# Exceptional congruences for the coefficients of certain eta-product newforms 

Matthew Boylan (boylan@math.wisc.edu)<br>University of Wisconsin at Madison<br>Department of Mathematics<br>480 Lincoln Dr.<br>Madison, WI 53706<br>USA

Abstract. Let $F(z)=\sum_{n=1}^{\infty} a(n) q^{n}$ denote the unique weight 16 cuspidal eigenform on $\mathrm{SL}_{2}(\mathbb{Z})$. In the early 1970's Serre and Swinnerton-Dyer conjectured that

$$
a(p)^{2} p^{-15} \equiv 0,1,2,4 \quad(\bmod 59)
$$

when $p \neq 59$ is a prime. This was proved in 1983 by Haberland. Here, we describe a general computational method for proving congruences for the coefficients of eigenforms arising from odd octahedral complex 2-dimensional Galois representations, of which this congruence is the prototype.

