The totally real subfield L of Q(exp(2*Pi*I/13))
[L:Q] = 6, discriminant
= 135
Minimal polynomial: x^6+x^5-5*x^4-4*x^3+6*x^2+3*x-1
Ramified primes: 13
P1 Primes: 2, 7, 11, 19, 37
P1P2 Primes: 3, 17, 23, 29
P1P2P3 Primes: 5, 31
Split Primes:
| k |
factor(k) |
zL(1-k) |
denominator of zL(k) |
| 2 |
2 |
|
|
| 4 |
22 |
|
|
| 6 |
2*3 |
|
|
| 8 |
23 |
|
|
| 10 |
2*5 |
|
|
| 12 |
22*3 |
|
|
| 14 |
2*7 |
|
|
| 16 |
24 |
|
|
| 18 |
2*32 |
|
|
| 20 |
22*5 |
|
|
| 22 |
2*11 |
|
|
| 24 |
23*3 |
|
|
| 26 |
2*13 |
|
|
| 28 |
22*7 |
|
|
| 30 |
2*3*5 |
|
|
| 32 |
25 |
|
|
| 34 |
2*17 |
|
|
| 36 |
22*32 |
|
|