A PROOF OF THE ALEXANDEROV'S UNIQUENESS THEOREM FOR CONVEX SURFACES IN \mathbb{R}^3

PENGFEI GUAN, ZHIZHANG WANG, AND XIANGWEN ZHANG

ABSTRACT. We give a new proof of a classical uniqueness theorem of Alexandrov [4] using the weak uniqueness continuation theorem of Bers-Nirenberg [8]. We prove a version of this theorem with the minimal regularity assumption: the spherical hessians of the corresponding convex bodies as Radon measures are nonsingular.

We give a new proof of the following uniqueness theorem of Alexandrov, using the Weak Unique Continuation Theorem of Bers-Nirenberg [8].

Theorem 1 (Theorem 9 in [4]). Suppose M_1 and M_2 are two closed strictly convex C^2 surfaces in \mathbb{R}^3 , suppose $f(y_1, y_2) \in C^1$ is a function such that $\frac{\partial f}{\partial y_1} \frac{\partial f}{\partial y_2} > 0$. Denote $\kappa_1 \geq \kappa_2$ the principal curvatures of surfaces, and denote ν_{M_1} and ν_{M_2} the Gauss maps of M_1 and M_2 respectively. If

(1)
$$f(\kappa_1(\nu_{M_1}^{-1}(x),\kappa_2(\nu_{M_1}^{-1}(x))) = f(\kappa_1(\nu_{M_2}^{-1}(x),\kappa_2(\nu_{M_2}^{-1}(x))), \quad \forall x \in \mathbb{S}^2,$$

then M_1 is equal to M_2 up to a translation.

This classical result was first proved for analytical surfaces by Alexandrov in [3], for C^4 surfaces by Pogorelov in [20], and Hartman-Wintner [14] reduced regularity to C^3 , see also [21]. Pogorelov [22, 23] published certain uniqueness results for C^2 surfaces, these general results would imply Theorem 1 in C^2 case. It was pointed out in [19] that the proof of Pogorelov is erroneous, it contains an uncorrectable mistake (see page 301-302 in [19]). There is a counter-example of Martinez-Maure [15] (see also [19]) to the main claims in [22, 23]. The results by Han-Nadirashvili-Yuan [13] imply two proofs of Theorem 1, one for C^2 surfaces and another for $C^{2,\alpha}$ surfaces. The problem is often reduced to a uniqueness problem for linear elliptic equations in appropriate settings, either on \mathbb{S}^2 or in \mathbb{R}^3 , we refer [4, 21]. Here we will concentrate on the corresponding equation on \mathbb{S}^2 , as in [11]. The advantage in this setting is that it is globally defined.

If M is a strictly convex surface with support function u, then the principal curvatures at $\nu^{-1}(x)$ are the reciprocals of the principal radii λ_1, λ_2 of M, which are the eigenvalues of spherical Hessian $W_u(x) = (u_{ij}(x) + u(x)\delta_{ij})$ where u_{ij} are the covariant derivatives with respect to any given local orthonormal frame on \mathbb{S}^2 . Set

(2)
$$\tilde{F}(W_u) =: f(\frac{1}{\lambda_1(W_u)}, \frac{1}{\lambda_2(W_u)}) = f(\kappa_1, \kappa_2)$$

Date: September 8, 2014.

¹⁹⁹¹ Mathematics Subject Classification. 53A05, 53C24.

Research of the first author was supported in part by an NSERC Discovery Grant.

In view of Lemma 1 in [5], if f satisfies the conditions in Theorem 1, then $\tilde{F}^{ij} = \frac{\partial \tilde{F}}{\partial w_{ij}} \in L^{\infty}$ is uniformly elliptic. In the case n = 2, it can be read off from the explicit formulas

$$\lambda_1 = \frac{\sigma_1(W_u) - \sqrt{\sigma_1(W_u)^2 - 4\sigma_2(W_u)}}{2}, \quad \lambda_2 = \frac{\sigma_1(W_u) + \sqrt{\sigma_1(W_u)^2 - 4\sigma_2(W_u)}}{2}$$

As noted by Alexanderov in [5], \tilde{F}^{ij} in general is not continuous if $f(y_1, y_2)$ is not symmetric (even f is analytic).

We want to address when Theorem 1 remains true for convex bodies in \mathbb{R}^3 with weakened regularity assumption. In the Bruun-Minkowski theory, the uniqueness of Alexandrov-Fenchel-Jessen [1, 2, 10] states that, if two bounded convex bodies in \mathbb{R}^{n+1} have the same kth area measures on \mathbb{S}^n , then these two bodies are the same up to a rigidity motion in \mathbb{R}^{n+1} . Though for a general convex body, the principal curvatures of its boundary may not be defined. But one can always define the support function u, which is a function on \mathbb{S}^2 . By the convexity, then $W_u = (u_{ij} + u\delta_{ij})$ is a Radon measure on \mathbb{S}^2 . Also, by Alexandrov's theorem for the differentiability of convex functions, W_u is defined for almost every point $x \in \mathbb{S}^2$. Denote \mathcal{N} to be the space of all positive definite 2×2 matrices, and let G be a function defined on \mathcal{N} . For a support function u of a bounded convex body Ω_u , $G(W_u)$ is defined for *a.e.* $x \in \mathbb{S}^2$. For fixed support functions u^l of $\Omega_{u^l}, l = 1, 2$, there is $\Omega \subset \mathbb{S}^2$ with $|\mathbb{S}^2 \setminus \Omega| = 0$ such that W_{u^1}, W_{u^2} are pointwise finite in Ω . Set $P_{u^1,u^2} = \{W \in \mathcal{N} | \exists x \in \Omega, W = W_{u^1}(x), or W = W_{u^2}(x)\}$, let \mathcal{P}_{u^1,u^2} be the convex hull of P_{u^1,u^2} in \mathcal{N} .

We establish the following slightly more general version of Theorem 1.

Theorem 2. Suppose Ω_1 and Ω_2 are two bounded convex bodies in \mathbb{R}^3 . Let $u^l, l = 1, 2$ be the corresponding supporting functions respectively. Suppose the spherical Hessians $W_{u^l} = (u_{ij}^l + \delta_{ij}u^l)$ (in the weak sense) are two non-singular Radon measures. Let $G : \mathcal{N} \to \mathbb{R}$ be a $C^{0,1}$ function such that

$$\Lambda I \ge (G^{ij})(W) := \left(\frac{\partial G}{\partial W_{ij}}\right)(W) \ge \lambda I > 0, \quad \forall W \in \mathcal{P}_{\sqcap^{\infty},\sqcap^{\in}},$$

for some positive constants Λ, λ . If

(3)
$$G(W_{u^1}) = G(W_{u^2}),$$

at almost every parallel normal $x \in \mathbb{S}^2$, then Ω_1 is equal to Ω_2 up to a translation.

Suppose u^1, u^2 are the support functions of two convex bodies Ω_1, Ω_2 respectively, and suppose $W_{u,l} = 1, 2$ are defined and they satisfy equation (3) at some point $x \in \mathbb{S}^2$. Then, for $u = u^1 - u^2$, $W_u(x)$ satisfies equation

(4)
$$F^{ij}(x)(W_u(x)) = 0,$$

with $F^{ij}(x) = \int_0^1 \frac{\partial \tilde{F}}{\partial W_{ij}} (tW_{u^1}(x) + (1-t)W_{u^2}(x)) dt$. By the convexity, $W_{u^l}, l = 1, 2$ exist almost everywhere on \mathbb{S}^2 . If they satisfy equation (3) almost everywhere, equation (4) is verified almost everywhere. Note that u may not be a solution (even in a weak sense) of partial differential equation (4). The classical elliptic theory (e.g., [16, 18, 8]) requires $u \in W^{2,2}$ in order to make sense of u as a weak solution of (4). A main step in the proof of Theorem 2 is to show that with the assumptions in the theorem, $u = u^1 - u^2$ is indeed in $W^{2,2}(\mathbb{S}^2)$. The proof will appear in the last part of the paper.

Let's now focus on $W^{2,2}$ solutions of differential equation (4), with general uniformly elliptic condition on tensor F^{ij} on \mathbb{S}^2 :

(5)
$$\lambda |\xi|^2 \le F^{ij}(x)\xi_i\xi_j \le \Lambda |\xi|^2, \ \forall x \in \mathbb{S}^2, \xi \in \mathbb{R}^2,$$

for some positive numbers λ, Λ . The aforementioned proofs of Theorem 1 ([20, 14, 21, 13]) all reduce to the statement that any solution of (5) is a linear function, under various regularity assumptions on F^{ij} and u. Equation (4) is also related to minimal cone equation in \mathbb{R}^3 ([13]). The following result was proved in [13].

Theorem 3 (Theorem 1.1 in [13]). Suppose $F^{ij}(x) \in L^{\infty}(\mathbb{S}^2)$ satisfies (5), suppose $u \in W^{2,2}(\mathbb{S}^2)$ is a solution of (4). Then, $u(x) = a_1x_1 + a_2x_2 + a_3x_3$ for some $a_i \in \mathbb{R}$.

There the original statement in [13] is for 1-homogeneous $W^{2,2}_{loc}(\mathbb{R}^3)$ solution v of equation

(6)
$$\sum_{i,j=1}^{3} a^{ij}(X)v_{ij}(X) = 0.$$

These two statements are equivalent. To see this, set $u(x) = \frac{v(X)}{|X|}$ with $x = \frac{X}{|X|}$. By the homogeneity assumption, the radial direction corresponds to null eigenvalue of $\nabla^2 v$, the other two eigenvalues coincide the eigenvalues of the spherical Hessian of $W = (u_{ij} + u\delta_{ij})$. $v(X) \in W_{loc}^{2,2}(\mathbb{R}^3)$ is a solution to (6) if and only if $u \in W^{2,2}(\mathbb{S}^2)$ is a solution to (4) with $F^{ij}(x) = \langle e_i, Ae_j \rangle$, where $A = (a^{ij}(\frac{X}{|X|}))$ and (e_1, e_2) is any orthonormal frame on \mathbb{S}^2 .

The proof in [13] uses gradient maps and support planes introduced by Alexandrov, as in [3, 20, 21]. We give a different proof of Theorem 3 using the maximum principle for smooth solutions and the unique continuation theorem of Bers-Nirenberg [8], working purely on solutions of equation (4) on \mathbb{S}^2 .

Note that F in Theorem 2 (and Theorem 1) is not assumed to be symmetric. The weak assumption $F^{ij} \in L^{\infty}$ is needed to deal with this case. This assumption also fits well with the weak unique continuation theorem of Bers-Nirenberg. This beautiful result of Bers-Nirenberg will be used in a crucial way in our proof. If $u \in W^{2,2}(\mathbb{S}^2)$, $u \in C^{\alpha}(\mathbb{S}^2)$ for some $0 < \alpha < 1$ by the Sobolev embedding theorem. Equation (4) and $C^{1,\alpha}$ estimates for 2-d linear elliptic PDE (e.g., [16, 18, 8]) imply that u is in $C^{1,\alpha}(\mathbb{S}^2)$ for some $\alpha > 0$ depending only on $||u||_{C^0}$ and the ellipticity constants of F^{ij} . This fact will be assumed in the rest of the paper.

The following lemma is elementary.

Lemma 4. Suppose $F^{ij} \in L^{\infty}(\mathbb{S}^2)$ satisfies (5), suppose at some point $x \in \mathbb{S}^2$, $W_u(x) = (u_{ij}(x) + u(x)\delta_{ij})$ satisfies (4). Then,

$$|W_u|^2(x) \le -\frac{2\Lambda}{\lambda} \det W_u(x).$$

Proof. At x, by equation (4),

(7) det
$$W_u = -\frac{1}{F^{22}} \Big(F^{11} W_{11}^2 + 2F^{12} W_{11} W_{12} + F^{22} W_{12}^2 \Big) \le -\frac{\lambda}{\Lambda} \big(W_{11}^2 + W_{12}^2 \big),$$

and similarly, det $W_u \leq -\frac{\lambda}{\Lambda} (W_{22}^2 + W_{21}^2)$. Thus,

(8)
$$\left(W_{11}^2 + W_{12}^2 + W_{21}^2 + W_{22}^2\right) \le -\frac{2\Lambda}{\lambda} \det W_u.$$

For each $u \in C^1(\mathbb{S}^2)$, set $X_u = \sum_i u_i e_i + u e_{n+1}$. For any unit vector E in \mathbb{R}^3 , define (9) $\phi_E(x) = \langle E, X_u(x) \rangle$, and $\rho_u(x) = |X_u(x)|^2$,

where \langle , \rangle is the standard inner product in \mathbb{R}^3 . The function ρ was introduced by Weyl in his study of Weyl's problem [25]. It played important role in Nirenberg's solution of the Weyl's problem in [17]. Our basic observation is that there is a maximum principle for ρ_u and ϕ_E .

Lemma 5. Suppose $U \subset \mathbb{S}^2$ is an open set, $F^{ij} \in C^1(U)$ is a tensor in U and $u \in C^3(U)$ satisfies equation (4), then there are two constants C_1, C_2 depending only on the C^1 -norm of F^{ij} such that

(10)
$$F^{ij}(\rho_u)_{ij} \ge -C_1 |\nabla \rho_u|, \quad F^{ij}(\phi_E)_{ij} \ge -C_2 |\nabla \phi_E| \quad in \ U.$$

Proof. Pick any orthonormal frame e_1, e_2 , we have

(11)
$$(X_u)_i = W_{ij}e_j, \quad (X_u)_{ij} = W_{ijk}e_k - W_{ij}\vec{x}.$$

By Codazzi property of W and (4),

$$\frac{1}{2}F^{ij}(\rho_u)_{ij} = \langle X_u, F^{ij}W_{ijk}e_k \rangle + F^{ij}W_{ik}W_{kj} = -u_k F^{ij}_{,k}W_{ij} + F^{ij}W_{ik}W_{kj}.$$

On the other hand, $\nabla \rho_u = 2W \cdot (\nabla u)$. At the non-degenerate points (i.e., det $W \neq 0$), $\nabla u = \frac{1}{2}W^{-1} \cdot \nabla \rho_u$, where W^{-1} denotes the inverse matrix of W. Now,

(12)
$$2u_k F^{ij}_{,k} W_{ij} = W^{kl}(\rho_u)_l F^{ij}_{,k} W_{ij} = (\rho_u)_l F^{ij}_{,k} \frac{A^{kl} W_{ij}}{\det W}.$$

where A^{kl} denote the co-factor of W_{kl} .

The first inequality in (10) follows (8) and (12).

The proof for ϕ_E follows the same argument and the following facts:

$$F^{ij}(\phi_E)_{ij} = -\langle E, e_k \rangle F^{ij}_{,k} W_{ij}, \quad \nabla \phi_E = W \cdot \langle E, e_k \rangle.$$

Lemma 5 yields immediately Theorem 1 in C^3 case, which corresponds to the Hartman-Wintner theorem ([14]).

Corollary 6. Suppose $f \in C^2$ and symmetric, M_1, M_2 are two closed convex C^3 surfaces satisfy conditions in Theorem 1, then the surfaces are the same up to a translation.

Proof. Since $f \in C^2$ is symmetric, F^{ij} in (4) is in $C^1(\mathbb{S}^2)$ and $u \in C^3(\mathbb{S}^2)$. By Lemma 5 and the strong maximum principle, X_u is a constant vector.

To precede further, set

$$\mathcal{M} = \{ p \in \mathbb{S}^2 : \rho_u(p) = \max_{q \in \mathbb{S}^2} \rho_u(q) \},\$$

for each unit vector $E \in \mathbb{R}^3$,

$$\mathcal{M}_E = \{ p \in \mathbb{S}^2 : \phi_E(p) = \max_{q \in \mathbb{S}^2} \phi_E(q) \}.$$

Lemma 7. \mathcal{M} and \mathcal{M}_E have no isolated points.

Proof. We prove the lemma for \mathcal{M} , the proof for \mathcal{M}_E is the same. If point $p_0 \in \mathcal{M}$ is an isolated point, we may assume $p_0 = (0, 0, 1)$. Pick \overline{U} a small open geodesic ball centered at p_0 such that \overline{U} is properly contained in \mathbb{S}^2_+ , and pick a sequence of smooth 2-tensor $(F^{ij}_{\epsilon}) > 0$ which is convergent to (F^{ij}) in L^{∞} -norm in \overline{U} . Consider

(13)
$$\begin{cases} F_{\epsilon}^{ij}(u_{ij}^{\epsilon} + u^{\epsilon}\delta_{ij}) &= 0 \text{ in } \bar{U} \\ u^{\epsilon} &= u \text{ on } \partial \bar{U}. \end{cases}$$

Since $x_3 > 0$ in \mathbb{S}^2_+ , one may write $u^{\epsilon} = x_3 v^{\epsilon}$ in \overline{U} . As $(x_3)_{ij} = -x_3 \delta_{ij}$, it easy to check v^{ϵ} satisfies

$$F^{ij}_{\epsilon}v^{\epsilon}_{ij} + b_k v^{\epsilon}_k = 0, \quad \text{in } \bar{U}.$$

Therefore, (13) is uniquely solvable.

Since $p_0 \in \mathcal{M}$ is an isolated point, there are open geodesic balls $\overline{U}' \subset \overline{U}$ centered at p_0 and a small $\delta > 0$ such that

(14)
$$\rho_u(p_0) - \rho_u(p) \ge \delta \text{ for } \forall p \in \partial \bar{U}'.$$

By the $C^{1,\alpha}$ estimates for linear elliptic equation in dimension two and the uniqueness of the Dirichlet problem ([16, 8, 18]), $\exists \epsilon_k$ such that

$$||u - u^{\epsilon_k}||_{C^{1,\alpha}(\bar{U}')} \to 0, \quad ||\rho_u - \rho_{u^{\epsilon_k}}||_{C^{\alpha}(\bar{U}')} \to 0.$$

Together with (14), if ϵ_k small enough, there is a local maximal point of $\rho_{u^{\epsilon_k}}$ in $\bar{U}' \subset \bar{U}$. Since $u^{\epsilon_k}, F_{\epsilon}^{ij} \in C^{\infty}(\bar{U}')$ satisfy (13), it follows from Lemma 5 and the strong maximum principle that $\rho_{u^{\epsilon_k}}$ must be constant in $\bar{U}', \forall \epsilon_k$ in small enough. This implies ρ is constant in \bar{U}' . Contradiction.

We now prove Theorem 3.

Proof of Theorem 3. For any $p_0 \in \mathcal{M}$, if $\rho_u(p_0) = 0$, then $u \equiv 0$. We may assume $\rho_u(p_0) > 0$. Set $E := \frac{X_u(p_0)}{|X_u(p_0)|}$. Choose another two unit constant vectors β_1, β_2 with $\langle \beta_i, \beta_j \rangle = \delta_{ij}, \beta_i \perp E$ for i, j = 1, 2. Under this orthogonal coordinates in \mathbb{R}^3 ,

(15)
$$X_u(p) = a(p)E + b_1(p)\beta_1 + b_2(p)\beta_2, \ \forall p \in \mathcal{M}_E.$$

On the other hand, $\phi_E(p) = \rho_u^{1/2}(p_0), \forall p \in \mathcal{M}_E$. Thus,

(16)
$$a(p) = \rho_u^{1/2}(p_0), \ b_1(p) = b_2(p) = 0, \ \forall p \in \mathcal{M}_E.$$

Consider the function $\tilde{u}(x) = u(x) - \rho_u^{1/2}(p_0)E \cdot x$. (15) and (16) yield, $\forall p \in \mathcal{M}_E$,

(17) $\nabla_{e_i} \tilde{u}(p) = \nabla_{e_i} u(p) - \rho_u^{1/2}(p_0) \langle E, e_i \rangle = \langle X_u(p), e_i \rangle - \rho_u^{1/2}(p_0) \langle E, e_i \rangle = 0.$

Moreover, $\tilde{u}(x)$ also satisfies equation (4). As pointed out in [8], if \tilde{u} satisfies an elliptic equation, $\nabla \tilde{u}$ satisfies an elliptic system of equations. Lemma 7, (17) and the Unique Continuation Theorem of Bers-Nirenberg (P. 13 in [7]) imply $\nabla \tilde{u} \equiv 0$. Thus, $\tilde{u}(x) \equiv \tilde{u}(p_0) = 0$ and u(x) is a linear function on \mathbb{S}^2 .

Theorem 1 is a direct consequence of Theorem 3. We now prove Theorem 2.

Proof of Theorem 2. The main step is to show $u = u^1 - u^2 \in W^{2,2}(\mathbb{S}^2)$, using the assumption that $W_{u^l}, l = 1, 2$ are non-singular Radon measures. It follows from the convexity, the spherical hessians $W_{u^l}, l = 1, 2$ and W_u are defined almost everywhere on \mathbb{S}^2 (Alexandrov's Theorem). So, we can define $G(W_{u^l}), l = 1, 2$ almost everywhere in \mathbb{S}^2 . As $W_u^l, l = 1, 2$ are nonsingular Radon measures, $W_{u^l} \in L^1(\mathbb{S}^2)$ (see [9]), we also have $W_u \in L^1(\mathbb{S}^2)$. Since u^1, u^2 satisfy $G(W_{u^1}) = G(W_{u^2})$ for almost every parallel normal $x \in \mathbb{S}^2$, there is $\Omega \subset \mathbb{S}^2$ with $|\mathbb{S}^2 \setminus \Omega| = 0$, such that W_u satisfies following equation pointwise in Ω ,

$$G^{ij}(x)(u_{ij}(x) + u(x)\delta_{ij}) = 0, \ x \in \Omega,$$

where $G^{ij} = \int_0^1 \frac{\partial G}{\partial w_{ij}} (tW_u^1 + (1-t)W_u^2) dt$. By Lemma 4, we can obtain that

$$|W_u|^2 = W_{11}^2 + W_{12}^2 + W_{21}^2 + W_{22}^2 \le -\frac{2\Lambda}{\lambda} \det W_u, \quad x \in \Omega.$$

On the other hand,

$$\det W_u \le \det W_{\tilde{u}},$$

where $\tilde{u} = u^1 + u^2$. Thus, to prove $u \in W^{2,2}(\mathbb{S}^2)$, it suffices to get an upper bound for $\int_{\mathbb{S}^2} \det W_{\tilde{u}}$.

Recall that $W_{u^l} \in L^1(\mathbb{S}^2)$, so $u^l \in W^{2,1}(\mathbb{S}^2)$, l = 1, 2 and the same for \tilde{u} . This allows us to choose two sequences of smooth convex bodies Ω^l_{ϵ} with supporting functions u^l_{ϵ} such that $||\tilde{u}_{\epsilon} - \tilde{u}||_{W^{2,1}(\mathbb{S}^2)} \to 0$ as $\epsilon \to 0$. By Fatou's Lemma and continuity of the area measures,

$$\int_{\mathbb{S}^2} \det W_{\tilde{u}} = \int_{\Omega} \det W_{\tilde{u}} \le \liminf_{\epsilon \to 0} \int_{\mathbb{S}^2} \det W_{\tilde{u}_{\epsilon}} \le V(\Omega^1) + V(\Omega^2) + 2V(\Omega^1, \Omega^2),$$

where $V(\Omega^1), V(\Omega^2)$ denote the volume of the convex bodies Ω^1 and Ω^2 respectively and $V(\Omega^1, \Omega^2)$ is the mixed volume.

It follows that $W_u \in L^2(\mathbb{S}^2)$ and thus, $u \in W^{2,2}(\mathbb{S}^2)$. This implies that u is a $W^{2,2}$ weak solution of the differential equation

$$G^{ij}(x)(u_{ij}(x)+u(x)\delta_{ij})=0, \quad \forall x\in \mathbb{S}^2.$$

Finally, the theorem follows directly from Theorem 3.

Remark 8. Alexanderov proved in [3] that, if u is a homogeneous degree 1 analytic function in \mathbb{R}^3 with $\nabla^2 u$ definite nowhere, then u is a linear function. As a consequence, Alexandrov proved in [6] that if a analytic closed convex surface in \mathbb{R}^3 satisfying the condition $(\kappa_1 - c)(\kappa_2 - c) \leq 0$ at every point for some constant c, then it is a sphere. Martinez-Maure gave a C^2 counter-example in [15] to this statement, see also [19]. The counter-examples in [15, 19] indicate that Theorem 3 is not true if F^{ij} is merely assumed to be degenerate elliptic. It is an interesting question that under what degeneracy condition on F^{ij} so that Theorem 3 is still true, even in smooth case. This question is related to similar questions in this nature posted by Alexandrov [4] and Pogorelov [21].

We shall wrap up this paper by mention a stability type result related with uniqueness. Indeed, by using the uniqueness property proved in Theorem 3, we can prove the following stability theorem via compactness argument.

Proposition 9. Suppose $F^{ij}(x) \in L^{\infty}(\mathbb{S}^2)$ satisfies (5), and $u(x) \in W^{2,2}(\mathbb{S}^2)$ is a solution of the following equation

(18)
$$F^{ij}(x)(W_u)_{ij} = f(x), \ \forall x \in \mathbb{S}^2.$$

Assume that $f(x) \in L^{\infty}(\mathbb{S}^2)$ and there exists a point $x_0 \in \mathbb{S}^2$ such that $\rho_u(x_0) = 0$ (see (9) for the definition of ρ_u). Then,

(19)
$$||u||_{L^{\infty}(\mathbb{S}^2)} \le C_3 ||f||_{L^{\infty}(\mathbb{S}^2)}$$

holds for some positive constant C_3 only depends on the ellipticity constants λ, Λ .

Proof. As mentioned above, we will prove this proposition by a compactness argument. Suppose the desired estimate (19) does not hold, then there exists a sequence of functions $\{f_n(x)\}_{n=1}^{\infty}$ on \mathbb{S}^2 with $||f||_{L^{\infty}(\mathbb{S}^2)} \leq C_4$ and a sequence of points $\{x_n\}_{n=1}^{\infty} \subset \mathbb{S}^2$ such that $\rho_{u_n}(x_n) = 0$ and $K_n := \frac{||u||_{L^{\infty}(\mathbb{S}^2)}}{||f||_{L^{\infty}(\mathbb{S}^2)}} \longrightarrow +\infty$, where $u_n(x)$ is the solution of equation (18) with right hand side replaced by $f_n(x)$.

Let $v_n(x) = \frac{u_n(x)}{K_n ||f||_{L^{\infty}(\mathbb{S}^2)}}$, then $||v_n||_{L^{\infty}(\mathbb{S}^2)} = 1$ and $v_n(x)$ satisfies

(20)
$$F^{ij}(x)(W_{v_n})_{ij} = \tilde{f}_n := \frac{f_n(x)}{K_n ||f_n||_{L^{\infty}(\mathbb{S}^2)}}$$

By the interior $C^{1,\alpha}$ estimates for linear elliptic equation in dimension two ([16, 8, 18]), we have

$$||v_n||_{C^{1,\alpha}(\mathbb{S}^2)} \le C_5\left(||v_n||_{L^{\infty}(\mathbb{S}^2)} + ||\tilde{f}_n||_{L^{\infty}(\mathbb{S}^2)}\right) \le 2C_5$$

for some positive constant $C_5 = C_5(\lambda, \Lambda)$. In particular, this gives that $||\nabla v_n||_{L^{\infty}(\mathbb{S}^2)} \leq C_6$. Now, apply the *a priori* $W^{2,2}$ estimate for linear elliptic equation in dimension two ([16, 8, 18, 12]), we see that $||v_n||_{W^{2,2}(\mathbb{S}^2)} \leq C_7$ for some constant $C_7 = C_7(\lambda, \Lambda, C_6)$. It follows from this uniform estimate that, up to a subsequence, $\{v_n(x)\}_{n=1}^{\infty}$ converges to some function $v(x) \in W^{2,2}(\mathbb{S}^2)$ and v(x) satisfies

$$F^{ij}(x)(W_v)_{ij} = 0, \ a.e. \ x \in \mathbb{S}^2$$

Then, the previous uniqueness result Theorem 3 tells that v(x) must be a linear function, i.e., there exists a constant vector $\vec{a} = (a_1, a_2, a_3) \in \mathbb{R}^3$ such that $v(x) = a_1x_1 + a_2x_2 + a_3x_3$.

On the other hand, recall that, by the assumption at the beginning, there exists $x_n \in \mathbb{S}^2$ such that $\rho_{v_n}(x_n) = 0$. Then, up to a subsequence, $x_n \to x_\infty \in \mathbb{S}^2$ and $\rho_v(x_\infty) = 0$. This together with the linear property of v(x) imply that $v(x) \equiv 0$. However, this contradicts with the fact that $||v||_{L^{\infty}(\mathbb{S}^2)} = 1$ as $||v_n||_{L^{\infty}(\mathbb{S}^2)} = 1$.

As a direct corollary, we have the following stability property for convex surfaces.

Theorem 10. Suppose M_1, M_2 and f satisfy the same assumptions as in Theorem 3. Define $\mu_1(x) := f(\kappa_1(\nu_{M_1}^{-1}(x), \kappa_2(\nu_{M_1}^{-1}(x))) \text{ and } \mu_2(x) := f(\kappa_1(\nu_{M_2}^{-1}(x), \kappa_2(\nu_{M_2}^{-1}(x))) \text{ for } \forall x \in \mathbb{S}^2$. If $||\mu_1 - \mu_2||_{L^{\infty}(\mathbb{S}^2)} < \epsilon$, then, module a linear translation, M_1 is very close to M_2 . More precisely, suppose u_1, u_2 are the supporting functions of M_1 and M_2 after module the linear translation, then there exists a constant C such that

(21)
$$||u_1 - u_2||_{L^{\infty}(\mathbb{S}^2)} \le C||\mu_1 - \mu_2||_{L^{\infty}(\mathbb{S}^2)}.$$

Finally, it is worth to remark that there are many stability type results for convex surfaces proved in the literature (see [24]). However, almost all the proofs need to use the assumption that $f(\kappa_1, \kappa_2, \dots, \kappa_n)$ satisfies divergence property. Here, we do not make such kind assumption in this dimension two case. There is one drawback in the above stability result: one could not get the sharp constant via the compactness argument. It would be an interesting question to derive a sharp estimate for (21).

Acknowledgement: The first author would like to thank Professor Louis Nirenberg for stimulation conversations. Our initial proof was the global maximum principle for C^3 surfaces Lemma 5 and Corollary 6 (we only realized the connection of the result of [13] to Theorem 1 afterward). It was Professor Louis Nirenberg who brought our attention to the paper of [15] and suggested using the unique continuation theorem of [8]. That leads to Theorem 2. We want to thank him for his encouragement and generosity.

References

- A.D. Alexandrov, Zur Theorie der gemischten Volumina von konvexen korpern, II. Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen (in Russian) Mat. Sbornik N.S. 2 (1937), 1205-1238.
- [2] A.D. Alexandrov, Zur Theorie der gemischten Volumina von konvexen korpern, III. Die Erweiterung zweeier Lehrsatze Minkowskis uber die konvexen polyeder auf beliebige konvexe Flachen (in Russian) Mat. Sbornik N.S. 3, (1938), 27-46.
- [3] A.D. Alexandrov, Sur les théorèmes d'unicité pour les surfaces fermeès. C. R. (Dokl.) Acad. Sci. URSS, N.S. 22 (1939), 99-102; translation in Selected works. Part I. Selected scientific papers, 149-153. Classics of Soviet Mathematics, 4. Gordon and Breach, Amsterdam, 1996.
- [4] A.D. Alexandrov, Uniqueness theorems for surfaces in the large I. (Russian) Vestnik Leningrad. Univ. 11 (1956), no. 19, 5-17.
- [5] A.D. Alexandrov, Uniqueness theorems for surfaces in the large. II. (Russian) Vestnik Leningrad. Univ. 12 (1957) no. 7, 15-44.
- [6] A.D. Alexandrov, On the curvature of surfaces (Russian), Vestnik Leningrad. Univ. 21 (19) (1966) 5-11.

- [7] L. Bers and L. Nirenberg, On a representation theorem for linear elliptic system with discontinuous coefficients and its application. Edizioni cremonese dells S.A. editrice perrella, Roma, 1954, 111-140.
- [8] L. Bers and L. Nirenberg, On linear and non-linear elliptic boundary value problems in the plane. Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954, 141-167.
- [9] L.C. Evans and R.F. Gariepy, *Measure theory and fine properties of functions*, CRC Press INC, 1992. [10] W. Fenchel and B. Jessen, *Mengenfunktionen und konvexe korper*, Det. Kgl. Danske Videnskab. Sel-
- skab, Math.-fys. Medd. 16(3), (1938), 1-31.
- [11] B. Guan and P. Guan, Convex Hypersurfaces of Prescribed Curvatures. Annual of Mathematics, Vol 256, No. 2 (2002), pp 655-673.
- [12] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1998.
- [13] Q. Han, N. Nadirashvili and Y. Yuan, Linearity of homogeneous order-one solutions to elliptic equations in dimension three. Comm. Pure and App. Math. Vol. 56, (2003), 425-432.
- [14] P. Hartman and A. Wintner, On the third fundamental form of a surface. Amer. J. Math. 75, (1953). 298-334.
- [15] Y. Martinez-Maure, Contre-example à une caracteérisation conjecturée de ;as sphére.,C.R. Acad. Sci. Paris Sér. I Math., 332 (2001), 41-44.
- [16] C. Morrey, On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43 (1938), no. 1, 126166.
- [17] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large. Comm. Pure Appl. Math. 6, (1953). 337-394.
- [18] L. Nirenberg, On nonlinear elliptic partial differential equations and Hölder continuity. Comm. Pure Appl. Math. 6, (1953). 103-156.
- [19] G. Panina, New counterexamples to A. D. Alexanderovs hypothesis. Adv. Geom. 5 (2005), 301-317.
- [20] A. V. Pogorelov, Extension of a general uniqueness theorem of A. D. Aleksandrov to the case of nonanalytic surfaces. (Russian) Doklady Akad. Nauk SSSR (N.S.) 62, (1948), 297-299.
- [21] A. V. Pogorelov, Extrinsic geometry of convex surfaces. Translated from the Russian by Israel Program for Scientific Translations. Translations of Mathematical Monographs, Vol. 35. American Mathematical Society, Providence, R.I., 1973.
- [22] A. V. Pogorelov, Solution of a problem of A. D. Aleksandrov. (Russian) Dokl. Akad. Nauk 360 (1998), 317-319.
- [23] A. V. Pogorelov, Uniqueness theorems for closed convex surfaces. (Russian) Dokl. Akad. Nauk 366 (1999), 602-604.
- [24] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl.44, Cambridge Univ. Press, Cambridge,1993.
- [25] H. Weyl, Ueber die Bestimmung einer geschlossenen konvexen Flche durch ihr Linienelement. Vierteljahrschrift Naturforsch. Gesell. Zurich , 3 : 2 (1916), 40-72

DEPARTMENT OF MATHEMATICS AND STATISTICS, MCGILL UNIVERSITY, MONTREAL, CANADA *E-mail address:* guan@math.mcgill.ca

DEPARTMENT OF MATHEMATICS, FUDAN UNIVERSITY, SHANGHAI, CHINA *E-mail address:* zwang@math.mcgill.ca

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, US *E-mail address:* xzhang@math.columbia.edu