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Abstract. We give a new proof of a classical uniqueness theorem of Alexandrov [4]
using the weak uniqueness continuation theorem of Bers-Nirenberg [8]. We prove a
version of this theorem with the minimal regularity assumption: the spherical hessians
of the corresponding convex bodies as Radon measures are nonsingular.

We give a new proof of the following uniqueness theorem of Alexandrov, using the Weak
Unique Continuation Theorem of Bers-Nirenberg [8].

Theorem 1 (Theorem 9 in [4]). Suppose M1 and M2 are two closed strictly convex C2

surfaces in R3, suppose f(y1, y2) ∈ C1 is a function such that ∂f
∂y1

∂f
∂y2

> 0. Denote κ1 ≥ κ2

the principal curvatures of surfaces, and denote νM1 and νM2 the Gauss maps of M1 and
M2 respectively. If

(1) f(κ1(ν−1
M1

(x), κ2(ν−1
M1

(x)) = f(κ1(ν−1
M2

(x), κ2(ν−1
M2

(x)), ∀x ∈ S2,

then M1 is equal to M2 up to a translation.

This classical result was first proved for analytical surfaces by Alexandrov in [3], for
C4 surfaces by Pogorelov in [20], and Hartman-Wintner [14] reduced regularity to C3, see
also [21]. Pogorelov [22, 23] published certain uniqueness results for C2 surfaces, these
general results would imply Theorem 1 in C2 case. It was pointed out in [19] that the
proof of Pogorelov is erroneous, it contains an uncorrectable mistake (see page 301-302
in [19]). There is a counter-example of Martinez-Maure [15] (see also [19]) to the main
claims in [22, 23]. The results by Han-Nadirashvili-Yuan [13] imply two proofs of Theorem
1, one for C2 surfaces and another for C2,α surfaces. The problem is often reduced to a
uniqueness problem for linear elliptic equations in appropriate settings, either on S2 or in
R3, we refer [4, 21]. Here we will concentrate on the corresponding equation on S2, as in
[11]. The advantage in this setting is that it is globally defined.

If M is a strictly convex surface with support function u, then the principal curvatures
at ν−1(x) are the reciprocals of the principal radii λ1, λ2 of M , which are the eigenvalues
of spherical Hessian Wu(x) = (uij(x) + u(x)δij) where uij are the covariant derivatives
with respect to any given local orthonormal frame on S2. Set

F̃ (Wu) =: f(
1

λ1(Wu)
,

1

λ2(Wu)
) = f(κ1, κ2).(2)
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In view of Lemma 1 in [5], if f satisfies the conditions in Theorem 1, then F̃ ij = ∂F̃
∂wij
∈ L∞

is uniformly elliptic. In the case n = 2, it can be read off from the explicit formulas

λ1 =
σ1(Wu)−

√
σ1(Wu)2 − 4σ2(Wu)

2
, λ2 =

σ1(Wu) +
√
σ1(Wu)2 − 4σ2(Wu)

2
.

As noted by Alexanderov in [5], F̃ ij in general is not continuous if f(y1, y2) is not symmetric
(even f is analytic).

We want to address when Theorem 1 remains true for convex bodies in R3 with weakened
regularity assumption. In the Bruun-Minkowski theory, the uniqueness of Alexandrov-
Fenchel-Jessen [1, 2, 10] states that, if two bounded convex bodies in Rn+1 have the same
kth area measures on Sn, then these two bodies are the same up to a rigidity motion in
Rn+1. Though for a general convex body, the principal curvatures of its boundary may
not be defined. But one can always define the support function u, which is a function
on S2. By the convexity, then Wu = (uij + uδij) is a Radon measure on S2. Also,
by Alexandrov’s theorem for the differentiability of convex functions, Wu is defined for
almost every point x ∈ S2. Denote N to be the space of all positive definite 2×2 matrices,
and let G be a function defined on N . For a support function u of a bounded convex
body Ωu, G(Wu) is defined for a.e. x ∈ S2. For fixed support functions ul of Ωul , l = 1, 2,
there is Ω ⊂ S2 with |S2 \ Ω| = 0 such that Wu1 ,Wu2 are pointwise finite in Ω. Set
Pu1,u2 = {W ∈ N|∃x ∈ Ω,W = Wu1(x), orW = Wu2(x)}, let Pu1,u2 be the convex hull of
Pu1,u2 in N .

We establish the following slightly more general version of Theorem 1.

Theorem 2. Suppose Ω1 and Ω2 are two bounded convex bodies in R3. Let ul, l = 1, 2 be
the corresponding supporting functions respectively. Suppose the spherical Hessians Wul =
(ulij + δiju

l) (in the weak sense) are two non-singular Radon measures. Let G : N → R be

a C0,1 function such that

ΛI ≥ (Gij)(W ) := (
∂G

∂Wij
)(W ) ≥ λI > 0, ∀W ∈ Pu∞,u∈ ,

for some positive constants Λ, λ. If

(3) G(Wu1) = G(Wu2),

at almost every parallel normal x ∈ S2, then Ω1 is equal to Ω2 up to a translation.

Suppose u1, u2 are the support functions of two convex bodies Ω1,Ω2 respectively, and
suppose Wu,, l = 1, 2 are defined and they satisfy equation (3) at some point x ∈ S2. Then,
for u = u1 − u2, Wu(x) satisfies equation

(4) F ij(x)(Wu(x)) = 0,

with F ij(x) =
∫ 1

0
∂F̃
∂Wij

(tWu1(x) + (1 − t)Wu2(x))dt. By the convexity, Wul , l = 1, 2 exist

almost everywhere on S2. If they satisfy equation (3) almost everywhere, equation (4) is
verified almost everywhere. Note that u may not be a solution (even in a weak sense)
of partial differential equation (4). The classical elliptic theory (e.g., [16, 18, 8]) requires
u ∈ W 2,2 in order to make sense of u as a weak solution of (4). A main step in the proof
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of Theorem 2 is to show that with the assumptions in the theorem, u = u1 − u2 is indeed
in W 2,2(S2). The proof will appear in the last part of the paper.

Let’s now focus on W 2,2 solutions of differential equation (4), with general uniformly
elliptic condition on tensor F ij on S2:

(5) λ|ξ|2 ≤ F ij(x)ξiξj ≤ Λ|ξ|2, ∀x ∈ S2, ξ ∈ R2,

for some positive numbers λ,Λ. The aforementioned proofs of Theorem 1 ([20, 14, 21, 13])
all reduce to the statement that any solution of (5) is a linear function, under various
regularity assumptions on F ij and u. Equation (4) is also related to minimal cone equation
in R3 ([13]). The following result was proved in [13].

Theorem 3 (Theorem 1.1 in [13]). Suppose F ij(x) ∈ L∞(S2) satisfies (5), suppose u ∈
W 2,2(S2) is a solution of (4). Then, u(x) = a1x1 + a2x2 + a3x3 for some ai ∈ R.

There the original statement in [13] is for 1-homogeneous W 2,2
loc (R3) solution v of equa-

tion

(6)
3∑

i,j=1

aij(X)vij(X) = 0.

These two statements are equivalent. To see this, set u(x) = v(X)
|X| with x = X

|X| . By the

homogeneity assumption, the radial direction corresponds to null eigenvalue of ∇2v, the
other two eigenvalues coincide the eigenvaules of the spherical Hessian of W = (uij+uδij).

v(X) ∈ W 2,2
loc (R3) is a solution to (6) if and only if u ∈ W 2,2(S2) is a solution to (4) with

F ij(x) = 〈ei, Aej〉, where A = (aij( X
|X|)) and (e1, e2) is any orthonormal frame on S2.

The proof in [13] uses gradient maps and support planes introduced by Alexandrov,
as in [3, 20, 21]. We give a different proof of Theorem 3 using the maximum principle
for smooth solutions and the unique continuation theorem of Bers-Nirenberg [8], working
purely on solutions of equation (4) on S2.

Note that F in Theorem 2 (and Theorem 1) is not assumed to be symmetric. The weak
assumption F ij ∈ L∞ is needed to deal with this case. This assumption also fits well
with the weak unique continuation theorem of Bers-Nirenberg. This beautiful result of
Bers-Nirenberg will be used in a crucial way in our proof. If u ∈ W 2,2(S2), u ∈ Cα(S2)
for some 0 < α < 1 by the Sobolev embedding theorem. Equation (4) and C1,α estimates
for 2-d linear elliptic PDE (e.g., [16, 18, 8]) imply that u is in C1,α(S2) for some α > 0
depending only on ‖u‖C0 and the ellipticity constants of F ij . This fact will be assumed
in the rest of the paper.

The following lemma is elementary.

Lemma 4. Suppose F ij ∈ L∞(S2) satisfies (5), suppose at some point x ∈ S2, Wu(x) =
(uij(x) + u(x)δij) satisfies (4). Then,

|Wu|2(x) ≤ −2Λ

λ
detWu(x).
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Proof. At x, by equation (4),

detWu = − 1

F 22

(
F 11W 2

11 + 2F 12W11W12 + F 22W 2
12

)
≤ −λ

Λ

(
W 2

11 +W 2
12

)
,(7)

and similarly, detWu ≤ − λ
Λ

(
W 2

22 +W 2
21

)
. Thus,(

W 2
11 +W 2

12 +W 2
21 +W 2

22

)
≤ −2Λ

λ
detWu.(8)

�

For each u ∈ C1(S2), set Xu =
∑

i uiei + uen+1. For any unit vector E in R3, define

φE(x) = 〈E,Xu(x)〉, and ρu(x) = |Xu(x)|2,(9)

where 〈, 〉 is the standard inner product in R3. The function ρ was introduced by Weyl in
his study of Weyl’s problem [25]. It played important role in Nirenberg’s solution of the
Weyl’s problem in [17]. Our basic observation is that there is a maximum principle for ρu
and φE .

Lemma 5. Suppose U ⊂ S2 is an open set, F ij ∈ C1(U) is a tensor in U and u ∈ C3(U)
satisfies equation (4), then there are two constants C1, C2 depending only on the C1-norm
of F ij such that

F ij(ρu)ij ≥ −C1|∇ρu|, F ij(φE)ij ≥ −C2|∇φE | in U.(10)

Proof. Pick any orthonormal frame e1, e2, we have

(Xu)i = Wijej , (Xu)ij = Wijkek −Wij~x.(11)

By Codazzi property of W and (4),

1

2
F ij(ρu)ij = 〈Xu, F

ijWijkek〉+ F ijWikWkj = −ukF ij,kWij + F ijWikWkj .

On the other hand, ∇ρu = 2W · (∇u). At the non-degenerate points (i.e., detW 6= 0),
∇u = 1

2W
−1 · ∇ρu, where W−1 denotes the inverse matrix of W . Now,

2ukF
ij
,kWij = W kl(ρu)lF

ij
,kWij = (ρu)lF

ij
,k

AklWij

detW
.(12)

where Akl denote the co-factor of Wkl.
The first inequality in (10) follows (8) and (12).
The proof for φE follows the same argument and the following facts:

F ij(φE)ij = −〈E, ek〉F ij,kWij , ∇φE = W · 〈E, ek〉.

�

Lemma 5 yields immediately Theorem 1 in C3 case, which corresponds to the Hartman-
Wintner theorem ([14]).

Corollary 6. Suppose f ∈ C2 and symmetric, M1,M2 are two closed convex C3 surfaces
satisfy conditions in Theorem 1 , then the surfaces are the same up to a translation.
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Proof. Since f ∈ C2 is symmetric, F ij in (4) is in C1(S2) and u ∈ C3(S2). By Lemma 5
and the strong maximum principle, Xu is a constant vector. �

To precede further, set

M = {p ∈ S2 : ρu(p) = max
q∈S2

ρu(q)},

for each unit vector E ∈ R3,

ME = {p ∈ S2 : φE(p) = max
q∈S2

φE(q)}.

Lemma 7. M and ME have no isolated points.

Proof. We prove the lemma for M, the proof for ME is the same. If point p0 ∈ M is an
isolated point, we may assume p0 = (0, 0, 1). Pick Ū a small open geodesic ball centered
at p0 such that Ū is properly contained in S2

+, and pick a sequence of smooth 2−tensor

(F ijε ) > 0 which is convergent to (F ij) in L∞-norm in Ū . Consider{
F ijε (uεij + uεδij) = 0 in Ū

uε = u on ∂Ū .
(13)

Since x3 > 0 in S2
+, one may write uε = x3v

ε in Ū . As (x3)ij = −x3δij , it easy to check vε

satisfies

F ijε v
ε
ij + bkv

ε
k = 0, in Ū .

Therefore, (13) is uniquely solvable.
Since p0 ∈ M is an isolated point, there are open geodesic balls Ū ′ ⊂ Ū centered at p0

and a small δ > 0 such that

ρu(p0)− ρu(p) ≥ δ for ∀p ∈ ∂Ū ′.(14)

By the C1,α estimates for linear elliptic equation in dimension two and the uniqueness
of the Dirichlet problem ([16, 8, 18]), ∃εk such that

‖u− uεk‖C1,α(Ū ′) → 0, ‖ρu − ρuεk‖Cα(Ū ′) → 0.

Together with (14), if εk small enough, there is a local maximal point of ρuεk in Ū ′ ⊂ Ū .

Since uεk , F ijε ∈ C∞(Ū ′) satisfy (13), it follows from Lemma 5 and the strong maximum
principle that ρuεk must be constant in Ū ′, ∀εk in small enough. This implies ρ is constant
in Ū ′. Contradiction. �

We now prove Theorem 3.

Proof of Theorem 3. For any p0 ∈ M, if ρu(p0) = 0, then u ≡ 0. We may assume

ρu(p0) > 0. Set E := Xu(p0)
|Xu(p0)| . Choose another two unit constant vectors β1, β2 with

< βi, βj >= δij , βi ⊥ E for i, j = 1, 2. Under this orthogonal coordinates in R3,

Xu(p) = a(p)E + b1(p)β1 + b2(p)β2, ∀p ∈ME .(15)
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On the other hand, φE(p) = ρ
1/2
u (p0),∀p ∈ME . Thus,

a(p) = ρ1/2
u (p0), b1(p) = b2(p) = 0, ∀p ∈ME .(16)

Consider the function ũ(x) = u(x)− ρ1/2
u (p0)E · x. (15) and (16) yield, ∀p ∈ME ,

∇ei ũ(p) = ∇eiu(p)− ρ1/2
u (p0)〈E, ei〉 = 〈Xu(p), ei〉 − ρ1/2

u (p0)〈E, ei〉 = 0.(17)

Moreover, ũ(x) also satisfies equation (4). As pointed out in [8], if ũ satisfies an elliptic
equation, ∇ũ satisfies an elliptic system of equations. Lemma 7, (17) and the Unique
Continuation Theorem of Bers-Nirenberg (P. 13 in [7]) imply ∇ũ ≡ 0. Thus, ũ(x) ≡
ũ(p0) = 0 and u(x) is a linear function on S2. �

Theorem 1 is a direct consequence of Theorem 3. We now prove Theorem 2.

Proof of Theorem 2. The main step is to show u = u1 − u2 ∈ W 2,2(S2), using the
assumption that Wul , l = 1, 2 are non-singular Radon measures. It follows from the
convexity, the spherical hessians Wul , l = 1, 2 and Wu are defined almost everywhere
on S2 (Alexandrov’s Theorem). So, we can define G(Wul), l = 1, 2 almost everywhere in
S2. As W l

u, l = 1, 2 are nonsingular Radon measures, Wul ∈ L1(S2) (see [9]), we also have
Wu ∈ L1(S2). Since u1, u2 satisfy G(Wu1) = G(Wu2) for almost every parallel normal
x ∈ S2, there is Ω ⊂ S2 with |S2 \ Ω| = 0, such that Wu satisfies following equation
pointwise in Ω,

Gij(x)(uij(x) + u(x)δij) = 0, x ∈ Ω,

where Gij =
∫ 1

0
∂G
∂wij

(tW 1
u + (1− t)W 2

u )dt. By Lemma 4, we can obtain that

|Wu|2 = W 2
11 +W 2

12 +W 2
21 +W 2

22 ≤ −
2Λ

λ
detWu, x ∈ Ω.

On the other hand,

detWu ≤ detWũ,

where ũ = u1 + u2. Thus, to prove u ∈ W 2,2(S2), it suffices to get an upper bound for∫
S2 detWũ.

Recall that Wul ∈ L1(S2), so ul ∈W 2,1(S2), l = 1, 2 and the same for ũ. This allows us
to choose two sequences of smooth convex bodies Ωl

ε with supporting functions ulε such that
||ũε − ũ||W 2,1(S2) → 0 as ε→ 0. By Fatou’s Lemma and continuity of the area measures,∫

S2
detWũ =

∫
Ω

detWũ ≤ lim inf
ε→0

∫
S2

detWũε ≤ V (Ω1) + V (Ω2) + 2V (Ω1,Ω2),

where V (Ω1), V (Ω2) denote the volume of the convex bodies Ω1 and Ω2 respectively and
V (Ω1,Ω2) is the mixed volume.

It follows that Wu ∈ L2(S2) and thus, u ∈W 2,2(S2). This implies that u is a W 2,2 weak
solution of the differential equation

Gij(x)(uij(x) + u(x)δij) = 0, ∀x ∈ S2.

Finally, the theorem follows directly from Theorem 3. �
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Remark 8. Alexanderov proved in [3] that, if u is a homogeneous degree 1 analytic func-
tion in R3 with ∇2u definite nowhere, then u is a linear function. As a consequence,
Alexandrov proved in [6] that if a analytic closed convex surface in R3 satisfying the
condition (κ1 − c)(κ2 − c) ≤ 0 at every point for some constant c, then it is a sphere.
Martinez-Maure gave a C2 counter-example in [15] to this statement, see also [19]. The
counter-examples in [15, 19] indicate that Theorem 3 is not true if F ij is merely assumed
to be degenerate elliptic. It is an interesting question that under what degeneracy condition
on F ij so that Theorem 3 is still true, even in smooth case. This question is related to
similar questions in this nature posted by Alexandrov [4] and Pogorelov [21].

We shall wrap up this paper by mention a stability type result related with uniqueness.
Indeed, by using the uniqueness property proved in Theorem 3, we can prove the following
stability theorem via compactness argument.

Proposition 9. Suppose F ij(x) ∈ L∞(S2) satisfies (5), and u(x) ∈W 2,2(S2) is a solution
of the following equation

F ij(x)(Wu)ij = f(x), ∀x ∈ S2.(18)

Assume that f(x) ∈ L∞(S2) and there exists a point x0 ∈ S2 such that ρu(x0) = 0 (see (9)
for the definition of ρu). Then,

||u||L∞(S2) ≤ C3||f ||L∞(S2)(19)

holds for some positive constant C3 only depends on the ellipticity constants λ,Λ.

Proof. As mentioned above, we will prove this proposition by a compactness argument.
Suppose the desired estimate (19) does not hold, then there exists a sequence of functions
{fn(x)}∞n=1 on S2 with ||f ||L∞(S2) ≤ C4 and a sequence of points {xn}∞n=1 ⊂ S2 such that

ρun(xn) = 0 and Kn :=
||u||L∞(S2)
||f ||L∞(S2)

−→ +∞, where un(x) is the solution of equation (18)

with right hand side replaced by fn(x).

Let vn(x) = un(x)
Kn||f ||L∞(S2)

, then ||vn||L∞(S2) = 1 and vn(x) satisfies

F ij(x)(Wvn)ij = f̃n :=
fn(x)

Kn||fn||L∞(S2)
.(20)

By the interior C1,α estimates for linear elliptic equation in dimension two ([16, 8, 18]),
we have

||vn||C1,α(S2) ≤ C5

(
||vn||L∞(S2) + ||f̃n||L∞(S2)

)
≤ 2C5

for some positive constant C5 = C5(λ,Λ). In particular, this gives that ||∇vn||L∞(S2) ≤
C6. Now, apply the a priori W 2,2 estimate for linear elliptic equation in dimension two
([16, 8, 18, 12]), we see that ||vn||W 2,2(S2) ≤ C7 for some constant C7 = C7(λ,Λ, C6). It
follows from this uniform estimate that, up to a subsequence, {vn(x)}∞n=1 converges to
some function v(x) ∈W 2,2(S2) and v(x) satisfies

F ij(x)(Wv)ij = 0, a.e. x ∈ S2.
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Then, the previous uniqueness result Theorem 3 tells that v(x) must be a linear function,
i.e., there exists a constant vector ~a = (a1, a2, a3) ∈ R3 such that v(x) = a1x1+a2x2+a3x3.

On the other hand, recall that, by the assumption at the beginning, there exists xn ∈ S2

such that ρvn(xn) = 0. Then, up to a subsequence, xn → x∞ ∈ S2 and ρv(x∞) = 0. This
together with the linear property of v(x) imply that v(x) ≡ 0. However, this contradicts
with the fact that ||v||L∞(S2) = 1 as ||vn||L∞(S2) = 1.

�

As a direct corollary, we have the following stability property for convex surfaces.

Theorem 10. Suppose M1,M2 and f satisfy the same assumptions as in Theorem 3.
Define µ1(x) := f(κ1(ν−1

M1
(x), κ2(ν−1

M1
(x)) and µ2(x) := f(κ1(ν−1

M2
(x), κ2(ν−1

M2
(x)) for ∀x ∈

S2. If ||µ1 − µ2||L∞(S2) < ε, then, module a linear translation, M1 is very close to M2.
More precisely, suppose u1, u2 are the supporting functions of M1 and M2 after module
the linear translation, then there exists a constant C such that

||u1 − u2||L∞(S2) ≤ C||µ1 − µ2||L∞(S2).(21)

Finally, it is worth to remark that there are many stability type results for convex
surfaces proved in the literature (see [24]). However, almost all the proofs need to use
the assumption that f(κ1, κ2, · · · , κn) satisfies divergence property. Here, we do not make
such kind assumption in this dimension two case. There is one drawback in the above
stability result: one could not get the sharp constant via the compactness argument. It
would be an interesting question to derive a sharp estimate for (21).

Acknowledgement: The first author would like to thank Professor Louis Nirenberg for
stimulation conversations. Our initial proof was the global maximum principle for C3

surfaces Lemma 5 and Corollary 6 (we only realized the connection of the result of [13]
to Theorem 1 afterward). It was Professor Louis Nirenberg who brought our attention to
the paper of [15] and suggested using the unique continuation theorem of [8]. That leads
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[3] A.D. Alexandrov, Sur les théorèmes d’unicité pour les surfaces fermeès. C. R. (Dokl.) Acad. Sci.
URSS, N.S. 22 (1939), 99-102; translation in Selected works. Part I. Selected scientific papers, 149-
153. Classics of Soviet Mathematics, 4. Gordon and Breach, Amsterdam, 1996.

[4] A.D. Alexandrov, Uniqueness theorems for surfaces in the large I. (Russian) Vestnik Leningrad. Univ.
11 (1956), no. 19, 5-17.

[5] A.D. Alexandrov, Uniqueness theorems for surfaces in the large. II. (Russian) Vestnik Leningrad.
Univ. 12 (1957) no. 7, 15-44.

[6] A.D. Alexandrov, On the curvature of surfaces (Russian), Vestnik Leningrad. Univ. 21 (19) (1966)
5-11.

8



[7] L. Bers and L. Nirenberg, On a representation theorem for linear elliptic system with discontinuous
coefficients and its application. Edizioni cremonese dells S.A. editrice perrella, Roma, 1954, 111-140.

[8] L. Bers and L. Nirenberg, On linear and non-linear elliptic boundary value problems in the plane.
Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954, 141-167.

[9] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, CRC Press INC, 1992.
[10] W. Fenchel and B. Jessen, Mengenfunktionen und konvexe korper, Det. Kgl. Danske Videnskab. Sel-

skab, Math.-fys. Medd. 16(3), (1938), 1-31.
[11] B. Guan and P. Guan, Convex Hypersurfaces of Prescribed Curvatures. Annual of Mathematics, Vol

256, No. 2 (2002), pp 655-673.
[12] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1998.
[13] Q. Han, N. Nadirashvili and Y. Yuan, Linearity of homogeneous order-one solutions to elliptic equa-

tions in dimension three. Comm. Pure and App. Math. Vol. 56, (2003), 425-432.
[14] P. Hartman and A. Wintner, On the third fundamental form of a surface. Amer. J. Math. 75, (1953).

298-334.
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