,qql

σl
(W )wpphwqqh(2.3)

>

(
(σk(W ))h
σk(W )

− (σl(W ))h
σl(W )

)(
(α− 1)

(σk(W ))h
σk(W )

− (α+ 1)
(σl(W ))h
σl(W )

)
.

Furthermore, for any δ > 0,

−σpp,qqk (W )wpphwqqh + (1− α+
α

δ
)
(σk(W ))2

h

σk(W )
(2.4)

> σk(W )(α+ 1− δα)

[
(σl(W ))h
σl(W )

]2

− σk
σl

(W )σpp,qql (W )wpphwqqh.

Proof. Define a function

lnF = ln(
σk
σl

)1/(k−l) =
1

k − l
lnσk −

1

k − l
lnσl.

Differentiate it twice,
F pp

F
=

1

k − l
σppk
σk
− 1

k − l
σppl
σl
,

F pp,qq

F
− F ppF qq

F 2
=

1

k − l
σpp,qqk

σk
− 1

k − l
σppk σ

qq
k

σ2
k

− 1

k − l
σpp,qql

σl
+

1

k − l
σppl σ

qq
l

σ2
l

.

Using previous two equalities,

1

α

F pp,qq

F
= α

(
σppk
σk
−
σppl
σl

)(
σqqk
σk
−
σqql
σl

)
+

(
σpp,qqk

σk
−
σppk σ

qq
k

σ2
k

−
σpp,qql

σl
+
σppl σ

qq
l

σ2
l

)
.

By the concavity of F , (F pp,qq) ≤ 0. Together with the above identity,

−
σpp,qqk

σk
+
σpp,qql

σl
>

(
σppk
σk
−
σppl
σl

)(
(α− 1)

σqqk
σk
− (α+ 1)

σqql
σl

)
.

Here the meaning of ” > ” is for comparison of symmetric matrices. Hence, for each h with
(w11h, · · · , wnnh), we obtain (2.3). (2.4) follows from (2.3) and the Schwarz inequality. �

Proposition 9. Suppose Ω ⊂ Rn is a bounded domain with smooth boundary. Suppose
f(p, u, x) ∈ C2(Rn×R×Ω̄) is a positive function. The Dirichlet problem (2.2) has a global
C2 bound depending on the C1 bound of u, the domain Ω and the C1 bound of f .

Proof. Consider

φ = max
|ξ|=1,x∈Ω

exp{ε
2
|Du|2 +

a

2
|x|2}uξξ,

where ε and a are to be determined later. Suppose that the maximum of φ is achieved
at some point x0 in Ω along some direction ξ. We may assume that ξ = (1, 0, · · · , 0).
Rotating the coordinates if necessary, we may assume the matrix (uij) is diagonal, and
u11 > u22 · · · > unn at the point.
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We differentiate the function log φ twice at x0,

(2.5)
u11i

u11
+ εuiuii + axi = 0,

and

(2.6)
u11ii

u11
− u2

11i

u2
11

+
∑
k

εukukii + εu2
ii + a 6 0.

Contract with the matrix σii2 u11,

(2.7) σii2 u11ii − σii2
u2

11i

u11
+ u11

∑
k

εukσ
ii
2 ukii + u11εσ

ii
2 u

2
ii + a

∑
i

σii2 u11 6 0.

At x0, differentiate equation (1.1) twice,

σii2 uiij = fj + fuuj + fpjujj ,(2.8)

and

σii2 uiijj + σpq,rs2 upqjursj(2.9)

= fjj + 2fjuuj + 2fjpjujj + fuuu
2
j + 2fupjujujj + fuujj + fpjpju

2
jj +

∑
k

fpkukjj .

Choose j = 1 in the above equation, and insert (2.9) into (2.7),

0 >− C − Cu11 + fp1p1u
2
11 +

∑
k

fpkuk11 − σpq,rs2 upq1urs1

− σii2
u2

11i

u11
+ u11

∑
k

εukσ
ii
2 ukii + u11εσ

ii
2 u

2
ii + a

∑
i

σii2 u11.

Use (2.5) and (2.8),∑
k

fpkuk11 + u11

∑
k

εukσ
ii
2 ukii = u11

∑
k

(εukfk + εfuu
2
k − axkfpk).

Then

0 > −C − Cu11 + fp1p1u
2
11 −

∑
p6=r

upp1urr1 +
∑
p 6=q

u2
pq1 − σii2

u2
11i

u11
(2.10)

+u11εσ
ii
2 u

2
ii + (n− 1)au11

∑
k

ukk.

Choose k = 2, l = 1 and h = 1 in Lemma 8, we have,

−
∑
p 6=r

upp1urr1 + (1− α+
α

δ
)
(σ2)2

1

σ2
> (α+ 1− δα)σ2[

(σ1)1

σ1
]2 > 0.
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Inequality (2.10) becomes,

0 > −C − Cu11 + fp1p1u
2
11 + (n− 1)au2

11 − C(σ2)2
1(2.11)

+u11εσ
ii
2 u

2
ii + 2

∑
k 6=1

u2
11k − σii2

u2
11i

u11

> ((n− 1)a− C0)u2
11 + u11εσ

ii
2 u

2
ii + 2

∑
k 6=1

u2
11k − σii2

u2
11i

u11
,

where we have used (2.5) and the Schwarz inequality. We claim that if a is chosen large
enough that

(n− 1)a− C0 > 1,

then

(2.12) u11εσ
ii
2 u

2
ii + 2

∑
k 6=1

u2
11k − σii2

u2
11i

u11
> 0.

Inequality (2.11) then yield an upper bound of u11.
We prove the claim (2.12). We may assume that u11 is sufficient large. By (2.5) and

the Schwarz inequality,

σ11
2 u11εu

2
11 − σ11

2

u2
111

u11
> σ11

2 u11(εu2
11 − 2ε2u2

1u
2
11 − 2a2x2

1).(2.13)

If we require

ε > 3ε2 max
Ω
|∇u|2,(2.14)

and if u11 sufficient large, (2.13) is nonnegative. As in [10], we divide it into two different
cases. Denote λi = uii.

(A)

n−1∑
i=2

λi 6 λ1. In this case, for i 6= 1, since λ1 > λ2 > · · · > λn, and σii2 = σ1 − λi,

2u11 > σ
nn
2 > σ

ii
2 .

Hence,

2
∑
k 6=1

u2
11k −

∑
i 6=1

σii2
u2

11i

u11
> 0.

Combined with (2.13), we obtain (2.12).

(B)

n−1∑
i=2

λi > λ1, then
λ1

n− 2
6 λ2 6 λ1 and σnn2 > 2λ1. We further divide this case

into two subcases.
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(B1) Suppose σ22
2 > 1. Using (2.14), (2.5) and the Schwarz inequality,

u11ε
∑
i 6=1

σii2 u
2
ii −

∑
i 6=1

σii2
u2

11i

u11

=σ22
2 u11εu

2
22 − σ22

2

u2
112

u11
+
∑
i>2

(σii2 u11εu
2
ii − σii2

u2
11i

u11
)

>σ22
2 u11(εu2

22 − 2ε2u2
2u

2
22 − 2a2x2

2) +
∑
i>2

σii2 u11(εu2
ii − 2ε2u2

iu
2
ii − 2a2x2

i )

>
1

3
σ22

2 u11(εu2
22 − C)− Cu11

∑
i>2

σii2

>
ε

3
λ1λ

2
2 − Cλ2

1

>
ε

3(n− 2)2
λ3

1 − Cλ2
1,

it is nonnegative if λ1 is sufficient large. In view of (2.13), in this subcase, (2.12) holds.

(B2) Suppose σ22
2 = λ1 − λ2 + λn +

∑n−1
i=2 λi < 1. Again, we may assume that λ1 is

sufficient large, then,

−λn = unn > λ1 − 1 >
λ1

2
.

Hence, for ε sufficient small, we have,

u11ε
∑
i 6=1

σii2 u
2
ii −

∑
i 6=1

σii2
u2

11i

u11

=σnn2 u11εu
2
nn − σnn2

u2
11n

unn
+
∑

1<i<n

(σii2 u11εu
2
ii − σii2

u2
11i

u11
)

>
1

3
σnn2 u11(εu2

nn − C)− Cu11

∑
1<i<n

σii2

>
ε

6
λ2

1(λ1 − 1)2 − Cλ2
1.

Here, the first inequality comes from (2.5) and the Schwarz inequality. The process is simi-
lar to the first and second inequalities in subcase (B1). The above quantity is nonnegative,
if λ1 is sufficient large. (2.12) follows from (2.13). �

With the C2 interior estimate, one may obtain a global C2 estimate if the corresponding
boundary estimate is in hand. This type of C2 boundary estimates have been proved by
Bo Guan in [12] under the assumption that Dirichlet problem (2.2) has a subsolution.
Namely, there is a function u, satisfying

(2.15)

{
σ2[D2u] > f(x, u,Du),
u|∂Ω = φ.
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Theorem 10. Suppose Ω ⊂ Rn is a bounded domain with smooth boundary. Suppose
f(p, u, x) ∈ C2(Rn × R × Ω̄) is a positive function with fu ≥ 0. Suppose there is a
subsolution u ∈ C3(Ω̄) satisfying (2.15), then the Dirichlet problem (2.2) has a unique
C3,α,∀0 < α < 1 solution u.

3. the scalar curvature equation

We consider the global curvature estimates for solution to curvature equation (1.1) with
k = 2, i.e. the prescribing scalar curvature equation in Rn+1. In [11], a global curvature
estimate was obtained for prescribing scalar curvature equation in Lorentzian manifolds,
where some special properties of the spacelike hypersurfaces were used. It seems for
equation (1.1) in Rn1+, the situation is different. A new feature here is to consider a
nonlinear test function log

∑
l e
κl . We explore certain convexity property of this function,

which will be used in a crucial way in our proof.
Set u(X) = 〈X, ν(X)〉. By the assumption that M is starshaped with a C1 bound,

u is bounded from below and above by two positive constants. At every point in the
hypersurface M , choose a local coordinate frame {∂/(∂x1), · · · , ∂/(∂xn+1)} in Rn such
that the first n vectors are the local coordinates of the hypersurface and the last one is the
unit outer normal vector. Denote ν to be the outer normal vector. We let hij and u be the
second fundamental form and the support function of the hypersurface M respectively.
The following geometric formulas are well known (e.g., [14]).

(3.1) hij = 〈∂iX, ∂jν〉,

and

(3.2)

Xij = −hijν (Gauss formula)
(ν)i = hij∂j (Weigarten equation)
hijk = hikj (Codazzi formula)
Rijkl = hikhjl − hilhjk (Gauss equation),

where Rijkl is the (4, 0)-Riemannian curvature tensor. We also have

(3.3)
hijkl = hijlk + hmjRimlk + himRjmlk

= hklij + (hmjhil − hmlhij)hmk + (hmjhkl − hmlhkj)hmi.

We need a more explicit version of Lemma 8 for k = 2 case.

Lemma 11. Suppose W = (wij) is a Codazzi tensor which is in Γ2. For h = 1, · · · , n and

K large so that σ2 >
1

K
, there exist universal constants α large and δ small, such that the

following inequality holds,

K(σ2)2
h −

∑
p 6=r

wpphwrrh − δwhhσhh2

w2
hhh

σ2
1

+ α
∑
i 6=h

w2
iih > 0.(3.4)
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Proof. Consider function

Q =
σ2(W )

σ1(W )
.

We have,

σ1Q
pp,qqwpphwqqh =

∑
p 6=q

wpphwqqh −
2(σ2)h

∑
j wjjh

σ1
+ 2

σ2(
∑

j wjjh)2

σ2
1

.

On the other hand, one may write (e.g. [18])

−Qpp,qqwpphwqqh =

∑
i(wiihσ1 − wii

∑
k wkkh)2

σ3
1

.

From the above two identities and the Schwartz inequality, with K,α large enough,

−
∑
p6=r

wpphwrrh(3.5)

=

∑
i(wiihσ1 − wii

∑
k wkkh)2

σ2
1

−
2(σ2)h

∑
j wjjh

σ1
+ 2

σ2(
∑

j wjjh)2

σ2
1

>
σ2(
∑

j wjjh)2

σ2
1

−K(σ2)2
h +

(whhhσ1 − whhhwhh − whh
∑

k 6=hwkkh)2

σ2
1

+

∑
i 6=h(wiihσ1 − wiiwhhh − wii

∑
k 6=hwkkh)2

σ2
1

>
σ2(whhh)2

σ2
1

−K(σ2)2
h +

(whhhσ
hh
2 )2

2σ2
1

+
w2
hhh

∑
i 6=hw

2
ii

2σ2
1

− α
∑
i 6=h

w2
iih.

By (3.5),

K(σ2)2
h −

∑
p6=r

wpphwrrh − δσhh2 whh
w2
hhh

σ2
1

+ α
∑
i 6=h

w2
iih

>
σ2(whhh)2

σ2
1

+
w2
hhh

∑
i 6=hw

2
ii

2σ2
1

− δ
σhh2 whhw

2
hhh

σ2
1

.

Since,

whhσ
hh
2 = σ2 −

1

2

∑
a6=b;a,b 6=h

waawbb,

if δ is sufficient small, we obtain (3.4). �

Theorem 4 is a consequence of the following theorem. A hypersurface M is called
strictly starshaped if u ≥ c0 for some c0 > 0.
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Theorem 12. Suppose k = 2 and suppose M ⊂ Rn+1 is a strictly starshaped 2-convex hy-
persurface satisfying curvature equation (1.1) for some positive function f(X, ν) ∈ C2(Γ),
where Γ is an open neighborhood of unit normal bundle of M in Rn+1 × Sn, then there is
a constant C depending only on n, k, ‖M‖C1, inf f and ‖f‖C2, such that

(3.6) max
X∈M,i=1,··· ,n

κi(X) ≤ C(1 + max
X∈∂M,i=1,··· ,n

κi(X)).

The proof of Theorem 12 is quite technical. The main step is to create a Maximum
Principle for an appropriate auxiliary curvature function. For that purpose, we set

P =
∑
l

eκl , φ = log logP − (1 + ε) log u+
a

2
|X|2,(3.7)

where ε and a are constants which will be determined later. Here, P = G(hij) = g(κ) with
g symmetric is smooth. We may assume that the maximum of φ is achieved at some point
X0 ∈ M . After rotating the coordinates, we may assume the matrix (hij) is diagonal at
the point, and we can further assume that h11 > h22 · · · > hnn. Denote κi = hii.

We covariantly differentiate the function φ twice at X0 uisng Lemma 7,

(3.8) φi =
Pi

P logP
− (1 + ε)

hii〈X, ∂i〉
u

+ a〈∂i, X〉 = 0,

and by (2.1),

0 > φii(3.9)

=
Pii

P logP
− P 2

i

P 2 logP
− P 2

i

(P logP )2
− 1 + ε

u

∑
l

hil,i〈∂l, X〉 −
(1 + ε)hii

u

+(1 + ε)h2
ii + (1 + ε)

h2
ii〈X, ∂i〉2

u2
+ a− auhii

=
1

P logP
[
∑
l

eκlhllii +
∑
l

eκlh2
lli +

∑
α 6=β

eκα − eκβ
κα − κβ

h2
αβi − (

1

P
+

1

P logP
)P 2

i ]

−
(1 + ε)

∑
l hiil〈∂l, X〉
u

− (1 + ε)hii
u

+ (1 + ε)h2
ii + (1 + ε)

h2
ii〈X, ∂i〉2

u2

+a− auhii

=
1

P logP
[
∑
l

eκlhii,ll +
∑
l

eκl(h2
il − hiihll)hii +

∑
l

eκl(hiihll − h2
il)hll

+
∑
l

eκlh2
lli +

∑
α 6=β

eκα − eκβ
κα − κβ

h2
αβi − (

1

P
+

1

P logP
)P 2

i ]

−
(1 + ε)

∑
l hiil〈∂l, X〉
u

− (1 + ε)hii
u

+ (1 + ε)h2
ii + (1 + ε)

h2
ii〈X, ∂i〉2

u2

+a− auhii

11



Contract with σii2 ,

(3.10)

0 > σii2 φii

=
1

P logP
[
∑
l

eκlσii2 hii,ll + 2f
∑
l

eκlh2
ll − σii2 h2

ii

∑
l

eκlhll +
∑
l

σii2 e
κlh2

lli

+
∑
α 6=β

σii2
eκα − eκβ
κα − κβ

h2
αβi − (

1

P
+

1

P logP
)σii2 P

2
i ] + (n− 1)aσ1 − 2afu

−
(1 + ε)

∑
l σ

ii
2 hiil〈∂l, X〉
u

− (1 + ε)2f

u
+ (1 + ε)σii2 h

2
ii + (1 + ε)

σii2 h
2
ii〈X, ∂i〉2

u2
.

At x0, differentiate equation (1.1) twice,

(σ2)k = σii2 hiik = dXf(∂k) + hkkdνf(∂k),(3.11)

and

σii2 hiikk + σpq,rs2 hpqkhrsk > −C − Ch2
11 +

∑
l

hlkkdνf(∂l),(3.12)

where C is a constant under control.
Insert (3.12) into (3.10),

σii2 φii(3.13)

>
1

P logP
[
∑
l

eκl(−C − Ch2
11 − σ

pq,rs
2 hpqlhrsl) +

∑
l

eκkhklldνf(∂k) + 2f
∑
l

eκlh2
ll

−σii2 h2
ii

∑
l

eκlhll +
∑
l

σii2 e
κlh2

lli +
∑
α 6=β

σii2
eκα − eκβ
κα − κβ

h2
αβi − (

1

P
+

1

P logP
)σii2 P

2
i ]

−
(1 + ε)

∑
l σ

ii
2 hiil〈∂l, X〉
u

+ (1 + ε)σii2 h
2
ii + (1 + ε)

σii2 h
2
ii〈X, ∂i〉2

u2
.

+aκ1 − Ca

By (3.8) and (3.11), ∑
k

dνf(∂k)

∑
l e
κlhllk

P logP
− 1 + ε

u

∑
k

σii2 hiik〈∂k, X〉(3.14)

= −a
∑
k

dνf(∂k)〈X, ∂k〉 −
1 + ε

u

∑
k

dXf(∂k)〈X, ∂k〉.

Denote

Ai = eκi(K(σ2)2
i −

∑
p 6=q

hppihqqi), Bi = 2
∑
l 6=i

eκlh2
lli, Ci = σii2

∑
l

eκlh2
lli;

Di = 2
∑
l 6=i

σll2
eκl − eκi
κl − κi

h2
lli, Ei = (

1

P
+

1

P logP
)σii2 P

2
i .

12



Note that logP > κ1 and
(σ2)2

l

P logP
6 Cκ1e

−κ1 by (3.11). Since κ1e
−κ1 ≤ e, combining

(3.13), (3.14) and using

−
∑
l

σpq,rs2 hpqlhrsl =
∑
p6=q

h2
pql −

∑
l

hpplhqql,

we find for any K > 0,

σii2 φii(3.15)

> −C(a+K) + (a− C)h11 +
1

P logP

∑
l

eκl(K(σ2)2
l −

∑
p 6=q

hpplhqql +
∑
p 6=q

h2
pql)

+
∑
l

σii2 e
κlh2

lli +
∑
α 6=β

σii2
eκα − eκβ
κα − κβ

h2
αβi − (

1

P
+

1

P logP
)σii2 P

2
i ]

+εσii2 h
2
ii + (1 + ε)

σii2 h
2
ii〈X, ∂i〉2

u2

= −C(a+K) + (a− C)h11 +
1

P logP

∑
i

(Ai +Bi + Ci +Di − Ei)

+εσii2 h
2
ii + (1 + ε)

σii2 h
2
ii〈X, ∂i〉2

u2
.

Choose k = 2, l = 1, δ = 1(so α = 1) and h = i in Lemma 8. Then,

−
∑
p 6=r

hppihrri +
(σ2)2

i

σ2
> σ2[

(σ1)i
σ1

]2 > 0.

Hence,

K(σ2)2
i −

∑
p 6=r

hppihrri > (σ2)2
i (K −

1

f
) > 0

for K large enough. Therefore, Ai > 0 for K sufficiently large.

Lemma 13. Suppose

nκi 6 κ1, ∀i ≥ 2,

then

Bi + Ci +Di − Ei > 0,

if κ1 sufficient large.

Proof. We have,

P 2
i = (eκihiii +

∑
l 6=i

eκlhlli)
2 = e2κih2

iii + 2
∑
l 6=i

eκi+κlhllihiii + (
∑
l 6=i

eκlhlli)
2.

By the Schwartz inequality,

(
∑
l 6=i

eκlhlli)
2 6

∑
l 6=i

eκl
∑
l 6=i

eκlh2
lli.

13



Hence,

P 2
i 6 e

2κih2
iii + 2

∑
l 6=i

eκl+κihllihiii + (P − eκi)
∑
l 6=i

eκlh2
lli.

In turn,

Bi + Ci +Di − Ei(3.16)

>
∑
l 6=i

(2eκl + σii2 e
κl + 2σll2

eκl − eκi
κl − κi

)h2
lli + σii2 e

κih2
iii − (

1

P
+

1

P logP
)σii2 e

2κih2
iii

−(
1

P
+

1

P logP
)(P − eκi)σii2

∑
l 6=i

eκlh2
lli − 2(

1

P
+

1

P logP
)σii2

∑
l 6=i

eκi+κlhiiihlli

=
∑
l 6=i

[(2− σii2
logP

)eκl + (
1

P
+

1

P logP
)σii2 e

κl+κi + 2σll2
eκl − eκi
κl − κi

]h2
lli

+[1− (
1

P
+

1

P logP
)eκi ]σii2 e

κih2
iii − 2(

1

P
+

1

P logP
)σii2

∑
l 6=i

eκi+κlhiiihlli.

As

h2
lli + h2

iii > 2hllihiii,∑
l 6=i,1

(
1

P
+

1

P logP
)σii2 e

κl+κih2
lli +

∑
l 6=i,1

(
1

P
+

1

P logP
)σii2 e

κl+κih2
iii(3.17)

> 2(
1

P
+

1

P logP
)
∑
l 6=i,1

σii2 e
κl+κihiiihlli.

Combine (3.16) and (3.17),

Bi + Ci +Di − Ei(3.18)

>
∑
l 6=i

[(2− σii2
logP

)eκl + 2σll2
eκl − eκi
κl − κi

]h2
lli + (

1

P
+

1

P logP
)σii2 e

κ1+κih2
11i

+[(
1

P
+

1

P logP
)eκ1 − 1

logP
]σii2 e

κih2
iii − 2(

1

P
+

1

P logP
)σii2 e

κi+κ1hiiih11i.

>
∑
l 6=i

(2− σii2
logP

)eκlh2
lli + 2σ11

2

eκ1 − eκi
κ1 − κi

h2
11i +

1

P
σii2 e

κ1+κih2
11i

+[
eκ1

P
− 1

logP
]σii2 e

κih2
iii − 2

1

P
σii2 e

κi+κ1hiiih11i.

By the assumptions in the lemma, for each i > 2,

nκi 6 κ1 and σii2 = κ1 +
∑
j 6=1,i

κj .

We have, for i > 2,

2 logP > 2κ1 > σ
ii
2 .

14



Taking κ1 sufficient large, we have,

eκ1

2P
>

1

2n
>

1

logP
.

Expanding ex and as nκi 6 κ1,

σ11
2

eκ1 − eκi
κ1 − κi

= σ11
2 e

κi
eκ1−κi − 1

κ1 − κi
= σ11

2 e
κi

∞∑
l=1

(κ1 − κi)l−1

l!

> σ11
2 e

κi
(κ1 − κi)3

4!
> c0κ

3
1σ

11
2 e

κi > c0κ1σ
ii
2

eκi+κ1

P
,

for some positive constant c0. Here, we have used the fact κ1σ
11
2 > 2σ2/n. The lemma

follows from (3.18), previous three inequalities, provided κ1 is sufficiently large. �

Lemma 14. If
nκi 6 κ1,

for some index i ≥ 2, then if κ1 sufficient large,

Bj + Cj +Dj − (
1

P
+

2

n− 1

1

P logP
)σjj2 P

2
j > 0,

for any j > i.

Proof. Replace the term
1

P logP
by

2

n− 1

1

P logP
in the proof of previous lemma, note

that

2− 2

n− 1

σjj2
logP

>
1

κ1
(2κ1 −

2

n− 1
σjj2 ) > 0.

Hence, the arguments in the previous proof can be carried out without further changes. �

Lemma 15. For any fixed index j, if

nκj > κ1,

we have, for sufficient large κ1,K and sufficient small ε,

1

P logP
(Aj +Bj + Cj +Dj − Ej) + (1 + ε)

σjj2 h
2
jj〈X, ∂j〉2

u2
> 0.

Proof. By the Schwarz inequality,

σjj2 P
2
j = σjj2 (

∑
l

eκlhllj)
2 6 σjj2

∑
l

eκl
∑
l

eκlh2
llj .

Hence,

Cj −
σjj2 P

2
j

P
> 0.(3.19)

By Lemma 11, for some sufficient large constant C,

σjj2
κjh

2
jjj

σ2
1

6 C[K(σ2)2
j −

∑
p 6=q

hppjhqqj +
∑
l 6=j

h2
llj ].

15



Thus,

σjj2 P
2
j

P logP
=

σjj2
P logP

(eκjhjjj +
∑
l 6=j

eκlhllj)
2(3.20)

6
Cσjj2
Pσ1

(e2κjh2
jjj +

∑
l 6=j

e2κlh2
llj)

6 C[
∑
l 6=j

eκlh2
llj +

κjσ
jj
2

σ2
1

eκjh2
jjj ]

6 C(Aj +Bj + eκj
∑
l 6=j

h2
llj).

We claim that ∑
l 6=j

eκlh2
llj +

∑
l 6=j

σll2
eκl − eκj
κl − κj

h2
llj > e

κj
∑
l 6=j

h2
llj .

To prove the claim, we divide it two cases.
Case (A): κl > κj , obviously,

eκlh2
llj + σll2

eκl − eκj
κl − κj

h2
llj > e

κjh2
llj .

Case (B): κl < κj , we have

σll2
κj − κl

=
κj − κl + σjj2
κj − κl

> 1.

Therefore,

eκlh2
llj + σll2

eκl − eκj
κl − κj

h2
llj > e

κlh2
llj + (eκj − eκl)h2

llj = eκjh2
llj .

The claim is verified. Hence, by (3.20) and the claim,

σjj2 P
2
j

P logP
6 cj(Aj +Bj +Dj).

Denote δj = 1/cj . It follows from (3.19) and (3.8) that,

1

P logP
(Aj +Bj + Cj +Dj − Ej) + (1 + ε)

σjj2 h
2
jj〈X, ∂j〉2

u2

> (1 + ε)
σjj2 h

2
jj〈X, ∂j〉2

u2
− 1− δj

(P logP )2
σjj2 P

2
j

= (1 + ε)[(1− (1− δj)(1 + ε))
σjj2 h

2
jj〈X, ∂j〉2

u2
+ 2(1− δj)

aσjj2 hjj〈X, ∂j〉2

u
]

−(1− δj)a2σjj2 〈X, ∂j〉
2.

The above is nonnegative, if κ1 sufficiently large, and ε is small enough. �
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Proof of Theorem 12. We are in the position to give C2 estimate. We use a similar
argument in the previous section. We need to deal with every index in (3.15). First, we
note that nκ1 > κ1. By Lemma 15,

1

P logP
(A1 +B1 + C1 +D1 − E1) + (1 + ε)

σ11
2 h

2
11〈X, ∂1〉2

u2
> 0.(3.21)

We divide into two different cases.
Case (A): Suppose nκ2 6 κ1. In this case, we use Lemma 13. For i > 2, note that Aj > 0,

1

P logP
(Ai +Bi + Ci +Di − Ei) > 0.(3.22)

Combine (3.21), (3.22) and (3.15),

σii2 φii > −C + (a− C)κ1.

We obtain C2 estimate if a is sufficiently large.
Case (B): Suppose nκ2 > κ1. We assume that index i0 satisfies nκi0 > κ1 and nκi0+1 6 κ1.
Hence, for index j 6 i0, nκj > κ1. Lemma 15 implies,

1

P logP
(Aj +Bj + Cj +Dj − Ej) + (1 + ε)

σjj2 h
2
jj〈X, ∂j〉2

u2
> 0.(3.23)

For index j > i0 + 1, by Lemma 14,

1

P logP
(Aj +Bj + Cj +Dj − Ej) + (1 + ε)

σjj2 h
2
jj〈X, ∂j〉2

u2
(3.24)

> −(1− 2

n− 1
)

σjj2 P
2
j

(P logP )2
+ (1 + ε)

σjj2 h
2
jj〈X, ∂j〉2

u2

= (1 + ε)[(1− n− 3

n− 1
(1 + ε))

σjj2 h
2
jj〈X, ∂j〉2

u2
+ 2

n− 3

n− 1

aσjj2 hjj〈X, ∂j〉2

u
]

−n− 3

n− 1
a2σjj2 〈X, ∂j〉

2.

> −Ca2κ1.

The last inequality holds, provided ε is sufficiently small. Combining (3.23), (3.24) and
(3.15), we obtain,

σii2 φii > −C + (a− C)κ1 + εσii2 κ
2
i − Ca2κ1.

We further divide the case into two subcases to deal with the above inequality.
Case (B1): Suppose σ22

2 > 1. As nκ2 > κ1,

σii2 φii > −C + (a− C)κ1 + εσ22
2 κ

2
2 − Ca2κ1

> −C + (a− C)κ1 +
ε

n2
κ2

1 − Ca2κ1.

The above is nonnegative if κ1 and a are sufficiently large.
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Case (B2): Suppose σ22
2 < 1. In this subcase, we may assume that κ1 is sufficiently large,

then κn < 0. By the assumption, 1 > κ1 + (n− 2)κn. This implies,

−κn >
κ1 − 1

n− 2
.

Since σnn2 + κn = κ1 + σ11
2 , we have σnn2 > κ1. Hence,

σii2 φii > −C + (a− C)κ1 + εσnn2 κ2
n − Ca2κ1

> −C + (a− C)κ1 +
ε

(n− 2)2
κ1(κ1 − 1)2 − Ca2κ1.

The above is nonnegative, if a and κ1 are sufficiently large. The proof of Theorem 12 is
complete. �

We remark that the similar curvature estimate can be established for Dirichlet boundary
problem of equation

(3.25)

{
σ2[κ(x, u(x))] = f(x, u,Du),

u|∂Ω = φ,

where Ω ⊂ Rn is a bounded domain. Though such graph over Ω may not be starshaped.
With the assumption of C1 boundedness, one may shift the origin in Rn+1 in the direction
of En+1 = (0, · · · , 0, 1) in appropriate way so that the surface is starshaped with respect
to the new origin. Then the proof in this section yields the following theorem, which
completely settles the regularity problem considered in Ivochkina [20, 19] when k = 2.

Theorem 16. Suppose u is a solution of equation (3.25), then there is a constant C
depending only on n, k, Ω, ‖u‖C1, inf f and ‖f‖C2, such that

(3.26) max
x∈Ω
|∇2u(x)| ≤ C(1 + max

x∈∂Ω
|∇2u(x)|), ∀i = 1, · · · , n.

4. A global C2 estimate for convex hypersurfaces

In this section, we consider the global C2 estimates for convex solutions to curvature
equation (1.1) in Rn+1. We need further modify the test function constructed in the
previous section.

Theorem 17. Suppose M ⊂ Rn+1 is a convex hypersurface satisfying curvature equation
(1.1) for some positive function f(X, ν) ∈ C2(Γ), where Γ is an open neighborhood of unit
normal bundle of M in Rn+1 × Sn, then there is a constant C depending only on n, k,
‖M‖C1, inf f and ‖f‖C2, such that

(4.1) max
X∈M,i=1,··· ,n

κi(X) ≤ C(1 + max
X∈∂M,i=1,··· ,n

κi(X)).

To proceed, consider the following test function,

P (κ(X)) = κ2
1 + · · ·+ κ2

n, φ =
1

2
logP (κ(X))−N log u,(4.2)

where N is a constant to be determined later. Note that,

κ2
1 + · · ·+ κ2

n = σ1(κ(X))2 − 2σ2(κ(X)).
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We assume that φ achieves its maximum value at x0 ∈M . By a proper rotation, we may
assume that (hij) is a diagonal matrix at the point, and h11 > h22 · · · > hnn.

At x0, differentiate φ twice,

φi =

∑
k κkhkki
P

−N ui
u

(4.3)

=

∑
k κkhkki
P

−N hii〈∂i, X〉
u

= 0,

and,

0 >
1

P
[
∑
k

κkhkk,ii +
∑
k

h2
kki +

∑
p 6=q

h2
pqi]−

2

P 2
[
∑
k

κkhkki]
2(4.4)

−N uii
u

+N
u2
i

u2

=
1

P
[
∑
k

κk(hii,kk + (h2
ik − hiihkk)hii + (hiihkk − h2

ik)hkk)

+
∑
k

h2
kki +

∑
p 6=q

h2
pqi]−

2

P 2
[
∑
k

κkhkki]
2 −N

∑
l hii,l〈X, ∂l〉

u

−N hii
u

+Nh2
ii +N

h2
ii〈∂i, X〉2

u2
.

Now differentiate equation (1.1) twice,

σiik hiij = dXf(Xj) + dνf(νj) = dXf(∂j) + hjjdνf(∂j),(4.5)

σiik hiijj + σpq,rsk hpqjhrsj(4.6)

= dXf(Xjj) + d2
Xf(Xj , Xj) + 2dXdνf(Xj , νj) + d2

νf(νj , νj) + dνf(νjj).

= −hjjdXf(ν) + d2
Xf(∂j , ∂j) + 2hjjdXdνf(∂j , ∂j) + h2

jjd
2
νf(∂j , ∂j)

+
∑
k

hkjjdνf(∂k)− h2
jjdνf(ν)

> −C − Cκj − Cκ2
j +

∑
k

hkjjdνf(∂k)

> −C − Cκ2
j +

∑
k

hkjjdνf(∂k).

It follows from (4.3) and (4.5),

1

P

∑
l,s

κlhslldνf(∂s)−
Nσiik

∑
s hiis〈∂s, X〉
u

= −N
u

∑
s

dXf(∂s)〈∂s, X〉.(4.7)

We will also use

−σpq,rsk hpqlhrsl = −σpp,qqk hpplhqql + σpp,qqk h2
pql,

which follows from Lemma 7.
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Denote

Ai =
κi
P

(K(σk)
2
i −

∑
p,q

σpp,qqk hppihqqi), Bi = 2
∑
j

κj
P
σjj,iik h2

jji,

Ci = 2
∑
j 6=i

σjjk
P
h2
jji, Di =

1

P

∑
j

σiik h
2
jji, Ei =

2σiik
P 2

(
∑
j

κjhjji)
2.

Contracting with σiik in both side of inequality (4.4), it follows from (4.5)-(4.7),

(4.8)

0 >
1

P
[
∑
l

κl(−C − Cκ2
l − σ

pq,rs
k hpqlhrsl)

+σiik hii
∑
l

κ3
l − σiik h2

ii

∑
l

κ2
l +

∑
l

σiik h
2
lli + σiik

∑
p 6=q

h2
pqi]−

2σiik
P 2

(
∑
j

κjhjji)
2

−N
σiik hii
u

+Nσiik h
2
ii +N

σiik h
2
ii〈∂i, X〉2

u2

>
1

P
[
∑
l

κl(−C − Cκ2
l −K(σk)

2
l +K(σk)

2
l − σ

pp,qq
k hpplhqql + σpp,qqk h2

pql)

+kf
∑
l

κ3
l − σiik h2

ii

∑
l

κ2
l +

∑
l

σiik h
2
lli + σiik

∑
p 6=q

h2
pqi]−

2σiik
P 2

(
∑
j

κjhjji)
2

−N kf

u
+Nσiik h

2
ii +N

σiik h
2
ii〈∂i, X〉2

u2
− N

u

∑
s

dXf(∂s)〈∂s, X〉

≥ 1

P
[
∑
l

κl(−C − Cκ2
l −K(σk)

2
l ) + σiik hii

∑
l

κ3
l − σiik h2

ii

∑
l

κ2
l ]

−N kf

u
+Nσiik h

2
ii +N

σiik h
2
ii〈∂i, X〉2

u2
− N

u

∑
s

dXf(∂s)〈∂s, X〉

+
∑
i

(Ai +Bi + Ci +Di − Ei).

The main part of the proof is to deal with the third order derivatives. We divide it to
two cases:

(1) i 6= 1;
(2) i = 1.

Lemma 18. For each i 6= 1, if
√

3κi 6 κ1,

we have,

Ai +Bi + Ci +Di − Ei > 0.
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Proof. By (2.4) in Lemma 8 (note that σpp,qq1 = 0), when K is sufficiently large,

K(σk)
2
i − σ

pp,qq
k hppihqqi > σk(1 +

α

2
)[

(σ1)i
σ1

]2 > 0,(4.9)

so Ai > 0.

P 2(Bi + Ci +Di − Ei)(4.10)

=
∑
j 6=i

P (2κjσ
jj,ii
k + 2σjjk + σiik )h2

jji + Pσiik h
2
iii − 2σiik (

∑
j 6=i

κ2
jh

2
jji + κ2

ih
2
iii

+
∑
m 6=l

κkκlhmmihlli)

=
∑
j 6=i

[P (3σiik + 2σjjk − 2σk−1(κ|ij))− 2σiik κ
2
j ]h

2
jji + (P − 2κ2

i )σ
ii
k h

2
iii

−2σiik
∑
m 6=l

κkκlhmmihlli

=
∑
j 6=i

(P + 2(P − κ2
j ))σ

ii
k h

2
jji + (P − 2κ2

i )σ
ii
k h

2
iii − 2σiik

∑
m 6=l

κkκlhmmihlli

+2P
∑
j 6=i

κiσ
jj,ii
k h2

jji.

Note that, for each fixed i,

2
∑
j 6=i

∑
k 6=i,j

κ2
kh

2
jji =

∑
l 6=i

∑
k 6=i,l

κ2
kh

2
lli +

∑
k 6=i

∑
l 6=i,k

κ2
l h

2
kki(4.11)

> 2
∑

k 6=l;k,l 6=i
κkκlhkkihlli.

By
√

3κi 6 κ1 or κ2
1 > 3κ2

i ,∑
j 6=i,1

(
2P

3
+ 2κ2

i )h
2
jji +

∑
j 6=i,1

κ2
jh

2
iii > 2κihiii

∑
j 6=i,1

κjhjji.(4.12)

Then (4.10) becomes,

P 2(Bi + Ci +Di − Ei)(4.13)

> (P + 2κ2
i )σ

ii
k h

2
11i + (κ2

1 − κ2
i )σ

ii
k h

2
iii − 4σiik κihiiiκ1h11i

+
P

3

∑
j 6=1,i

σiik h
2
jji + 2P

∑
j 6=i

κiσ
ii,jjh2

jji

> σiik [(κ2
1 + 3κ2

i )h
2
11i + (κ2

1 − κ2
i )h

2
iii − 4κ1κihiiih11i] + 2P

∑
j 6=i

κiσ
ii,jjh2

jji.

The above is nonnegative, provided the following inequality holds,√
κ2

1 + 3κ2
i

√
κ2

1 − κ2
i > 2κ1κi.(4.14)
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Set x = κi/κ1. Inequality (4.14) is equivalent to the following inequality,

3x4 + 2x2 − 1 6 0.

This follows from the condition κ1 >
√

3κi. The proof is complete. �

We need another Lemma.

Lemma 19. For λ = 1, · · · , k−1, suppose there exists some positive constant δ 6 1, such
that κλ/κ1 > δ. Then there exits a sufficient small positive constant δ′ depending on δ,
such that, if κλ+1/κ1 6 δ′, we have

Ai +Bi + Ci +Di − Ei > 0,

for i = 1, · · · , λ.

Proof. By (4.10) and (4.11),

P 2(Bi + Ci +Di − Ei)(4.15)

=
∑
j 6=i

[P (3σiik + 2σjjk − 2σk−1(κ|ij))− 2σiik κ
2
j ]h

2
jji + (P − 2κ2

i )σ
ii
k h

2
iii

−2σiik
∑
k 6=l

κkκlhkkihlli

>
∑
j 6=i

(P + 2κ2
i )σ

ii
k h

2
jji + (P − 2κ2

i )σ
ii
k h

2
iii − 4σiik κihiii

∑
j 6=i

κjhjji

+P
∑
j 6=i

2(σk−1(κ|j)− σk−1(κ|ij))h2
jji.

For i = 1, the above inequality becomes,

P 2(Bi + Ci +Di − Ei)(4.16)

>
∑
j 6=1

(3κ2
1σ

11
k + κ2

1σ
jj
k )h2

jj1 +
∑
j 6=1

κ2
jσ

11
k h

2
111 − 4σ11

k κ1h111

∑
j 6=1

κjhjj1

+P
∑
j 6=1

(σk−1(κ|j)− 2σk−1(κ|1j))h2
jj1 − κ2

1σ
11
k h

2
111

> P
∑
j 6=1

(σk−1(κ|j)− 2σk−1(κ|1j))h2
jj1 − κ2

1σ
11
k h

2
111.

For i 6= 1, we replace the index j 6= i, 1 with j 6= i in (4.12), then

P 2(Bi + Ci +Di − Ei) > P
∑
j 6=i

2(σk−1(κ|j)− σk−1(κ|ij))h2
jji − κ2

iσ
ii
k h

2
iii.(4.17)
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By (2.4) in Lemma 8,

Ai >
κi
P

[σk(1 +
α

2
)
(σλ)2

i

σ2
λ

− σk
σλ
σpp,qqλ hppihqqi](4.18)

>
κiσk
Pσ2

λ

[(1 +
α

2
)
∑
a

(σaaλ haai)
2 +

α

2

∑
a6=b

σaaλ σ
bb
λ haaihbbi

+
∑
a6=b

(σaaλ σ
bb
λ − σλσ

aa,bb
λ )haaihbbi].

For λ = 1, note that σaa1 = 1 and σaa,bb1 = 0. Hence,

(1 +
α

2
)
∑

haaihbbi > 2(1 +
α

2
)
∑
a6=1

haaih11i + (1 +
α

2
)h2

11i(4.19)

> (1 +
α

4
)h2

11i − Cα
∑
a6=1

h2
aai

In turn,

P 2Ai >
Pκiσk
σ2

1

(1 +
α

4
)h2

11i −
κiPCα
σ2

1

∑
a6=1

h2
aai(4.20)

>
κ2
iσ

ii
k

(1 +
∑

j 6=1 κj/κ1)2
(1 +

α

4
)h2

11i − Cακi
∑
a6=1

h2
aai

> κ2
iσ

ii
k h

2
11i − Cακi

∑
a6=1

h2
aai.

The last inequality comes from the fact

1 +
α

4
> (1 + (n− 1)δ′)2.(4.21)

For λ > 2, obviously, for a 6= b,

σaaλ σ
bb
λ − σλσ

aa,bb
λ(4.22)

= (κbσλ−2(κ|ab) + σλ−1(κ|ab))(κaσλ−2(κ|ab) + σλ−1(κ|ab))
−(κaκbσλ−2(κ|ab) + κaσλ−1(κ|ab) + κbσλ−1(κ|ab) + σλ(κ|ab))σλ−2(κ|ab)

= σ2
λ−1(κ|ab)− σλ(κ|ab)σλ−2(κ|ab)

> 0,
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by the Newton inequality. It follows from (4.22),

∑
a6=b;a,b6λ

(σaaλ σ
bb
λ − σλσ

aa,bb
λ )haaihbbi(4.23)

> −
∑

a6=b;a,b6λ
(σ2
λ−1(κ|ab)− σλ(κ|ab)σλ−2(κ|ab))h2

aai

> −
∑

a6=b;a,b6λ
C1(

κλ+1

κb
)2(σaaλ haai)

2

> −C2

δ2
(
κλ+1

κ1
)2
∑
a

(σaaλ haai)
2 > −ε

∑
a

(σaaλ haai)
2.

Here, we choose a sufficient small δ′, such that,

δ′ 6 δ
√
ε/C2.(4.24)

By (4.22),

2
∑

a6λ;b>λ

(σaaλ σ
bb
λ − σλσ

aa,bb
λ )haaihbbi(4.25)

> −2
∑

a6λ;b>λ

σaaλ σ
bb
λ |haaihbbi|

> −ε
∑

a6λ;b>λ

(σaaλ haai)
2 − 1

ε

∑
a6λ;b>λ

(σbbλ hbbi)
2.

Again by (4.22),

∑
a6=b;a,b>λ

(σaaλ σ
bb
λ − σλσ

aa,bb
λ )haaihbbi > −

∑
a6=b;a,b>λ

σaaλ σ
bb
λ |haaihbbi|(4.26)

> −
∑

a6=b;a,b>λ
(σaaλ haai)

2.

Combining (4.18), (4.23), (4.25) and (4.26), by (4.18),

Ai >
κiσk
Pσ2

λ

[(1− 2ε)
∑
a6λ

(σaaλ haai)
2 − Cε

∑
a>λ

(σaaλ haai)
2].(4.27)

24



Therefore,

P 2Ai(4.28)

>
Pκ2

iσ
ii
k

σ2
λ

(1− 2ε)
∑
a6λ

(σaaλ haai)
2 − PκiσkCε

σ2
λ

∑
a>λ

(σaaλ haai)
2

>
Pκ2

iσ
ii
k

κ2
1

(1− 2ε)
∑
a6λ

(
κaσ

aa
λ

σλ
)2h2

aai −
κ2

1κiCε
σ2
λ

∑
a>λ

(σaaλ haai)
2

> κ2
iσ

ii
k (1− 2ε)(1 + δ2)

∑
a6λ

(1− C3κλ+1

κa
)2h2

aai −
κ2
aκiCε
δ2σ2

λ

∑
a>λ

(σaaλ haai)
2

> κ2
iσ

ii
k (1− 2ε)(1 + δ2)(1− C3κλ+1

δκ1
)2
∑
a6λ

h2
aai −

κiCε
δ2

∑
a>λ

h2
aai

> κ2
iσ

ii
k

∑
a6λ

h2
aai −

κiCε
δ2

∑
a>λ

h2
aai.

In the above, we have used the fact that we may choose δ′ and ε satisfying

δ′C3 6 2εδ, (1− 2ε)2(1 + δ2) > 1.(4.29)

By (4.16), (4.17), (4.20) and (4.28), for each i, we have,

P 2(Ai +Bi + Ci +Di − Ei)(4.30)

>
∑
j 6=i

(Pσk−1(κ|j)− 2Pσk−1(κ|ij))h2
jji − Cα,δκi

∑
j>λ

h2
jji.

Now, for j 6 λ,

σk−1(κ|j)− 2σk−1(κ|ij) = κiσk−2(κ|ij)− σk−1(κ|ij)(4.31)

>
κ1 · · ·κk
κj

− Cκ1 · · ·κk+1

κiκj

>
κ1 · · ·κk
κj

(1− Cκk+1

δκ1
)

>
εσk
κj

(1− C4δ
′/δ).

For λ < j 6 k, in a similar way, we have,

σk−1(κ|j)− 2σk−1(κ|ij)− Cε,α
κi
P
>

εσk
κj

(1− C4δ
′/δ)− Cε,α

κ1
.(4.32)

25



For j > k,

σk−1(κ|j)− 2σk−1(κ|ij)− Cε,ακi
κ2

1

(4.33)

= κiσk−2(κ|ij)− σk−1(κ|ij)− Cε,ακi
κ2

1

>
κ1 · · ·κk
κk

− Cκ1 · · ·κk
κi

− Cε,α
κ1

>
κ1 · · ·κk
κk

(1− C κk
δκ1

)− Cε,α
κ1

>
εσk
κk

(1− C4δ
′/δ)− Cε,α

κ1
.

We may choose

δ′ 6 δ/(2C4),

so that (4.31) is nonnegative. We further impose that

δ′ 6 εσk/(2Cε,α).

Thus, both (4.32) and (4.33) are non-negative. The proof is complete. �

A directly corollary of Lemma 18 and Lemma 19 is the following.

Corollary 20. There exists a finite sequence of positive numbers {δi}ki=1, such that, if the
following inequality holds for some 1 6 i 6 k,

κi
κ1

> δi,

then,

0 6
1

P
[
∑
l

κl(K(σk)
2
l − σ

pp,qq
k hpplhqql + σpp,qqk h2

pql) +
∑
p,q

σiik h
2
pqi](4.34)

−
2σiik
P 2

(
∑
j

κjhjji)
2.

Proof. We use induction to find the sequence {δi}ki=1. Let δ1 = 1/
√

3. Then κ1/κ1 = 1 >
δ1. The claim holds for i = 1 follows from the proof in the previous lemma. Assume that
we have determined δi for 1 6 i 6 k − 1. We want to search for δi+1. In Lemma 19, we
may choose λ = i and δ = δi. Then there is some δ′i+1 such that, if κi+1 6 δ′i+1κ1, we have
Aj +Bj + Cj +Dj − Ej > 0 for 1 6 j 6 i. Pick

δi+1 = min{δ1, δ
′
i+1}.

If κi+1 6 δi+1κ1, by Lemma 18, Aj + Bj + Cj + Dj − Ej > 0 for j > i + 1. We obtain
(4.34) for i+ 1 case. �

Proof of Theorem 17. Again, the proof will be divided into two cases.
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Case (A): There exists some 2 6 i 6 k, such that κi 6 δiκ1. By Corollary 20, (4.8),(4.5)
and the Schwarz inequality,

0 >
1

P
[
∑
l

κl(−C − Cκ2
l −K(σk)

2
l ) + kf

∑
l

κ3
l − σiik h2

ii

∑
l

κ2
l ]−N

kf

u

+Nσiik h
2
ii +N

σiik h
2
ii〈∂i, X〉2

u2
− N

u

∑
s

dXf(∂s)〈∂s, X〉.

>
1

P
[−C(K)− C(K)

∑
l

κ3
l ]− σiik h2

ii +Nσiik h
2
ii − C(N)

> −C(K)κ3
1 + C(K)

P
+ (N − 1)εσkκ1 − C(N),

in the last inequality, we have used

κ1σ
11
k >

k

n
σk.

If we choose

εσk(N − 1) > C(K) + 1,

an upper bound of κ1 follows.
Case(B): If the Case(A) does not hold. That means κk > δkκ1. Since κl > 0, we have,

σk > κ1κ2 · · ·κk > δkkκk1.
This implies the bound of κ1. �

We have three remarks about the above C2 estimate.

Remark 21. Following the same arguments, we can establish similar C2 estimates for
convex solutions of σk-Hessian equation

(4.35) σk(∇2u) = f(x, u,∇u).

Remark 22. The key in the proof of C2 estimate is a good choice of test function P .
Here we pick P =

∑
j κ

2
j . Our arguments can be adopted for P =

∑
j κ

m
j for any m > 2.

Remark 23. The assumption of convexity of solutions can be weakened. Our proof works
if the principal curvatures are bounded from below by some constant, with test function
modified as logP + g(u) + a|X|2. The convexity assumption can also be weakened to k+ 1
convex.

5. The prescribed curvature equations

The a priori estimates we establish in the previous sections may yield existence of
solutions to the prescribing equation (1.1). By Theorem 1 and Theorem 4, we need
to obtain C1 bounds for solutions. The treatment of this section follows largely from
Caffarelli-Nirenberg-Spruck [8]. We are looking for starshaped hypersurface M .

For x ∈ Sn, let

X(x) = ρ(x)x,
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be the position vector of the hypersurface M .
First is the gradient bound.

Lemma 24. If the hypersurface X satisfies condition (1.7) and ρ has positive upper and
lower bound, then there is a constant C depending on the minimum and maximum values
of ρ, such that,

|∇ρ| 6 C.

Proof. We only need to obtain a positive lower bound of u. Following [15], we consider

φ = − log u+ γ(|X|2).

Assume X0 is the maximum value point of φ. If X is not parallel to the normal direction
of X at X0 , we may choose the local orthonormal frame {e1, · · · , en} on M satisfying

〈X, e1〉 6= 0, and 〈X, ei〉 = 0, i > 2.

Then, at X0,

ui = 2uγ′〈X, ei〉,(5.1)

φii = −1

u
[hii1〈X, e1〉+ hii − h2

iiu] + [(γ′)2 + γ′′](|X|2i )2 + γ′|X|2ii.

Thus,

0 > σiik φii = −〈X, e1〉
u

σiik hii1 −
σiik hii
u

+ σiik h
2
ii + 4[(γ′)2 + γ′′]〈X, e1〉2σ11

k(5.2)

+γ′σiik [2− 2uhii].

By (4.5),

σiik hii1 = dXf(e1) + h11dνf(e1).

Using (5.1) and 〈X, e1〉 6= 0, we have

h11 = 2γ′u.

Hence, (5.2) becomes,

0 > −1

u
[〈X, e1〉dXf(e1) + kf ] + σiik h

2
ii + 4[(γ′)2 + γ′′]〈X, e1〉2σ11

k(5.3)

+γ′σiik [2− 2uhii]− 2γ′〈X, e1〉dνf(e1).

Condition (1.7) yields,

0 > ρk−1[kf + ρ
∂f(X, ν)

∂ρ
] = ρk−1[kf + ρdXf(

∂X

∂ρ
)] = ρk−1[kf + dXf(X)].

Since in the local frame, 〈X, ei〉 = 0, for i > 2, so X = 〈X, e1〉e1. (5.3) becomes,

0 > σiik h
2
ii + 4[(γ′)2 + γ′′]〈X, e1〉2σ11

k + γ′σiik [2− 2uhii]− 2γ′dνf(X).(5.4)

Choose

γ(t) =
α

t
,
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for sufficient large α. Therefore,

4[(γ′)2 + γ′′]|X|2σ11
k + 2γ′

∑
i

σiik + σiik h
2
ii > Cα

2σ11
k ,

and

σ11
k > σk−1 > σ

k−1
k

k = f
k−1
k .

(5.4) is simplified to

0 > C0α
2f

k−1
k +

2α

|X|4
dνf(X).(5.5)

By the assumption on C0 bound, we have |dνf(X)| 6 C. Rewrite (5.5),

0 > f
k−1
k α(C0α+

2

k|X|4
dνf

1
k ) > 0,

for sufficient large α, contradiction. That is, at X0, X is parallel to the normal direction.
Since u is the support function, u = 〈X, ν〉 = |X|. �

Theorem 25. Suppose k = 2, and f satisfies condition (1.6) and (1.7), equation (1.1)
has only one admissible solution in {r1 < |X| < r2}.

Proof. We use continuity method to solve the existence result. For 0 6 t 6 1, according
to [8], we consider the family of functions,

f t(X, ν) = tf(X, ν) + (1− t)C2
n[

1

|X|k
+ ε(

1

|X|k
− 1)],

where ε is sufficient small constant satisfying

0 < f0 6 min
r16ρ6r2

(
1

ρk
+ ε(

1

ρk
− 1)),

and f0 is some positive constant.
At t = 0, we let X0(x) = x. It satisfies σ2(κ(X0)) = C2

n. It is obvious that f t(X, ν)
satisfies the barrier condition in the Introduction (1) and (2) with strict inequality for
0 6 t < 1. Suppose that Xt is the solution of f t. Then, at the maximum point of
ρt = |Xt|, the outer normal direction νt is parallel to the position vector Xt. If that point
touches the sphere |X| = r2, then , at that point,

C2
n

r2
2

6 σ2(κ(Xt)) = f(Xt,
Xt

|Xt|
) <

C2
n

r2
2

.

It is a contradiction. That is ρt 6 r2. Similar argument yields that ρt > r1. C0 estimate
follows.

Since the outer normal direction

ν =
ρx−∇ρ√
ρ2 + |∇ρ|2

,

replace ρ by tρ, ν does not change. The same argument in [8] gives the openness for
0 6 t < 1.
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In view of Evans-Krylov theory, we only need gradient and C2 estimate to complete
the closedness part. With the positive upper and lower bound for ρ, Lemma 24 gives the
gradient estimate. The C2 estimate follows from Theorem 4.

The proof of the uniqueness is same as in [8]. �

Now we consider the existence of convex solutions of equation (1.1) for the general k.

Lemma 26. For any strictly convex solution of equation (1.1) and f ∈ C2(Γ × Sn), if ρ
have a upper bound, then the global C2 estimate (1.2) holds.

Proof. First, we will prove that each convex hypersurface satisfying equation (1.1) contains
some small ball whose radius has a uniform positive lower bound. Since our hypersurface
is convex with an upper bound, we only need to prove that the volume of the domain
enclosed by M has a uniform lower positive bound. Let u be the support function of
the hypersurface M . Since M is strictly convex, the support function u can be viewed a
function on the unit sphere. Let,

Vk(M) =

∫
Sn
σk(Wu).

Here we denote (Wu)ij = uij + uδij . We can rewrite equation (1.1),

σn−k(Wu) = fσn(Wu) 6 Cσn(Wu).

Hence, ∫
Sn
uσn−k(Wu) 6 C

∫
Sn
uσn(Wu).

Therefore,
Vn−k+1(M) 6 CVn+1(M).

Here Vn+1 is the volume of the domain enclosed by the hypersurface M . By the isoperi-
metric type inequality of Alexsandrov-Frenchel,

V
n−k+1
n+1

n+1 (M) 6 CVn−k+1(M) 6 CVn+1(M).

That is, the volume is bounded from below.
For any hypersurface M satisfying (1.1), we may assume that the center of the above

unit ball is XM . Let X − XM = ρ′y, where y is another position vector of unit sphere.
Obviously, ρ′ has positive upper and lower bound. We can view M as a radial graph
over the unit sphere centered at XM . By the convexity assumption, ∇ρ′ is bounded by
maxSn ρ

′. This gives the C1 bound for M . Theorem 1 yields global C2 estimate of ρ′.
Thus, C2 estimate of ρ follows. �

Proof of Theorem 5. The existence can be deduced by the degree theory as in [13].
Since the main arguments are the same, we only give an outline. Consider an auxiliary
equation,

σk(κ(X)) = f t(X, ν),(5.6)

where

f t =
(
tf

1
k (X, ν) + (1− t)(Ckn[

1

|X|k
+ ε(

1

|X|k
− 1)])

1
k
)k
.
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By the assumptions in Theorem 5, f t satisfies the structural condition in the Constant
Rank Theorem (Theorem 1.2 in [16]). This implies the convexity of solutions to equation
(5.6). Lemma 26 gives C2 estimates. The Evans-Krylov Theorem yields a priori C3,α

estimates. To establish the existence, we only need to compute the degree at t = 0. It is
obvious that, in this case, ρ ≡ 1 is the solution. Then the same computation in [13] yields
the degree in non-zero. Hence, we have the existence part of the theorem. The strictly
convex follows from constant rank theorem in [16]. �

6. Some examples

Curvature estimate (1.2) is special for equation (1.1). It fails for convex hypersurfaces
in Rn+1 for another type of fully nonlinear elliptic curvature equations. We construct such
examples for hypersurfaces satisfying the quotient of curvature equation,

σk(κ)

σl(κ)
= f(X, ν).(6.1)

Choose a smooth function u defined on sphere such that the spherical Hessian

Wu = (uij + uδij) ∈ Γn−1

but σn(Wu(y0)) < 0 at some point y0 ∈ Sn. The existence of such functions are well known

(e.g., [1]). Set f̃ = σn−1(Wu), so f is a positive and smooth function. Set

ut = (1− t) + tu.

We have Wut ∈ Γn−1 and

(6.2) f̃t = σn−1(Wut),

is smooth and positive. Obviously, when t is close to 0, Wut is positive definite. There is
some 1 > t0 > 0, such that Wut > 0 for t < t0, and

det(Wut0
(x0)) = 0,

for some x0 ∈ Sn. Denote Ωu to the convex body determined by its support function ut,
0 ≤ t < t0.
Claim: for each 0 ≤ t < t0 after a proper translation of the origin, we have some positive
constant c0 independent of t < t0 such that,

ut(x) > c0 > 0 for ∀x ∈ Sn and t < t0.(6.3)

That is each Ωut contains a ball of fixed radius, t < t0.
Let’s first consider k = n, l = 1 in equation (6.1). For 0 ≤ t < t0, denote

(6.4) Mt = ∂Ωut .

For each 0 ≤ t < t0, Mt is strictly convex. By (6.3), we have uniform C1 estimate for the
radial function ρt, where Mt = {ρt(z)z|z ∈ Sn}. We can rewrite the equation (6.2),

(6.5)
σn
σ1

(κ1, · · · , κn) =
1

f̃t(ν)
.

Since σn(Wut0
(x0)) = 0, the principal curvature of Mt will blow up at some points as

t→ t0. The uniform curvature estimate (1.2) for equation (6.5) can not hold.
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We prove claim. Fix 0 ≤ t < t0, after a proper translation, we may assume the origin
is inside the convex body Ωut . It follows from the construction,

f̃t > c > 0,

for some constant c > 0 and for any t < t0, x ∈ Sn, and

‖ut‖C3(Sn) 6 C,(6.6)

where constant C is independent of t. At the maximum value points xt0 of functions ut,
we have,

Wut(x
t
0) 6 ut(x

t
0)I.

Hence,

ut(x
t
0) > f̃

1
n−1

t (xt0) > C > 0.

Estimate (6.6) implies that there is some uniform radius R such that on the disc BR(xt0)
with center at x0,

ut(x) >
C

2
> 0,∀x ∈ BR(xt0).

By the Minkowski identity,∫
Sn
σn(Wut) = cn

∫
Sn
utσn−1(Wut) = cn

∫
Sn
utft > cn

∫
BR(xt0)∩Sn

utf̃t > c̃ > 0.

Hence, there exists yt0 ∈ Sn satisfying

σn(Wut(y
t
0)) >

c̃

ωn
.

By (6.6), there are some uniform radius R̃ > 0, such that for y ∈ Sn ∩BR̃(yt0), we have,

Wut(y) >
c̃

2ωn
> 0.

Hence, near the points ν−1(yt0), the hypersuface Mt is pinched by two fixed paraboloids
locally and uniformly. Thus, Ωut contains a small ball whose radius has a uniform positive
lower bound. Move the origin to the center of the ball, this yields (6.3). The claim is
verified.

Proof of Theorem 2. We use the some sequence {Mt} defined in (6.4) to construct ft in
(1.3). For any m = 0, 1, · · · , n− 1, for any 0 ≤ t < t0, σm(Wut) ∈ C∞(Sn). By (6.2), (6.6)
and Newton-MacLaurin inequality, there exists c > 0 independent of t,

c ≤ σm(Wut) ≤
1

c
.

Since σk
σl

(κMt) ≡
σn−k
σn−l

(Wut), there exists a > 0 independent of t, such that for any

1 ≤ l < k ≤ n,

a ≤ σk
σl

(κMt) ≤
1

a
.

Mt satisfies equation
σk
σl

(κMt) =
σn−k
σn−l

(Wut) = ft(ν),
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ft,
1
ft
∈ C∞(Sn) and the norms of ‖ft‖C3(Sn) and ‖ 1

ft
‖C3(Sn) under control independent

of 0 ≤ t < t0. That is, Mt satisfies conditions in theorem. The previous analysis on Mt

indicates that estimate (1.2) fails and the principal curvature of Mt will blow up at some
points when t→ t0. �
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