An extension of a theorem of D. H. Lehmer

Lenny Jones (lkjone@ship.edu)
Shippensburg University
Department of Mathematics
1871 Old main Drive
Shippensburg, PA 17257
USA

Abstract. Given a set of primes $2=q_{1}<q_{2}<\cdots<q_{t}$, let Q be the set of all numbers of the form $q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \cdots q_{t}^{\alpha_{t}}$, where $\alpha_{i} \geq 0$. Lehmer has given necessary and sufficient conditions to determine when both of the integers S and $S+k$, with $k=1,2$ or 4 , belong to Q. In addition, he has provided upper bounds for the number of pairs of such integers contained in Q, and for the largest value of S. We extend these results to the case when k is an odd prime.

