Vanishing of twisted L-functions of an elliptic curve and rational points on K^{3} surfaces

Masato Kuwata (kuwata@gen.kanagawa-it.ac.jp)
Kanagawa Institute of Technology
1030 Shimo-Ogino
Atsugi-shi, Kanagawa 243-0292
Japan

Abstract

. Let E be an elliptic curve defined over the rational number field. We are interested in how the rank of the group of K-rational points $E(K)$ varies when K runs through a certain family of field extensions. Particularly interested is the case where K runs through all cyclic extensions of fixed degree. Though a generalization of the conjecture of Birch and Swinnerton-Dyer, our problem amounts to study the vanishing of the L-function of E twisted by Dirichlet characters of fixed order.

When the degree or extension is 3 or 4 , we show that the existence of a K-rational point on E translates to the existence of a rational point of a certain K^{3} surface. In the degree 4 case we show that the K^{3} surface in question has always infinitely many rational points, and thus there are infinitely many cyclic extensions K of degree 4 such that the rank of $E(K)$ is positive.

