The maximum number of points on a curve of genus 4

 over F_{8} is 25David Savitt (dsavitt@math.mcgill.ca)
McGill University
Department of Mathematics and Statistics
805 Sherbrooke St. West
Montreal, QC H3A 2K6
Canada

Abstract

Let $N_{q}(g)$ be the maximum number of points on a curve of genus g over the finite field F_{q}. We will explain our proof that $N_{8}(4)=25$; this was essentially the smallest unknown value of $N_{q}(g)$. It results from work of Kristin Lauter that it suffices to show that there is no curve of genus 4 over F_{8} with 27 points.

There are, of course, only finitely many curves of any given genus over a given finite field, and so our strategy involves reducing the quantity of curves which need to be considered to a tractable number (a few billion), and using a computer to count the points on these curves. The reduction involves studying the combinatorics relating to automorphisms of quadric surfaces in P^{3}.

This might also be appropriate for the arithmetic geometry session, if one session is more full than the other.

