Points of small height outside of a collection of subspaces

Lenny Fukshansky (lenny@math.utexas.edu)
University of Texas at Austin
Department of Mathematics / C1200
Austin, TX 78712
USA

Abstract. We consider an "anti Sigel's Lemma." Suppose $L_{1}(\boldsymbol{X}), \ldots, L_{M}(\boldsymbol{X})$ are M linear forms in N variables with integer coefficients. Does there exist a vector \boldsymbol{x} in \mathbb{Z}^{N} with $|\boldsymbol{x}|=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{N}\right|\right\}$ relatively small such that

$$
L_{i}(\boldsymbol{x}) \neq 0
$$

for every $i=1, \ldots, M$? We prove that there does exist such a vector with

$$
|\boldsymbol{x}| \leq \frac{M+1}{2}
$$

that is the upper bound is linear in the number of linear forms. This readily generalizes to the number field case, that is if K is a number field of degree d over \mathbb{Q}, and the linear forms have coefficients in K, then there exists a vector $\boldsymbol{x} \in K^{N}$ at which none of the linear forms vanish, and

$$
H(\boldsymbol{x})<_{K, N} M^{1 / d}
$$

where H stands for the height function on K^{N}.
This question is also closely related to a classical question in the geometry of numbers. Suppose Λ is a sublattice of \mathbb{Z}^{N} of maximal rank and determinant D, and suppose that C_{R}^{N} is a closed cube in \mathbb{R}^{N} centered at the origin with sidelength $2 R$. What would be an upper bound on the number of points of Λ in C_{R}^{N} ? We provide an upper bound of the form

$$
\min \left\{\frac{2^{N}}{D}\left([R]+\alpha_{N} D^{1 / N}\right)^{N},(2[R]+1)^{N}\right\}
$$

where [] is the integer part function, and α_{N} is a constant that depends only on N.

