Systems of additive equations over p-adic field

Michael Knapp (mknapp@math.rochester.edu)
University of Rochester
Department of Mathematics
Rochester, NY 14627
USA

Abstract. Consider the system of additive equations

$$
\begin{aligned}
a_{1} x_{1}^{k}+\cdots+a_{s} x_{s}^{k} & =0 \\
b_{1} x_{1}^{n}+\cdots+b_{s} x_{s}^{n} & =0,
\end{aligned}
$$

where k and n are distinct positive integers and all the coefficients are integers. We present bounds on s, in terms of k and n, which guarantee that this system has a nontrivial p-adic integral solution for each prime p, regardless of the values of the coefficients.

