[L:Q] = 3, discriminant = 11213
Minimal polynomial:  x^3 - x^2 - 7*x + 2
P^3 Primes: 11
P^2 Q Primes: 13
P Primes: 3, 17, 23, 29
P Q Primes: 2, 5, 7, 19, 31, 37
P Q R Primes:

 k factor(k) zL(1-k) denominator of zL(k) 2 2 -38/3 [3, 1] 4 22 1134223/15 [3, 1; 5, 1] 6 2*3 -207311775074/9 [3, 2] 8 23 2034037859226420703/30 [2, 1; 3, 1; 5, 1] 10 2*5 -33484562027799453065294798/33 [3, 1; 11, 1] 12 22*3 31748566870059569067235704056251579/585 [3, 2; 5, 1; 13, 1] 14 2*7 -24852036625731681864162813822326847197678/3 [3, 1] 16 24 3146713030607915851410275840013021545786451623688671/1020 [2, 2; 3, 1; 5, 1; 17, 1] 18 2*32 -1280720345750122495718764978770551162301596960460504933858998/513 [3, 3; 19, 1] 20 22*5 3313188940667036744035142615961117064224417434577679166611364768338973/825 [3, 1; 5, 2; 11, 1] 22 2*11 -825595164955400179058360455027592790867533273004383616000713735574940951824554/69 [3, 1; 23, 1] 24 23*3 72934602413866731385250022199958966680111198077559352405428615587639526385969216924170099/1170 [2, 1; 3, 2; 5, 1; 13, 1] 26 2*13 -1624429918457519614888763323722893165025568624789942875223192613239287383711644463192331866317658/3 [3, 1] 28 22*7 3276864990895067836463915927969821648668277578325777997148442010293730108000423196841181677409442638965754141/435 [3, 1; 5, 1; 29, 1] 30 2*3*5 -497751413047245283466612820049862118677781480349334676336678226756608356845289270245285418838373352520162146165730902114/3069 [3, 2; 11, 1; 31, 1] 32 25 10702195030898809674972741549733056305677443885540722340995692185920824785080610888279181852694801386910118616039715446007852627711/2040 [2, 3; 3, 1; 5, 1; 17, 1] 34 2*17 -745304833857043982948104163195639719262946480435494882556469670503255128252748409199415566358429163388570897656790459622434829955856544978/3 [3, 1] 36 22*32