Normal integral bases in quadratic and cyclic cubic extensions of quadratic fields

James E. Carter (carterje@cofc.edu)
College of Charleston
Department of Mathematics
66 George Street
Charleston, SC 29424-0001
USA

Abstract

Let K be a number field and let G be a finite abelian group. We call K a Hilbert-Speiser field of type G if, and only if, every tamely ramified normal extension L / K with Galois group isomorphic to G has a normal integral basis. Now let C_{2} and C_{3} denote the cyclic groups of order 2 and 3 , respectively. Firstly, we show that among all imaginary quadratic fields, there are exactly 3 Hilbert-Speiser fields of type $C_{2}: \mathbb{Q}(\sqrt{m})$, where $m \in\{-1,-3,-7\}$. Secondly, we give some necessary and sufficient conditions for a real quadratic field $K=\mathbb{Q}(\sqrt{m})$ to be a Hilbert-Speiser field of type C_{2}. These conditions are in terms of the congruence class of m modulo 4 or 8 , the fundamental unit of K, and the class number of K. Finally, we show that among all quadratic number fields, there are exactly 8 Hilbert-Speiser fields of type $C_{3}: \mathbb{Q}(\sqrt{m})$, where $m \in\{-11,-3,-2,2,5,17,41,89\}$.

