On polynomials taking small values at integral arguments

Roberto Dvornicich (dvornic@dm.unipi.it)
Universita di Pisa
Dipartimento di Matematica
Via F.Buonarroti, 2
56127-PISA
Italy

Abstract. In a recent paper, S. P. Tung considers the problem of estimating from below the quantity

$$
S_{F}(T)=\max _{\substack{x \in \mathbb{N} \\ x \leq T}} \min _{y \in \mathbb{Z}}|F(x, y)|,
$$

where $F \in \mathbb{Q}[X, Y]$ is a given polynomial and $T \in \mathbb{N}$ is a variable growing to infinity. If there exists a polynomial $f(X) \in \mathbb{Q}[X]$, taking integral values on \mathbb{Z}, such that $F(X, f(X))$ is a constant, then $S_{F}(T)$ is bounded. However this is essentially the only case when $S_{F}(T)$ is bounded. More precisely, define, for all $\mathcal{A} \subseteq \mathbb{N}$,

$$
S_{\mathcal{A}, F}(T)=\max _{x \in \mathcal{A}(T)} \min _{y \in \mathbb{Z}}|F(x, y)| .
$$

Then Tung proves the following: There exists a number $c>0$, depending only on $\operatorname{deg} F$, with the following property. Either there exists a polynomial $f(X) \in \mathbb{Q}[X]$ such that $F(X, f(X))$ is constant, or, for all sequences $\mathcal{A} \subseteq \mathbb{N}$ of positive density, we have $S_{\mathcal{A}, F}(T) \gg T^{c}$.

We are concerned with a question in a different direction: how large can one choose the exponent c in the above statement?

Tung points out that c cannot exceed $1 / 2$ and, under the Generalized Riemann Hypothesis, he obtains the inequality $S_{\mathcal{A}, F}(T) \gg \frac{\sqrt{T}}{\log ^{2} T}$, proving in particular that one can choose $c=(1 / 2)-\epsilon$, for any $\epsilon>0$.

The purpose of the present talk is to show, unconditionally, that in fact one can take $c=1 / 2$. We state this as the following

THEOREM 1. Let $\mathcal{A} \in \mathbb{N}$ be a set of positive lower asymptotic density and let $F \in \mathbb{Q}[X, Y]$. Then, either there exists $f \in \mathbb{Q}[X]$ such that $F(X, f(X))$ is constant, or $S_{\mathcal{A}, F}(T) \gg \sqrt{T}$ for $T \rightarrow \infty$.

We shall deduce Theorem 1 from a similar statement, namely
THEOREM 2. If \mathcal{A} is a set of positive upper asymptotic density and $y(a), a \in \mathcal{A}$ are integers such that $|F(a, y(a))|=o(\sqrt{a})$, then there exists a polynomial $f \in \mathbf{Q}[X]$ such that $F(X, f(X))$ is constant.

