The totally real subfield L of Q(exp(2pi/11))
[L:Q] = 5, discriminant = 114.
Minimal polynomial   x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1
Ramified primes:  11
Inert primes: 2, 3, 5, 7, 13, 17, 19, 29, 31, 37
Split primes: 23

 k factor(k) zL(1-k) denominator of zL(k) 2 2 -20/33 [3, 1; 11, 1] 4 22 1695622/165 [3, 1; 5, 1; 11, 1] 6 2*3 -50936925341420/693 [3, 2; 7, 1; 11, 1] 8 23 3543010400763352360091/165 [3, 1; 5, 1; 11, 1] 10 2*5 -3064839249175370545023293582020/33 [3, 1; 11, 1] 12 22*3 150607491678457644611241613057523401954646722/45045 [3, 2; 5, 1; 7, 1; 11, 1; 13, 1] 14 2*7 -22786609701564620802831984165768429157292386800423020/33 [3, 1; 11, 1] 16 24 3536453128145555872124660832571626062092079545106341991126179692667/5610 [2, 1; 3, 1; 5, 1; 11, 1; 17, 1] 18 2*32 -82870594275907635610187436559268476911703227525756627620509217091783293008291940/39501 [3, 3; 7, 1; 11, 1; 19, 1] 20 22*5 18101711521606517304423113131909702437120441255887075037380681034586375053865444166752853062/825 [3, 1; 5, 2; 11, 1] 22 2*11 -5351670936024492939166666065913000091973169152733384440393242319773760895634658032449754173452447868870060/8349 [3, 1; 11, 2; 23, 1] 24 23*3 2140902620412862787531604307645176100404841968426079695283278792036337157813694947611346966909345714822325560273519654201/45045 [3, 2; 5, 1; 7, 1; 11, 1; 13, 1] 26 2*13 -272623514370642870558372772196000774324744469363909470795760720136333301617973028388628650301184844782829144056234056572114064826020/33 [3, 1; 11, 1] 28 22*7 30 2*3*5 32 25 34 2*17 36 22*32