Inequities in the Shanks-Rényi prime number race

Greg Martin (gerg@math.ubc.ca)
University of British Columbia
Department of Mathematics
Room 121, 1984 Mathematics Road
Vancouver, BC V6T 1Z2
Canada

Abstract

It has been well-observed that an inequality of the type $\pi(x ; q, a)>$ $\pi(x ; q, b)$ is more likely to hold if a is a non-square modulo q and b is a square modulo q (the so-called "Chebyshev Bias" in comparative prime number theory). However, it has come to light that the tendencies of the various $\pi(x ; q, a)$ (for nonsquares a) to dominate $\pi(x ; q, b)$ have different strengths. A related phenomenon is that the six possible inequalities of the form $\pi(x ; q, a 1)>\pi(x ; q, a 2)>\pi(x ; q, a 3)$, with $a 1, a 2, a 3$ all non-squares modulo q, are not all equally likely; some orderings are preferred over others. For given values q, a, b, \ldots, these tendencies can be quantified and computed, but only using laborious numerical integration of functions involving zeros of the appropriate Dirichlet L-functions. In this talk we present a framework for explaining which nonsquares a are most dominant for a given square b, for example, based only on elementary properties of the congruence classes a modulo q rather than the complicated computations just mentioned.

