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Abstract. In counting primes up to x in a given arithmetic progression, one resorts
to the ‘prime’ counting function
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where A is the usual von Mangoldt function. Analogously, to count those integers
with no more than & prime factors, one can use
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where Ay is the generalized von Mangoldt function defined by A, = p * log".
Friedlander and Goldston gave a lower bound of the correct order of magnitude
for the mean square sum
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for g in the range GozmA <4< Later, Hooley extended this range to Y
q < z. We obtain, in the larger range, a lower bound of the correct order of magnitude

and approaching the expected asymptotic as k approaches infinity.






