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Abstract. Hardy and Wright recorded elegant closed forms for the generating
functions of the divisor functions σk(n) and σ2

k(n):

∞∑
n=1

σk(n)

ns
= ζ(s)ζ(s − k)

and
∞∑

n=1

σ2
k(n)

ns
=

ζ(s)ζ(s − k)2ζ(s − 2k)

ζ(2s − 2k)
.

In this work, we explore other arithmetical functions enjoying this remarkable prop-
erty.

1. In our basic Theorem, we are able to generalize the above result and prove that
if fi and gi are completely multiplicative, then we have

∞∑
n=1

(f1 ∗ g1)(n) · (f2 ∗ g2)(n)

ns
=

Lf1f2(s)Lg1g2(s)Lf1g2(s)Lg1f2(s)

Lf1f2g1g2(2s)

where Lf (s) :=
∑∞

n=1
f(n)n−s is the Dirichlet series corresponding to f .

2. Let rN (n) be the number of solutions of x2
1 + · · · + x2

N = n and let r2,P (n)
be the number of solutions of x2 + Py2 = n. A central application of our
Theorem is to obtain concise closed forms, in terms of ζ(s) and Dirichlet L-
functions, for the generating functions of rN (n), r2

N (n), r2,P (n) and r2,P (n)2 for
certain P and (even) N = 2, 4, 6, 8. We also use these generating functions to
obtain asymptotics for the average values of each function for which we obtain
a Dirichlet series, and more generally.

We finish by discussing the more vexing cases N = 3, 12, 24.
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