A PROOF OF THE ALEXANDEROV’S UNIQUENESS THEOREM FOR
CONVEX SURFACES IN R3
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ABSTRACT. We give a new proof of a classical uniqueness theorem of Alexandrov [4]
using the weak uniqueness continuation theorem of Bers-Nirenberg [8]. We prove a
version of this theorem with the minimal regularity assumption: the spherical hessians
of the corresponding convex bodies as Radon measures are nonsingular.

We give a new proof of the following uniqueness theorem of Alexandrov, using the Weak
Unique Continuation Theorem of Bers-Nirenberg [8].

Theorem 1 (Theorem 9 in [4]). Suppose My and My are two closed strictly convex C*
surfaces in R3, suppose f(y1,y2) € C' is a function such that %(’%fz > 0. Denote k1 > Ko
the principal curvatures of surfaces, and denote vys, and vy, the Gauss maps of My and

My respectively. If
(1) Fri(Wif (@), k(i (1) = f(r1(vyg (@), k(v (2), Vo € S

then My is equal to Mo up to a translation.

This classical result was first proved for analytical surfaces by Alexandrov in [3], for
C* surfaces by Pogorelov in [20], and Hartman-Wintner [14] reduced regularity to C3, see
also [21]. Pogorelov [22, 23] published certain uniqueness results for C? surfaces, these
general results would imply Theorem 1 in C? case. It was pointed out in [19] that the
proof of Pogorelov is erroneous, it contains an uncorrectable mistake (see page 301-302
in [19]). There is a counter-example of Martinez-Maure [15] (see also [19]) to the main
claims in [22, 23]. The results by Han-Nadirashvili-Yuan [13] imply two proofs of Theorem
1, one for C? surfaces and another for C>“ surfaces. The problem is often reduced to a
uniqueness problem for linear elliptic equations in appropriate settings, either on S? or in
R3, we refer [4, 21]. Here we will concentrate on the corresponding equation on S?, as in
[11]. The advantage in this setting is that it is globally defined.

If M is a strictly convex surface with support function u, then the principal curvatures
at v~1(x) are the reciprocals of the principal radii A1, A2 of M, which are the eigenvalues
of spherical Hessian W, (z) = (u;j(x) + u(x)d;;) where u;; are the covariant derivatives
with respect to any given local orthonormal frame on S?. Set

@) FOW) = Iy sy = F s
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In view of Lemma 1 in [5], if f satisfies the conditions in Theorem 1, then FJ = %ﬁ_ e L>®
ij

is uniformly elliptic. In the case n = 2, it can be read off from the explicit formulas
o1 (W) — /o1 (W,)2 — dog(W,,) \ o1 (W) + o1(W,)2 — dag(W,,)
2 rorT 2 '
As noted by Alexanderov in [5], F in general is not continuous if f(y1,y2) is not symmetric
(even f is analytic).

We want to address when Theorem 1 remains true for convex bodies in R? with weakened
regularity assumption. In the Bruun-Minkowski theory, the uniqueness of Alexandrov-
Fenchel-Jessen [1, 2, 10] states that, if two bounded convex bodies in R"! have the same
kth area measures on S, then these two bodies are the same up to a rigidity motion in
R™t1. Though for a general convex body, the principal curvatures of its boundary may
not be defined. But one can always define the support function w, which is a function
on S%. By the convexity, then W, = (u;; + ud;;) is a Radon measure on S?. Also,
by Alexandrov’s theorem for the differentiability of convex functions, W, is defined for
almost every point 2 € S2. Denote N to be the space of all positive definite 2 x 2 matrices,
and let G be a function defined on A. For a support function u of a bounded convex
body Q., G(W,,) is defined for a.e. x € S%. For fixed support functions u! of Q,,1 = 1,2,
there is Q C S? with [S? \ Q| = 0 such that W,:, W, are pointwise finite in . Set
P2 ={W eN|3z € QW =W, (x),orW = W,2(2)}, let Py 2 be the convex hull of
P2 in N.

We establish the following slightly more general version of Theorem 1.

A=

Theorem 2. Suppose Q1 and Qo are two bounded convex bodies in R3. Let ul,1 =1,2 be
the corresponding supporting functions respectively. Suppose the spherical Hessians W1 =
(uﬁ»j +d;5ul) (in the weak sense) are two non-singular Radon measures. Let G : N'— R be
a COY function such that

oG

ML= (GW) = (g

)(W) Z )\I > O7 VW S Pﬂoo,ﬂeﬂ

for some positive constants A, A. If
(3) G(Wul) = G(WU2)7
at almost every parallel normal x € S, then Qy is equal to Qo up to a translation.

Suppose u!, u? are the support functions of two convex bodies Q1, {2y respectively, and

suppose W, ,l = 1,2 are defined and they satisfy equation (3) at some point = € S?. Then,
for u = u' — u?, W, () satisfies equation

(4) F(x)(Wy(x)) =0,

with F(x) = 01 %(thl (x) + (1 — t)W,2(x))dt. By the convexity, Wi, = 1,2 exist
almost everywhere on S2. If they satisfy equation (3) almost everywhere, equation (4) is
verified almost everywhere. Note that u may not be a solution (even in a weak sense)
of partial differential equation (4). The classical elliptic theory (e.g., [16, 18, 8]) requires
u € W22 in order to make sense of u as a weak solution of (4). A main step in the proof



of Theorem 2 is to show that with the assumptions in the theorem, u = u! — u? is indeed

in W22(S?). The proof will appear in the last part of the paper.

Let’s now focus on W22 solutions of differential equation (4), with general uniformly
elliptic condition on tensor F% on S?:

(5) MEP < Fid(z)€:¢; < A|€)?, Vo € S ¢ € R?,

for some positive numbers A\, A. The aforementioned proofs of Theorem 1 ([20, 14, 21, 13])
all reduce to the statement that any solution of (5) is a linear function, under various
regularity assumptions on F%/ and u. Equation (4) is also related to minimal cone equation
in R3 ([13]). The following result was proved in [13].

Theorem 3 (Theorem 1.1 in [13]). Suppose FU(x) € L>(S?) satisfies (5), suppose u €
W22(S?) is a solution of (4). Then, u(z) = a121 + asxs + azxs for some a; € R.

There the original statement in [13] is for 1-homogeneous VVif (R3) solution v of equa-
tion

3
(6) > a¥(X)vii(X) = 0.
i,j=1
These two statements are equivalent. To see this, set u(z) = U&(l) with x = % By the

homogeneity assumption, the radial direction corresponds to null eigenvalue of V?v, the
other two eigenvalues coincide the eigenvaules of the spherical Hessian of W = (u;; +ud;;).
v(X) € I/VlQOCQ(R?)) is a solution to (6) if and only if u € W?22(S?) is a solution to (4) with
Fi(z) = (e;, Aej), where A = (aij(%)) and (e, e2) is any orthonormal frame on S?.

The proof in [13] uses gradient maps and support planes introduced by Alexandrov,
as in [3, 20, 21]. We give a different proof of Theorem 3 using the maximum principle
for smooth solutions and the unique continuation theorem of Bers-Nirenberg [8], working
purely on solutions of equation (4) on S2.

Note that F' in Theorem 2 (and Theorem 1) is not assumed to be symmetric. The weak
assumption F¥ € L is needed to deal with this case. This assumption also fits well
with the weak unique continuation theorem of Bers-Nirenberg. This beautiful result of
Bers-Nirenberg will be used in a crucial way in our proof. If u € W22(S?), u € C*(S?)
for some 0 < @ < 1 by the Sobolev embedding theorem. Equation (4) and C1® estimates
for 2-d linear elliptic PDE (e.g., [16, 18, 8]) imply that u is in C%*(S?) for some a > 0
depending only on ||u||co and the ellipticity constants of F%. This fact will be assumed
in the rest of the paper.

The following lemma is elementary.

Lemma 4. Suppose FJ € L>°(S?) satisfies (5), suppose at some point x € S?, W, (x) =
(uij(x) +u(x)di;) satisfies (4). Then,

W[ () < —% det Wy, ().



Proof. At z, by equation (4),
1

—m

and similarly, det W, < —2 (W + W3). Thus,

(7)  det W, = (F”Wfl 2R Wi + F22W122) < —Z(W+Wh),

= >

2A
(8) (Wi + Wiy + W3+ W3) < =5 det Wy
O

For each u € C1(S?), set X, = > ui€; + uenq1. For any unit vector £ in R3, define
(9) op(z) = (B, Xu(x)), and py(z) = [Xu(z),

where (,) is the standard inner product in R3. The function p was introduced by Weyl in
his study of Weyl’s problem [25]. It played important role in Nirenberg’s solution of the
Weyl’s problem in [17]. Our basic observation is that there is a maximum principle for p,
and ¢p.

Lemma 5. Suppose U C S? is an open set, F9 € CY(U) is a tensor in U and u € C3(U)
satisfies equation (4), then there are two constants C1,Cy depending only on the C'-norm
of FY such that

(10) F(pu)ij > =C1|Vpul, F?(¢p)ij > —Co|Vep| inU.
Proof. Pick any orthonormal frame ey, e2, we have
(11) (Xu)i = Wijej,  (Xu)ij = Wijrer — Wi
By Codazzi property of W and (4),
%Fij(pu)ij = (Xu, FIWijer) + FIWypWij = —we F{{ Wi + FIW3, Wi
On the other hand, Vp, = 2W - (Vu). At the non-degenerate points (i.e., det W # 0),

Vu = %W‘l - Vpu, where W~ denotes the inverse matrix of W. Now,

3 B AR
; ki i ‘ k
(12) 2ukF Wi = Wi Wij = (0 F g7

where A*! denote the co-factor of Wj;.
The first inequality in (10) follows (8) and (12).
The proof for ¢ follows the same argument and the following facts:
F(¢p)ij = —<E,€k>EZ}€szj, Vop =W - (E, eg).
0

Lemma 5 yields immediately Theorem 1 in C2 case, which corresponds to the Hartman-
Wintner theorem ([14]).

Corollary 6. Suppose f € C? and symmetric, My, My are two closed convex C® surfaces
satisfy conditions in Theorem 1 , then the surfaces are the same up to a translation.



Proof. Since f € C? is symmetric, F/ in (4) is in C*(S?) and u € C3(S?). By Lemma 5
and the strong maximum principle, X, is a constant vector. O

To precede further, set

M= {p cs? . pu(p) = maxpu(q)},
q€eSs?

for each unit vector E € R3,

Mg ={peS® : ¢p(p) =maxdp(q)}.

qesS?
Lemma 7. M and Mg have no isolated points.
Proof. We prove the lemma for M, the proof for Mg is the same. If point py € M is an

isolated point, we may assume py = (0,0,1). Pick U a small open geodesic ball centered
at pg such that U is properly contained in S2, and pick a sequence of smooth 2—tensor

(F7) > 0 which is convergent to (F/) in L®-norm in U. Consider

(13) {Fﬁj(ufj + uedij) = 0 in (7,

uc = wu on 0U.
Since z3 > 0 in S2, one may write u¢ = z3v¢ in U. As (x3)ij = —x30;4, it easy to check v°
satisfies

ngvfj +bgv;, =0, inU.

Therefore, (13) is uniquely solvable. - -
Since py € M is an isolated point, there are open geodesic balls U’ C U centered at pg
and a small § > 0 such that

(14) pu(po) — pu(p) > 6 for Vp e oU'.

By the CM® estimates for linear elliptic equation in dimension two and the uniqueness
of the Dirichlet problem ([16, 8, 18]), Je such that

lu = u*|cra@y =0, llpu = pusklgag@ry = 0.

Together with (14), if €; small enough, there is a local maximal point of p,e in U’ C U.
Since ut*, F? € C°°(U’) satisfy (13), it follows from Lemma 5 and the strong maximum
principle that p,e, must be constant in U’, Ve, in small enough. This implies p is constant
in U’. Contradiction. O

We now prove Theorem 3.

Proof of Theorem 3. For any py € M, if p,(po) = 0, then u = 0. We may assume

pu(po) > 0. Set E := ézg gg‘ Choose another two unit constant vectors (i1, 32 with
< Bi, Bj >= 65, Bi L E for i,j = 1,2. Under this orthogonal coordinates in R3,
(15) Xu(p) = a(p)E + b1(p)B1 + ba(p) B2, Vp € ME.



On the other hand, ¢(p) = pv/*(po), Vp € Mg. Thus,

(16) a(p) = pi/*(po), bi(p) = ba(p) =0, Vp € Mp.

Consider the function @(z) = u(z) — pi/ *(po)E - z. (15) and (16) yield, ¥p € Mp,
(17)  Vealp) = Veu(p) — p/*(po) (B, €i) = (Xu(p), €i) — pi/*(po){E, e;) = 0.

Moreover, u(x) also satisfies equation (4). As pointed out in [8], if @ satisfies an elliptic
equation, Vu satisfies an elliptic system of equations. Lemma 7, (17) and the Unique
Continuation Theorem of Bers-Nirenberg (P. 13 in [7]) imply Va = 0. Thus, a(x) =
@(po) = 0 and u(z) is a linear function on S2. O

Theorem 1 is a direct consequence of Theorem 3. We now prove Theorem 2.

Proof of Theorem 2. The main step is to show u = u! — u? € W22(S?), using the
assumption that W, ,l = 1,2 are non-singular Radon measures. It follows from the
convexity, the spherical hessians W, ,l = 1,2 and W, are defined almost everywhere
on S? (Alexandrov’s Theorem). So, we can define G(W,:),l = 1,2 almost everywhere in
S2. As W!,1 = 1,2 are nonsingular Radon measures, W, € L'(S?) (see [9]), we also have
W, € LY(S?). Since u!,u? satisfy G(W,1) = G(W,z2) for almost every parallel normal
r € S?, there is Q@ C S? with [S? \ Q| = 0, such that W, satisfies following equation
pointwise in €2,
G () (uj(w) + u(z)di) =0, = € Q,

where GY = 01 %Gij(tW& + (1 — t)W2)dt. By Lemma 4, we can obtain that
2A
Wul> = Wi + Wh + W3 + W3, < —Sdet Wy, zEQ
On the other hand,
det W,, < det W,

where @ = u' 4+ u?. Thus, to prove u € W22(S?), it suffices to get an upper bound for
fS2 det Wﬂ.

Recall that W, € L'(S?), so u! € W21(S?),l = 1,2 and the same for @. This allows us

to choose two sequences of smooth convex bodies Ql6 with supporting functions ui such that
||tie — @|yy2.1(s2) — 0 as e = 0. By Fatou’s Lemma and continuity of the area measures,

/ det Wy = / det W5 < liminf/ det Wi, < V(QY) + V(Q?) +2V(Qh, Q?),
S2 Q S2

e—0

where V(Q!), V(Q?) denote the volume of the convex bodies Q! and 02 respectively and
V(2L 02) is the mixed volume.
It follows that W, € L*(S?) and thus, u € W22(S?). This implies that u is a W?? weak
solution of the differential equation
G (2)(uij(x) +u(x)dij) =0, Ve S

Finally, the theorem follows directly from Theorem 3. g



Remark 8. Alexanderov proved in [3] that, if u is a homogeneous degree 1 analytic func-
tion in R3 with V?u definite nowhere, then u is a linear function. As a consequence,
Alexandrov proved in [6] that if a analytic closed convex surface in R® satisfying the
condition (k1 — ¢)(k2 —¢) < 0 at every point for some constant c, then it is a sphere.
Martinez-Maure gave a C? counter-ezample in [15] to this statement, see also [19]. The
counter-examples in [15, 19] indicate that Theorem 3 is not true if F* is merely assumed
to be degenerate elliptic. It is an interesting question that under what degeneracy condition
on F so that Theorem 3 is still true, even in smooth case. This question is related to
similar questions in this nature posted by Alexandrov [4] and Pogorelov [21].

We shall wrap up this paper by mention a stability type result related with uniqueness.
Indeed, by using the uniqueness property proved in Theorem 3, we can prove the following
stability theorem via compactness argument.

Proposition 9. Suppose FJ(z) € L°°(S?) satisfies (5), and u(x) € W22(S?) is a solution
of the following equation

(18) Fi(z)(Wy)i; = f(x), Yo € S

Assume that f(z) € L>®(S?) and there exists a point xo € S* such that p,(xo) = 0 (see (9)
for the definition of py ). Then,

(19) l[ullLoo(s2) < Csl| fllpoe(s2)

holds for some positive constant C3 only depends on the ellipticity constants A\, A.

Proof. As mentioned above, we will prove this proposition by a compactness argument.

Suppose the desired estimate (19) does not hold, then there exists a sequence of functions
{fn(2)}52) on 8 with ||| (s2) < Cy4 and a sequence of points {z,}52; C S? such that

n=1
pu, (xn) = 0 and K,, := H;HL%SE; — 400, where u,(z) is the solution of equation (18)
L>(S
with right hand side replaced by f,(x).
Let vy, (z) = Wﬁi(s%, then [[vp|[fo(s2) = 1 and vy, () satisfies
(20) F9@)(Wo ) = o o= 22

B Kn||fn||L°°(SQ)'

By the interior C%* estimates for linear elliptic equation in dimension two ([16, 8, 18]),
we have

onllcrase) < Cs (Ilvnllioe e + Ifalliee2)) < 2Cs

for some positive constant C5 = C5(A, A). In particular, this gives that |[Vu,|[pec(s2) <
Cs. Now, apply the a priori W22 estimate for linear elliptic equation in dimension two
([16, 8, 18, 12]), we see that [[v,||y22(s2) < C7 for some constant C7 = C7(X\, A, Cg). Tt
follows from this uniform estimate that, up to a subsequence, {v,(x)}22; converges to
some function v(z) € W22(S?) and v(z) satisfies

Fi(z)(Wy)ij =0, ae. x €S>



Then, the previous uniqueness result Theorem 3 tells that v(z) must be a linear function,
i.e., there exists a constant vector @ = (a1, as, a3) € R? such that v(z) = a1z +asz2+azxs.
On the other hand, recall that, by the assumption at the beginning, there exists z,, € S?
such that p,, (z,,) = 0. Then, up to a subsequence, x,, — Zoo, € S? and p, (7o) = 0. This
together with the linear property of v(x) imply that v(z) = 0. However, this contradicts

with the fact that [|v[|pec(g2) = 1 as [|vp|[pec(s2) = 1.
O

As a direct corollary, we have the following stability property for convex surfaces.

Theorem 10. Suppose My, Ms and f satisfy the same assumptions as in Theorem 3.
Define p(x) = f(s1(vi (2), ha(vyft () and pa(e) = (s (vagh (x), malvh (@) for Ve €
2. If || — ,LLZHLOO(SQ) < €, then, module a linear translation, M; is very close to Ms.
More precisely, suppose ui,us are the supporting functions of My and My after module
the linear translation, then there exists a constant C such that

(21) [ur — ugl|peo(s2) < Cllpa — p2llLoo(s2)-

Finally, it is worth to remark that there are many stability type results for convex
surfaces proved in the literature (see [24]). However, almost all the proofs need to use
the assumption that f(k1, k2, -, ky) satisfies divergence property. Here, we do not make
such kind assumption in this dimension two case. There is one drawback in the above
stability result: one could not get the sharp constant via the compactness argument. It
would be an interesting question to derive a sharp estimate for (21).
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