Dirichlet series of squares of sums of squares

Jonathan Michael Borwein, FRSC (jborwein@cecm.sfu.ca)
Simon Fraser University
Canada Research Chair \&3 Director
Centre for Experimental and Constructive Mathematics
Burnaby, BC V5A 1S6
Canada

Abstract. Hardy and Wright recorded elegant closed forms for the generating functions of the divisor functions $\sigma_{k}(n)$ and $\sigma_{k}^{2}(n)$:

$$
\sum_{n=1}^{\infty} \frac{\sigma_{k}(n)}{n^{s}}=\zeta(s) \zeta(s-k)
$$

and

$$
\sum_{n=1}^{\infty} \frac{\sigma_{k}^{2}(n)}{n^{s}}=\frac{\zeta(s) \zeta(s-k)^{2} \zeta(s-2 k)}{\zeta(2 s-2 k)}
$$

In this work, we explore other arithmetical functions enjoying this remarkable property.

1. In our basic Theorem, we are able to generalize the above result and prove that if f_{i} and g_{i} are completely multiplicative, then we have

$$
\sum_{n=1}^{\infty} \frac{\left(f_{1} * g_{1}\right)(n) \cdot\left(f_{2} * g_{2}\right)(n)}{n^{s}}=\frac{L_{f_{1} f_{2}}(s) L_{g_{1} g_{2}}(s) L_{f_{1} g_{2}}(s) L_{g_{1} f_{2}}(s)}{L_{f_{1} f_{2} g_{1} g_{2}}(2 s)}
$$

where $L_{f}(s):=\sum_{n=1}^{\infty} f(n) n^{-s}$ is the Dirichlet series corresponding to f.
2. Let $r_{N}(n)$ be the number of solutions of $x_{1}^{2}+\cdots+x_{N}^{2}=n$ and let $r_{2, P}(n)$ be the number of solutions of $x^{2}+P y^{2}=n$. A central application of our Theorem is to obtain concise closed forms, in terms of $\zeta(s)$ and Dirichlet L functions, for the generating functions of $r_{N}(n), r_{N}^{2}(n), r_{2, P}(n)$ and $r_{2, P}(n)^{2}$ for certain P and (even) $N=2,4,6,8$. We also use these generating functions to obtain asymptotics for the average values of each function for which we obtain a Dirichlet series, and more generally.
We finish by discussing the more vexing cases $N=3,12,24$.
This is joint work with Stephen Choi (SFU). These transparencies are at www.cecm.sfu.ca/personal/jborwein/talks.html

The corresponding CECM preprint 01:167, to appear in the Ramanujan Journal, is at www.cecm.sfu.ca/preprints/2001pp.html

