Variance of distribution of almost primes in arithmetic progressions

Emmanuel Knafo (knafo@math.toronto.edu)
University of Toronto
Department of Mathematics
Toronto, ON M5S 3G3
Canada

Abstract. In counting primes up to x in a given arithmetic progression, one resorts to the 'prime' counting function

$$
\psi(x ; q, a)=\sum_{\substack{n \leq x \\ n \equiv a(\bmod q)}} \Lambda(n)
$$

where Λ is the usual von Mangoldt function. Analogously, to count those integers with no more than k prime factors, one can use

$$
\psi_{k}(x ; q, a)=\sum_{\substack{n \leq x \\ n \equiv a(\bmod q)}} \Lambda_{k}(n)
$$

where Λ_{k} is the generalized von Mangoldt function defined by $\Lambda_{k}=\mu * \log ^{k}$. Friedlander and Goldston gave a lower bound of the correct order of magnitude for the mean square sum

$$
\sum_{\substack{a(\bmod q) \\(a, q)=1}}\left(\psi(x ; q, a)-\frac{x}{\phi(q)}\right)^{2}
$$

for q in the range $\frac{x}{(\log x)^{A}} \leq q \leq x$. Later, Hooley extended this range to $\frac{x}{\exp (c \sqrt{\log x})} \leq$ $q \leq x$. We obtain, in the larger range, a lower bound of the correct order of magnitude and approaching the expected asymptotic as k approaches infinity.

