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Abstract. By modifying the integrals in Beukers’ version of Apery’s proof that
Zeta(2) and Zeta(3) are irrational, we find necessary and sufficient conditions for
irrationality of Euler’s constant.

For integers n > 0, we define a double integral I(n) and a linear combination
L(n) of log(n + 1), . . . , log(2n) over the positive rationals, and prove:

THEOREM . If d(n) = LCM(1, . . . , n), then the following are equivalent:

1. For some n > 0, the fractional part of the product d(2n) L(n) satisfies

{d(2n)L(n)} = d(2n)I(n).

2. This equation holds for all sufficiently large n.

3. Euler’s constant is a rational number.

Corollaries give sufficient conditions for irrationality, involving the logarithm
L(n) but not the integral I(n). For example:

COROLLARY . If the inequality

{d(2n)L(n)} > 1/2n

holds for infinitely many n, then Euler’s constant is irrational.




