Computing all S-integral solution in a family oftwo simultaneous Pell equations

Emanuel Herrmann (herrmann@math.uni-sb.de)
Universität des Saarlandes
FR Mathematik
Postfach 151150
D-66041 Saarbrücken
Germany

Abstract

Consider the two Pell equations $$
\begin{equation*} x^{2}+d 1 y^{2}=a 1 \quad \text { and } \quad z^{2}+d 2 y^{2}=a 2 \tag{1} \end{equation*}
$$ where $a 1 d 2-a 2 d 1$ is non-zero for fixed integers $a 1, a 2, d 1, d 2$. Denote by S a finite set of primes which includes the prime at infinity. To compute all simultaneous S-integer solutions of these equations an explicit transformation to an elliptic curve E will be described. It will be shown that every S-integral solution of (1) will map to an S-integral solution of E. To compute S-integral solutions on E you may use the method of complex and p-adic elliptic logarithms. This method will be discussed briefly. Finally, some computational results will be given.

